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Preface

This book is written in accordance with the new syllabus for the B. A. And B. Sc
course of the North Eastern Hill University and is intended to be used as a text book by
the students of other universities as well. It is hoped the Post Graduate and Engineering
students also will find the book very helpful.

In this book each chapter has been written elaborately with due care without
going into unnecessary details but is written in very simple language easily
understandable to the students. Great care has been taken in writing the proofs of the
theorems to make them as simple, clear and lucid as possible. Numerous worked out
examples will help the students to understand the theory and concepts so that they can
get clear idea and can easily solve other problems.

Finally, 1 take this opportunity to express sincere thanks to the publisher of this
book, for the special care he has taken to bring out this edition of the book. Last but not
the least I must not fail to mention my sincerest appreciation and thanks to my beloved
wife, daughter, my distinguished colleagues and friends without whose inspiration, I
would not be able to bring out this book in the present form. I would acknowledge any
suggestions for improvements of the book in future editions.

Shillong
Sept, 2019 Mardor Wanri Synrem
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Set Theory

Introduction

As students have already done the topic of sets in their lower classes, it is
expected that the students will take utmost interest while doing this chapter though
with wider range.

Definitions:
1.1 Set

A set is a collection of well defined and distinct object of our perception
or thought. The word “well defined” means a rule to be given with the help of
which we should readily be able to say whether a particular object ‘belongs to’
the set or not. The word ‘distinct’” imply that if the objects of the collection be
named and in doing so the number of objects will not increase.

Set are usually denoted by the capital letters of the English alphabet, say A,
B, C, X, Y, Z, and so on.

Examples:
(i) The collection of all natural numbers is a set, denoted by IN
(il) The collection of all integers is a set, denoted by Z
(iii) The collection of most talented writers in India, is not a set.
Some standard sets Notation:
IN = Set of all natural numbers

Z= Set of all integers
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IR = Set of all real numbers
Q = Set of all rational numbers
C = Set of all complex numbers

W = Set of all whole numbers

1.2 Elements

The objects which constitute the set are called elements of the set. These
are also known as members of the set.

The elements are usually denoted by small letters of English alphabets, say
a, b, ¢, X,y Zyeerronnn. ‘

Given a set say S and an object say x, then one and only one of the
following statements is true.

(i) x is in the collection S
(i1) x is not in the collection S

If x is in the collection S, then it is read as “x belongs to S” or “x is an
element of s” or “x is in S and is represented symbolically by x€S. If x is not
in the collection S, then it is read as “x does not belong to S” or “x is not an

element of S” or “x is not in S” and is represnted symbolically by x €S.
Examples:
Let S: {0,2,4,6,8, 10} then
(i) 6¢€S (i) 3¢S

1.3 Representation of a set
There are two types of representation of a set

(i) Roster or Tabulation Method. In this method, the set is represented by
listing all its elements, seperating the elements by commas and
enclosing them in curly brackets.

(ii)) Defining Property Method. In this method, the set is represented by
sepecifying the common property of the elements. In this case the set
S is denoted as

S {x:P(x)is true}

Here ‘x’ stands for ‘an arbitrary element of the set and °:’ stands for ‘such
that” and P(x) stands for “Common Property”

This form of the set is known as set builder form.
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Exmaples:

(1) Let S be the set of odd natural numbers less than 10. Then Roster form
of S is

S:{1,3,5,7,9}
and Set Builder form of S is
S = {x:x is an odd natural number and x < 10}
(2) Let S be the set of all letters of the word “MATHEMATICS”. Then
Roster form of Sis S= {A, E, [, C, H, M, S, T}
Set Builder form of S is S = {x : x is a letter of the word
MATHEMATICS}
Hlustrative Exmaples

Example 1. Explain the difference between a collection and a set. Justify your
answer.

Solution: Each set is a collection but collection may not be a set as only well
defined collection is a set.

Examples 2. Write the set of all positve integers whose cube is odd.

Solution: The elements of the required set are not even [Since cube of an even
integer is an even integer]

Moreover, the cube of a positive odd integer is a positive odd integer i.e. the
elements of the required set are all positive integers.

Hence, the required set in set builder form is
{2k + 1 : k>0, ke z}

Example 3. Write the set {x : x is a positive integer and x* < 30} in the roster
form.

Solution: The squares of positive integers which are Iess than 30 are 1, 2, 3, 4,
5. ‘

Hence the given set iin roster form is
{1,2,3,4,5}
Example 4. Match each of the sets on the left in the roster form with the same
set on the right describe in the set builder form
@ {0} (@) {x:xis a letter of the word LITTLE}

) {1,3,5,7, 9} (b) {x:xisa natural number and is a
divisor of 6}
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i) {L, T, T, E} (¢) {x:xisan integer and x + 2 = 2}
(iv) {2, 3} (d) {x:xis an odd natural number less than 10}

1.4 Finite and Infinite Sets

(a) Finite Set
A Set a said to be finite if it consists of only finite number of elements
Examples: {1, 2, 3, 4}; {a, e, i, 0, u} are finite sets

(b) Infinite Set
A set is said to be infinite if it consists of infinite number of elements
Examples: {1, 2, 3, 4,........ 4 {2, 4,6, 8,....... } are infinite sets

(c) Cardinal Number

In a finite set the number of the elements it consists say ‘n’ is called the
cardinal number or the order of this finite set and is denoted by n (S)

1.5 The Empty Set

A set which does not contain any element is called the empty set. It is
also called the ‘null’ or ‘void’ set. The empty set is denoted by o.

Examples:

(i) Let A be the collection of all those integer whose square is negative or
less than zero.

Then obviously A is an empty set since the square of any integer
cannot be negative or less than zero.

(i) B = {x:xis a positive integer < 1}

Obviously B is an empty set since no positive integer is less than 1.

1.6 The Singleton Set
A set having only one element is called a Singleton Set.

Example: {0} is a Singleton Set

1.7 Order of a Finite Set

The number of distinct elements in a finite set S is called the order of the
set S and is denoted by 0 (S)

If the order of the set is zero the set is empty.
If the order of the set is one, the set is Singleton.

Remark: The order of an infinite set is never defined.
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1.8 Equal and Equivalent Sets
(a) Equal Sets
Two Sets A and B are said to be equal if they have same elements.

If two sets A and B are equal, it is written as A = B and if the two sets A
and B are not equal, it is written as A =B.

Examples:
(1) LetA={l, 2,3,4} and B={2,4,1, 3}
Then A =B ,
(2) LetA={1,2,3,4} and B= {1, 2, 3, 5}
Then A=B

(b) Equivalent Sets

Two finite sets A and B are said to be equivalent sets if they have same
number of elements.

If two sets A and B are equivalent, it is written as A=xB.

Example:
Let A={1,2, 3,4} and B = {a, b, ¢, d}
Then A~B [Since A and B have four elements each]

1.9 Subsets

Let A and B be two sets. Then, the set A is said to be a subset of B if every
element of A is also an element of B.

If A is a subset of B, we write ACB.

When A is a subset of B, it means that “A is contained in B” or “B contains
A”. Here B is called a super set of A and is written as BDA.

Remark:
1.  Every set is a subset of itself i.e. ACA
2. Null set or Empty set is a subset of every set i.e. ¢CA for all A.
If A is not a subset of B, we write A¢B )

Result: If the number of elements in a finite set is ‘n’, then the total number
of subsets is 2.

Example:
Let A= {1,2,3,4},B={2,4} and C = {3, 4}
(i) Is BcA? (i) Is CcB?  (ili)) Is BcC?  (iv) Is CcA?
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Solution:
(i)  Yes, since each element of B is in A
(i) No, since 3¢C but 3¢B
(i) No, since 2¢B but 2¢C

(iv) Yes, since each element of C is in A

1.10 Comparable Sets
Two sets A and B are said to be comparable iff either AcB or BcA
Another Definition of Equal Sets. Two sets A and B are said to be equal
(i.e. A= B)iff A is a subset of B and B is a subset of A.
1.11 Proper Subset
If AcB and A=B, then we say that A is a proper subset of B.

A non empty set A is said to be a proper subset of B if there is at least one
element of B, which is not in A.

If the subset is not proper it is called improper subset. AcA and ¢cA are
improper subsets.
1.12 Power Set

The collection of all possible subsets of a given finite set A, is called the
power set of A and is denoted by P(A).

Examples: Let A = {1, 2, 3}
Then P(A) = {6, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

1.13 Universal Set

The set for which each of the sets under consideration are its subsets, is
called a Universal Set, which is generally denoted by U or X.

Note: The Universal Set is not unique
Examples:

(i)  For the set of all integers Z, the Universal Set can be the set Q of
rational number or IR, the set of real numbers.

(iiy For (a) Set of all acute - angled triangles
24 8
(b) Set of all obstuse - angled triangles
(c) Set of all right - angled triangles

the universal set is the “Set of all triangles”
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1.14 Euler-Venn Diagrams U
“Venn diagrams’ were named after John

Venn (1834-1934). Many of the properties of A

sets can be verified with the help of these

diagrams. B

With the help of our geometric intuitions
we talk of the universal set as the region

enclosed by a rectangle and its subsets as regions enclosed by one or more than
one closed curves.

If A and B are two sets such that every element of A is also an element of
B. Then we say that ‘A is a subset of B” written as AcB and this is shown by
Venn diagram in the adjoining figure.

1.15 Operations on Sets

(a) Union of two sets: A B U
The union of two sets A and B is the P
collection of all those elements which either l.”— ," “‘. “.'
belong to A or to B or to both A and B. It is ‘\ "\ /} ,,f
denoted by AUB. ~—~ —
The common elements are to be taken
only once. Shaded region is AUB

Symbolically. AUB = {x : x€A or x€B}
It is shown in the above fig by Venn diagram.
Examples:

() LetA={a,b,c},B={aceio0,u}
Then AUB = {a, b, ¢, e, 1, 0, u}

(II) Let A= {x:x is an even integer <10}

B = { x : x is an integer and 0<x<1}

Then AUB = {x : x is an integer, 0<x<10}

Remark:

(i) x€AuB&xcAorxeB

(i) x¢AUB&x¢ZA or x¢B

Entension: Let A, A,, ...... , A_be n sets then the union of all these sets is

denoted by QJI A,
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(b) Intersection of Two Sets:

The intersection of two sets A and B is the collection of all those elements
which belong to both A and B. It is denoted by AnB.

Symbolically. AnB = {x:x€ A and x<B} U A B
It is shown in the adjoining figure by @

Venn diagram.

Shaded region is ANB
Examples: 8

M LetA={1,2,34,56}B=(2,4,6}
Then ANB = {2, 4, 6}
(IT) Let A = {x:x is a natural number}
B = {x:x is an integer}

Then AnB = {x:x is a natural number|

1.16 Difference of Two Sets

The difference of two sets A and B which is denoted by (A-B) is the
collection of all those elements of A, which are not in the set B

Symbolically: A-B = {x : x€ A, x¢B}
Similarly B-A = {x : x€B, x¢ A}

These are shown in the figs below by Venn diagrams

A B U A B U
Shaded region is A-B Shaded region is B-A

Remark:
(i) x€A-B < x€A and x¢B
(i) x¢A-B & x¢A and xeB
Example:
LetA={1,2,3,4,5,6} B= {1, 3, 5}
Then A-B = {2, 4, 6} and B-A = ¢



Set Theory 9

1.17 Disjoint Sets
Two sets A and B are disjoint sets when they have no common elements
Thus if AnB = ¢, we say that A and B are disjont.

This is shown in the following Venn diagram.

A B U

Example:

Let A= {1,3,5,7,..... }B=1{2,4,6,8,...}
Then ANB = ¢. Thus A and B are disjoint sets
Notes:

(i) ¢cA>A ie. null setis contained in every subset

(i) ¢ NA = ¢ i.c. null set is disjoint from every subset.

1.18 Complement of a Set

Let U be the universal set and A be any subset of U .Then the complement
of the set A is the collection of all those emelemts of U which are not in the set
A. 1t is denoted by U-A or A® or A'.

Symbolically, A® = {x : xeU and x¢A}

It is shown in the adjoning Venn digram

Remark:
(i) xEA® & x¢A g A E
(i) Xx€EA < xgA°
Remark: Shaded region is A*
(1) AUA® = U (i) AnA°= ¢

Example:
Let U= {1, 2, 3,..., 10} and A = {2, 4, 6, 8, 10}
Then A°= {1,3,5,7, 9}
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1.19 Symmetric Difference of Sets

Let A and B be two sets. Then the set (A-B) u
U (B-A) is called the symmetric difference of A
and B which is denoted by AAB.

Symbolically. AAB = {x : x (x¢ A and x¢B) or A B

(x€B and x€A)}
It is shown in the adjoining figure by Venn diagram.

1.20 Properties
(a) (HYAUG=A (i) AnU=A (Identity Laws)
() AUA=A iv)AnA=A (Idempotent Laws)
(WMAuB=BUA (viiAnB=BnA (Commulative Laws)
Proof: (Left as exercise)
(b) () AuBUC)=(AuB) U C (Associative Laws)
(i) An(BNC)=(AnB) n C
(iii) Au(BNC) = (AUB) N (AUC) (Distributive Laws)
(iv) An(BuUC) = (AnB) U (ANC)
Proof: (i) Let xc Au(BUC)
Then xe AUBUC) < x€A or xeBUC [by defn]
4 xeA or (x€B or x€C)  [by defn]
< (x€A or xéB) or xeC  [by Asso. Law]
< x€AUB or xeC [by defn]
< x€(AUB)UC [by defn]
Hence AU(BUC) = (AuB)UC
(ii) Let xe AN(BNC)
Then xe AN(BNC) < x€A and xeBNC [by defn]
< x€A and (x€B and x<C [by defn]
< (x€A and x€B) and x€C [by Ass. Law]

< x€AnB and xeC [by defn]
< xe(AnB) N C [by defn]
Hence AN(BNC) =(AnB) n C
(iii) Let x€e AU(BNC)

Then xe AUBNC) < x€A or xeBNC [by defn]
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& x€A or (x€B and x€C) [by defn]
& (x€A or x€B) and (x€A or x€C)
< x€AUB and xe AUC [by defn]
< x€(AUB) N (AUC) [by defn]
Hence AuU(BNC) = (AUB)N(AQC)
(iv) Let xe An(BuC)
Then xe AN(BUC) < x€A and xeBUC [by defn]
& x€A and (x€B) or x€(C) [by defn]
4 (x€A and x€B) or (x€ A and x€C)
< x€AnB or x€ AnC) [by defn]
< xe(ANB) U (ANC) [by defn]
Hence AN(BUC) = (ANB)U(ANC)
(©) (@) (A% = A (Involution Law)
(i1) AUA°= U, where U is the universal set (Complement Law)
(iii) AnA° = ¢ (Complement La\;v)
(iv) (AUB)® = A°nB° (De-Morgan Law)
(v) (AnB)c = A°UB° (De-Morgan Law)
Proof: (i) Let xe(A°)°
Then x€(A°)* < x¢A°[by defn]
< x€ A [by defn]
Hence (A% = A
(i) Let x € AUA®
Then xe AUA® < x€A or x€ A° [by defn]

< XEA or x€U—A, where U is the
universal set

& x€A or (x€U, XEA)
& Xeu
Hence AUA® = U
(iii) Let xe ANA®
Then x€e ANA® & xe A and xcA° [by defn]
& xeA and x€A [by defn]
Hence AnNAc = o

11
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(iv) Let xe (AUB)®
Then xe (AUB)® < xZAUB [by defn]
< x¢A and x¢B [by defn]
< x€A° and x€B° [by defn]
& XeEA° N Be
Hence (AUB): = A°n B¢
(v) Let xe (ANnB)*
Then x€(AnB)* < A¢ANB [by defn]
< A€ A or x¢B [by defn]
< x€A° or x€B° [by defn]
< x€A° U Be [by defn]
Hence (AUB)° = A° U B®

Ilustrative Examples
Example 1. Explain the difference between a collection and a set. Justify your
answer.

Solution: Each set is a collection but collection may not be a set as only well
defined collection is a set.

Example 2. Write the set off all positive integer whose cube is odd.

Solution: The elements of the required set are not even [Since cube of an even
integer is an even integer|

Moreover, the cube of a positive odd integer is a positive odd integer i.e. the
elements of the required set are all odd positive integers.

Hence the required set in set builder form as
{2k + 1 : k>0, kez}

Example 3. Write the set {x : x is a positive integer and x* < 30} in the roster
form.

Solution: The square of positive integers which are less than 30 are 1, 2, 3, 4,
5

Hence the given set in roster form is
{1,2,3,4,5}
Example 4. State which of the following sets are finite and which are infinite:
(i) A= {x:xe€IN and x*-3x+2 = 0}
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(i) B = {x:x€INand x* = 9}
(i) C = {x:x€IN and x is even}
(iv) D = {x:x€IN and 2x-3 = 0}
Solution: (i) A= {1, 2}
[ x*-3x+2=0 = (x-1) (x-2) =0 = x=1, 2]
Hence A is finite set.
() B={3}
[ x*= 9 = x = £ 3 But 3<IN]
Hence B is a finite set
(i) C=142,4,6,8,.....}
Hence C is an infinite set
(iv) D=¢ [2x-3=0 = x = %52 IN]
Hence D is a finite set
Example 5. Which of the following are empty (null) set?
(1) A= {x:xeIN and x*< 0]
(i) B= {x : xez and x* + 3x -4 = 0}
Solution: (i) A is a null set since square of any natural number cannot be negative.
(i) B= {4, 1}=¢
[X*+3x-4=0=>x+4H x-1)=0=x=-4,1]
B is not a null set

Example 6. For any two sets P and Q, prove that P-Q=PNQ° = Q°~P* where P*
is the compliment of P (NEHU, 2001)

Solution: Let x€P-Q. Then
xeP-Q < xeP and x¢Q [ by defn]
& x€P and x€Q° [ by defn]
& xePNQe [ by defn]

Also xeP-Q < x€P and x¢Q [ by defn]
< x¢P° and x€Q° [ by defn]
< xeQ° — P by defn]
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P-Q=Q-P°.....cc...... (i)
By (i) and (ii) P-Q = PnQ*= Q*—P*
Example 7. For any two sets A and B, prove thét ACB & AnNB=A
(NEHU, 2002)
Solution: Suppose ACB and let xc ANB
Then xe ANB & x€A and x€B [by defn]
< x€A [as ACB]
o AnB=A
Conversely suppose ANB = A and let x€ A
Then x€ A = x€AnB [since AnB=A]
= x€A and x€B [by defn]
=xeB
. XEA = X€B
Hence ACB [by defn]
Therefore ACB < AnB=A
Example 8. Prove that A — (BUC) = (A-B)N(A-C)
(NEHU, 2003, 2005, 2010, 2012, 2016)
Solution: Let x€ A — (BUC)
Then xeA-(BUC) < x<€A and x¢BUC [by defn)]
< x€A and (x¢B and x¢C)
< (x€A and x¢B) and (x€ A and x¢C)
< x€(A-B) and x€ (A-C) [by defn]
< x€(A-B) n (A-C)
. A—(BuC)=(A-B) n (A-C)
Example 9. If A and B be any sets, prove that AN(A“UB) = AnB (NEHU 2004)
Solution: Let x€¢ AN(A®“ U B)
Then x€A N (A U B) & x€A and x€ (A U B) [by defn]
< x€A and (x€ A or xeB) [by defn]
< x€A and (x¢ A or x€B)
< x€A and x€B
< x€ ANB [by defn]
- AN(A®U B)=ANB
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Example 10. State and Prove De. Morgan’s Laws. (NEHU 2013, 2016)

or, Show that the complement of the union of any number of sets is the intersection
of their complements. (NEHU, 2006, 2007)

Solution: Refer to the definition of De Morgan’s Laws (left as exercise for
students) ‘

Example 11. For any two sets A and B, prove that A~B = ¢ if and only if ACB
(NEHU, 2007 Pre Revised)

Solution: Let ACB and x€ A-B
Then x¢ A-B < x€A and x¢B [by defn]
But x¢B is absurd since ACB
S A-B=9¢
Hence if ACB, then A-B = ¢
Conversely suppose A-B = ¢ and let x€A
Then x€A and A-B = ¢ = x€B (by defn)
Hence x€A = x€B = ACB
Therefore A—B = ¢ if and only if ACB

Example 12. Let A, B, C be any three sets. Then prove that (AUB)UC =
AUBUC) (NEHU, 2008 Pre Revised)

Solution: Refer to Associative Property.

Example 13. Let A={1, 2, 3,4}, B={1, 2, 3} and C= {2,4}. Find all sets X such
that -

(1) X<B and XcC
(ii) X<A and X¢ZB [NEHU, 2011]
Solution: A={1, 2, 3, 4} subsets of A are

X =0, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4} {2,3}, {2, 4}, 3,4},
{1,2,3}, {1,2,4}, {1, 3,4}, {3,4}, {2,3,4}, {1, 2,3, 4}

B = {1, 2, 3}. Subsets of B are

X =0, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
C = {2, 4} Subsets of C are

X =9, {2}, {4}, {2, 4}

H X=6,{2}

(i) X = {4}, {1, 4}, {3, 4}, {2, 4}, {1,2,4}, {1, 3,4}, {2,3,4}, {L,
2,3, 4}
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Example 14. Prove that for any 3 sets A, B, C
(A-C)n(B-C)=(AnB)-C (NEHU, 2012)
Solution: Let x€ (A-C)N(B-C)
Then xe (A-CY)N(B-C) < x€(A-C) and xe(B-C)
< (x€A and x¢C) and (xB and x¢C) [by defn]
< (x€A and x€B) and x¢C
< x€AnB and x¢C
& x€(ANB) — C [by defn]
- (A-C) n (B-C)=(AnB) - C
Example 15. Prove that for any two sets A, B
(AnB)u(A-B)y=A
Solution: Let x€(AnB) U (A-B)
Then x€(ANB) U (A-B) 4 x€(ANB) or xe(A-B) [by defn]
< (x€A and x€B) or (x€A and x¢B) [by defn]
< x€A [since x€B and x¢B is absurd]
. (ANB) U (A-B)=A
Example 16. Prove that A-B=A <> AnB=¢ where A and B are any two sets
[NEHU, 2013]
Solution: Suppose A-B = A
Let x€ ANB = x€A and x€B [by defn]
= x€(A-B) and xeB [ -, A-B=A]
= x€A and x¢B and x¢B
Since and x€B and x¢B cannot hold simultaneously
Hence this is absurd
. ANB=¢
Conversely suppose AnB=¢ and let xc A-B
Since x€ A-B = x€A and x¢B
= x€Aas AnB=¢
S A-B=A
Therefore A-B = A < AnB=¢
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Exercise 1.1

1.  Which of the following are sets? Justify your answers
(i) The collection of all months in a year beginning with the letter J
(i) The collection of most talentd writers of India
(ii) A team of eleven best Cricket batsman of India
(iv) The collection of difficult topics in Mathematics
(v) The collection of novels written by Khushwant Singh
2. Write the following sets in Roster form:
(i) A = {x:xisa natural number less than 10}
(i) B = {x:xis atwo digit natural number such that the sum of its digits
is 6}
(i) C = {x : x is a positive integer and x’<40}
(iv) D= {x: x is a letter of the word ‘TRIGONOMETRY"}
(v) E = {x:xis an integer whose cube is an even integer}
3. State which of the following sets are limite and which are finite:
(1) A= {x:xeNand (x-2) (x~3) =0}
(i) B = {x:xeZ and x*> = 36}
(i) C= {x:xeNand 2x+1 = 0}
(iv) D = {x : x€¢ N'and X is a prime}
4. Which of the following are empty or null sets?
(1) A= {x:5<x<6, x€ N}
(ii) Set of even prime numbers
(iii) {x : x> =25 and x is an even integer}
(iv) {x:xeN and x*+1 =0}
5. Are the following sets equal? Give reasons.
(i) A=1{2, 3}, B={x:xisaroot x>-5x+6=0}
(i) A= {n:nezandn’< 4} B = {x:x€R and x*-3x+2=0}
(ii)) A= {x:xis a letter in the world “LOYAL”}
B = {x: x is a letter in the world “ALLOY”}
(iv) A={x:xeN, x3}B={1,2} C={3,1}
D = {x : xeN, x is odd and x<5}
E={1,2,1} F= {1, 1, 3}
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6. LetA={1,2} {3, 4}, 5}. Which of the following statements and true and
false? Give reasons.

(i) {3, 4}cA (i) {3,4}€A (iii) {{3, 4}}cA
(iv) 1cA () {1,2,5cA  (vi) {1, 2, 5)€A
(vi)be A (viii) {¢}cA

7. Write down all possible subsets of the following
(i) {o} () {1} (iD) {1, 2, 3} (iv) {1, {1}}

8. Write down the power set of the following:
(@ {0} (i) {1, 2} (iii) {a, b, ¢}

9.  Prove that Ac ¢ implies A=¢

10. LetA, B and C be thre sets. If AcB and B<C, is it true that AcC? If not give
an example.

11. Prove that AcB, BcC=AcC
12. Find the union and intersection of the following pair of sets
(i) A=1{1,2,3,4};B={2,3,5}
(i) A={a, e, i,0,u};B=¢
(i) A = {x : x is a natura] number and 1<x<6}
B = {x : x is a natural number and 6<x<10}
(iv) A= {x:xe€z and x>7},B={l, 2, 3}
(v) A={x:x€z} and B = {x: x€Z and x<0}
13. Let A = {x:x is a natural number}
B = {x : x is an even natural number}
C = {x : x is an odd natural number}
D = {x : x is a prime number}
Find (i) AnB (i) BNC (iii)) BND (iv) AnC (v) AnD
Find (i) A-B (ii) A-D (iii) B-A (iv) C-A (v) D-B
14. If R is the set of real numbers and Q is the Set of rational numbers, then
what is R—-Q?
15. Which of the following are disjoint sets?
(i) {1,2,3,4,5} and {x : x is a natural nuber and 5<x<7}
(i) {a, e, i, 0,u}and {b, ¢, d, e, f}

i) {x :xis an odd integer} and {x : x is an even integer
1 g g
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16.

17.
18.
19.

20.

21.
22.

Let N be the universal set. Write down the complements of the following
sets:

(i) {x:xe€N and x is odd}

(i) {x:x€N and x is even}

(i) {x : x is a prime number}

(iv) {x:x€N and x=3n for some ne N}
(v) {x:x€N and x is a perfect square}
(vi) {x:x€N and 2x+5=11}

Prove that (i) AcAUB (i) AnBcA

If AnB® = ¢, show that AcB

If A and B are any two sets, prove that

(i) A-B=AnB° (i) (A-B) UB =AUB
(i) A-B=A-(ANB) (iv) AcB < B°cA®
If A, B and C are any three sets, then prove that;
1 AnB-C)=(AnB) - (ANC)

(i) ANBAC)=(ANB) A (ANC)

(iii) (AUB) - C=(A-C) U (B-0O)

(iv) AnB-C)=(AnB)-C

V) AnB-A)=¢

(v) (A-B)n (B-A)=0¢

(vii) (A-B) N (AnB)=¢

(viil) op—A = ¢

Show that AnB = ANC need not imply B=C.

Prove that the number of subsets of a set with ‘n’ elements is 2.

Important Results:

If A, B and C are finite sets and U is the universal set then

(i) n(AuB)=n (A)+n (ANB)

(i) n (AuUB)=n (A) +n (B) if A, B are disjoint non empty sets

(i) n (A)=n (A-B) +n (ANB)

(iv) n (AAB) = No. of elements which belong to exactly one of A or B
=1 ((A-B) U (B-A))
=n ((A-B) + n (B-A)) [ - A-B and B-A are disjoint]
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ie.n (AAB) =(n(A)-n (AnB)) +n (B) - n (BNA)
=n (A)+n (B)-2n (AnB) [- AnB = BNA]
(v) n(AnB®) =n(A)—n (AnB)
(vi) n (BNA® =n (B) —n (ANB)
(vii) n (AUB) =n (ANB°) + n (BNA®) + n (ANB)
(viii) n (A°UB°) = n ((ANB)) =n (U) - n (ANB)
(ix) n (A*NB°) =n ((AUB)’) =n (U) — n (AUB)

(x) 1 (AUBUC) = [n (A) +n (B) + n (C)] - [n (ANB) + n (ANC)
+ 1 (ANC) + n (BnC)] +n (ANBNC)

Illustrative Examples

Example 1. If X and Y are two sets such that n(X) = 17, n (Y) =23 and n (XUY)
= 38. Find n (XNY)

Solution: We know that
n (XUY)=n (X) +n (Y)-n (XnNY)
£ 38=17+23 —n (XNY)
Hence n (XNY) =40 — 38 =2

Example 2. If A and B be two sets containing 3 and 6 elements respectively. Find
the maximum and minimum nunber of elements in AUB.

Soluition: We know that
n (AUB) =n (A) + n (B) — (ANB) .......... )]
Case 1: When n (ANB) is minimum, then n (AnNB) =0
~n(AUB)=n(A)+nB)=3+6=9
Hence maximum number of elements in AUB is 9.
Case 2: When n (AnB) is maximum, then n (ANB) = 3
n(AUB)=n(A)+n(B)-n(AnB)=3+6-3=6
Hence minimum number of elements in AUB is 6.

Example 3: Out of 20 number in a family 11 like to take coffee and 14 like to take
tea. Assume that each one likes at least one of the two drinks. How many like

(i) both tea and coffee
(ii) only tea and not coffee

(iii) only coffee and not tea
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Solution: Let T = Set of members who like tea
C = Set of members who like coffee
By question, n (T) =14 and n (C) = 11, n (TuC) =20
(i) Using n (TUC) =n (T) + n (C) — n (TNC) we get
n (TNC)=n (T) + n (C) — n (TuC)
=14+11-20=5
.". 5 members like both coffee and tea
(i) n(TnC%) =n(T)-n (TNC)
=14-5=9
.". 9 members like only tea and not coffee
(i) n (CNT)=n (C) —n (TNC)
=11-5=6
.*. 6 members like only coffee and not tea

Example 4. A survey report reveals that 59% of college students like tea whereas
72% like coffee. Find the possible range of the percentage of college students who
like both tea and coffee. (NEHU, 2003)

Solution: Let T = Set of students who like tea
C = Set of students who like coffee
The n (T) = 59, n (C) = 72, n (CuT) = 100
Using n (CuT) = n(C) + n (T) — n(CNT) we get
100 = 72 + 59 — n (CNT)
ie n (CNT) =72 + 59 — 100 = 31
.. Students who like both coffee and tea is 31%

Example 5: In a survey of 60 people, it was found that 25 people read
newspaper A, 26 read rewspaper B, 26 read newspaper C, 9 read both A and C,
11 read both A and B, 8 read both B and C, 3 read all three newspaper. Find the
number of people who read exactly one newspaper. (NEHU, 2004)

Solution: By question
n (A) =25,n(B)=26,n (C) =26
n (ANC) =9, n (ANB) = 11, n (BNC) = 8, n (ANBNB) =3

Using n (AUBUC) = n (A) + n (B) + n (C) - n (AnB) — n (ANC)
—n (BNC) + n (AnBNC) we get
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n (AUBUC) =25 +26+26-11-9-8+3
=52

The number of people reading at least one of the three newspaper per is
52

Ifa, b, ¢, d, e, f, g denote the nunber of elements in the respective regions,
then by question,

A B

n (A) = atetd+g
n (B) = bte+ftg A
n (c) = c+d+f+g
n (ANB) = etg, Av
n (ANC) = d+g, n (BNC) = f+g
n(AnBnC) =g
Now, n (AnBNC)=3 = g=3

n(AnB) =11 = etg=11 = e =8 C

n(ANC)=9 =d+g=9 = d=6

nBNC)=8 = ftg=8=f=5

n(A) =25 = at8+6+3 =25 = a=§

n(B)=26 = b+8+5+3 =26 = b =10

n(C) =26 = c+6+5+3 =26 = ¢ = 12
No of people reading exactly one newspaper = a+b+c
8+10+12

=30

Number of peole reading exactly one newspaper is 30.

Example 6. A college awarded 38 medals in Football, 15 in Basketball and 20
in Cricket. If 58 students recured all the medals such such that only three
students got medals in all the three sports, how many received medals in exactly
two of the three sports? (NEHU, 2005)

Solution: Let F = Set of students awarded medals in Football

B = Set of students awarded medals in Basketball
C = Set of students awarded medals in Cricket
By question, n(F) = 38, n(B) = 15, n(C) = 20, n(FUBUC) = 58, n(FNBNC)
=3

Using n(FUBUC) = n(F) + n(B) + n(C) - n(FNB) — n(FNC) -~ n(BNC) +
n(FNBNC) we get
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A
o/

C

58 =38 + 15 + 20 — n(FNB) — n(FNC) — n(BNC) + — n(FNBNC)
= n(FNB) + n(FNC) + n(BNC) =38 +15+20+3 -58 =18
=et+tgt+tf+g+d+g=18
=c¢+f+d=18-3g=18-3x3 =18

.. Number of students who received medals in exactly two of the three
sports is 9.

Example 7. A Company wants to hire 25 programmers to handle systems
programing jobs and 40 programmers for applications programming. Of those
hired, ten will be expected to perform jobs of both types. How many programmers
must be hired. (NEHU, 2008)

Solution: Let A = Set of programmers for programming jobs
B = Set of programmers for applications programming
By question, n(A) = 25, n(B) = 40, n(AnB) = 10
Using n(ANB) = n(A) + n(B) — n(AnB) we get
n(ANB) =25 + 40 — 10 =55
.. 55 progammers must be hired.

Example 8. In a survey of 600 students in a school, 150 students were found
to be drinking tea, 225 drinking coffee and 100 were diinking both tea and coffee.
Find how many students were drinking neither tea no coffee. (NEHU, 2011)

Solution: Let T = Set of students drinking tea
C = Set of students drinking Coffee
U = Set of students surveyed
By question, n(U) = 600, n(T) = 150, n(C) = 225, n(CNT) = 100
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Now n(T¢nC®) = n[(TuC)‘]
=n(U) — n(TuC)
=n(U) - [n(T) + n(C) - n(TNC)]
=600 — [150 + 225 - 100]
= 600 — 275
=325
. Number of students drinking neither coffee nor tea is 325.

Example 9. In a survey it was found that 21 persons liked product A, 26 liked
product B and 29 liked product C. If 14 persons liked produicts A and B, 12
persons liked products C and A; 14 persons liked product B and C and 8 liked
all the three products, find how many persons liked product C only.

(NEHU, 2012)
Solution: By question,
n(A) = 21, n(B) = 26, n(C) = 29
n(AnB) = 14, n(CNnA) = 12, n(BNC) = 14, n(AnBNC) = 8
Required number of people who liked product C only
= n(A°NB°NC)
n((AuB)°NC)
n(C) — n((AUB)NC)
[n(ANB°) = n(A) - n(ANB)]
n(C) - n((AnC) u (BNC))
n(C) — [n(ANC) + n(BNC) — n(AnBNC)]
29 -[ 12 + 14 - 8]
=11

Example 10. If 63% of persons like oranges where 76% like apples, then what
can be said about the % of persons who like both oranges and apples?

(NEHU, 2013)

Solution: Same as example 4.
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Exercise 1.2

1. There are 20 students in a Chemistry class and 30 students in a Physics
class. Find the number of students which are either in Physics class or
Chemistry class in the following cases:

(i) The classes meet at the same time

(i) The two classes meet a different times and 10 students are enrolled
in both the subjects. [Ans: (1) 50 (i) 40]

2. In a survey of 400 students in a school, 100 were listed as drinking apple
juice, 150 as drinking orange juice and 75 were listed as both drinking apple
as well as orange juice. Find how many students were drinking neither apple
juice nor orange juice. [Ans: 225]

3. Out of 500 car owners investigated, 400 owned Maruti cars and 200 owned
Hyundai cars. 50 owned both Maruti and Hyundai Cars.  Is this data
correct? [Ans: No]

4. Inasurvey of 25 students, it was found that 15 had taken Mathematics,
12 had taken Physics and 11 had taken chemistry, 5 had taken Mathematics
and Chemistry, 9 had taken Mathematics and Physics, 4 had taken Physics
and Chemistry and 3 had taken all three subjects. Find the number of students
that had taken:

(i) only Chemistry
(ii) only Mathematics
(iii) only Physics
(iv) Physics and Chemistry but not Mathematics
(v)  Mathematics and Physics but not Chemistry
(vi) Only one of the subjects
(vii) At least one of the three subjects
(viii) None of the three subjects
[Ans: (i) 5 (ii) 4 (iii) 2 (iv) 1 (v) 6 (vi) 11 (vii) 23 (viii) 2

5.  There are 210 members in a club. 100 of them take tea and 65 take tea but
not coffee. Each member takes tea or coffee

(i) How many take coffee

(ii) How many take coffee but not tea (NEHU, 2013)
[Ans: (i) (i1)]
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1.

12.

13.
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In a class of 50 students, 20 students play football and 16 students play
hockey. It is found that 10 students play both the games. Use algebra of sets
to find out the number of students who play neither football nor hockey.

(NEHU, 2014)

[Ans: 24]
In a group of 400 people, 250 can speak Hindi and 202 can speak English.
How many can speak both Hindi and English. [Ans: 50]

In a group of 50 people, 35 speak Hindi, 25 speak both English and Hindi
and all the people speak at least one of the two languages. How many people
speak only English and not Hindi? How many people speak English.
[NEHU, 2015] [Ans: 15, 40]

In a group of 70 people, 45 speak Hindi language and 33 speak English

language and 10 speak neither Hindi nor English. How many can speak both

English as well as Hindi? How many can speak only English language?
[Ans: 18, 15]

Out of 80 students who secured first class marks in Mathematics or Physics,

50 obtained first class marks in Mathematics and 10 in both Physics and

Mathematics. How many students secured first class marks in Physics only?
[Ans: 30]

Tn a group of 50 people, 30 like to play cricket 25 like to play football and 32
like to play hockey. Assume that each one likes to play at least one of the three
games. If 15 people like to play both cricket as well as football, 11 people like
to play both football as well as hockey and 18 like to play both cricket as well
as hocjey, then

(i) how many like to play all the three games
(i) how many like to play only football

- (iii) how many like to play only hockey [Ans: (i) 7 (ii) 6 (ii1) 10]

In a survey of 100 persons, it was found that 28 read magazine A, 30 read
magazine B, 42 read magazine C, 8 read magazine A and B, 10 read magazines
A and C, 5 read magazines B and C and 3 read all three magazines, Find

(i) How many read none of the three magazines?
(ii) How many read magazine C only? [Ans: (i) 20 (i) 30]

In a survey of 60 people, it was found that 25 read newspaper H, 26 read
newspaper T, 26 read newspaper I, 9 read both H and 1, 11 read both H and
T, 8 read both T and I, 3 read all three news paper. Find

(i) the number of people who read at least one of the newspaper
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14.

15.

(ii) the number of people who read exactly one newspaper.
(NEHU, 2004]
[Ans: (i) 52, (ii) 30]
In a class of 35 students, 15 study Economics, 22 study Business
Studies and 14 study Advanced Accountancy. If 11 students study both
Economics and Business Studies, 8 study both Business Studies and
Advanced Accountancy and 5 study both Economics and Advanced

Accountancy and 3 study all the three subjects. Find how many
students of the class are not taking any of the three subjects?[Ans: 5]

A survey shows that 74% of Indians like apples, whereas 68% like oranges.
What percentage of Indians like both apples and oranges?

[Ans: 42]
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Cartesian Product of Sets
Definitions
2.1 Order pair

An orderd pair is a pair of entries in a specified order. It is also called ordered
2-tuple. The two entries are seperated by a comma and enclosed within brackets.

If A and B are any two sets, then by an ordered pair of elements we mean
a pair (a, b) where ac A, beB in that order. The first element ‘a’ is called the first
component and the second element ‘b’ is called the second component.

Two ordered pairs are equal if their corresponding components are equal.
ie. (a,b)=(c,d)ifand onlyifa=c and b = d.

The set of all ordered pair of elements (a, b); ac A and beB is called the
Cartesian product of two sets A and B and is denoted by A xB

ie. AXB = {(a, b) ; a€A, beB}
Example: Let A = {1, 2} and B= (3, 4, 5}
Then AXB = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}
Clearly, n(A) = 2, n(B) = 3, n(AxB) =6
Hence n(AXB) = 6 = 2%3 =n(A) X n(B)
Remarks:
(i) AXB #BxAif A=B
(i) AXB = ¢ if A or B or both A and B are empty.
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2.2 Ordered Triplet:

It A, B, C are any three sets then by ordered triplet of elements we mean a
triplet (a, b, ¢) where a€ A, b€B, c€C in that order. It is also called ordered 3-tuple

The set of all ordered triplets (a, b, ¢); acA, beB, ceC is called the
Cartesian triplet of three sets A, B and C is denoted by A xB xC

ie AXBXC = {(a, b, ¢) : acA, beB, ceC}
Similarly we can define the Cartesian product of n sets.
2.3 Ordered n-tuple:

IfA, A,,..A, are any n sets, then by ordered n-tuple we mean an n-tuple
(a, ay, a,,....a);3€A, acA ...acA in that order

The set of all ordered n-tuple (a,, a,,.....a ); 8, €A ,a,€A ,...a €A is called
the Cartesian product of nsets A, A, A,....A denoted by A XA XA X...A_

or [JA where IIstands for the product.
1=1

Examples:
1. Find the values of a and b if (a +2b, b + 1) = (3, 2)
Solution: (a + 2b, b + 1) = (3, 2) if and only if
a-+2b=23andb + 1=2 (by defn)
ca+2b=3andb=2-1=1
ca=3-2b=3-2.1=1
a=1,b=1
2. Let A= {1, 2,3} and B {4, 5}. Find (i) AXxB (ii) BxA
Solution: (i) AxB = {(1, 4), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5)}
(i) BXA = {4, 1), (4,2), (4, 3), (5, 1), (5, 2), (5, 3)}
We see that A XB=B XA
2.4 Relation:

Let A and B be any two non empty sets. A relation R from a set A to a set
B is a subset of AXB i.e REAXB.

A is called the domain of R and B the range or co-domain of R,
In particular, any subset A XA defines a relation in A.

Note: If (a, b)eR, then we write aRb and it is read as “a is related to b by
R.”

If (a, b) ¢ R, then we write aKb and is read as “a is not related to b by R”
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Example: Let A= {1, 2, 3, 4, 5, 6} and R be a relation in A given by R =
{(a, b) : a-b = 2} ’

Then R = {(3, 1), (4, 2), (5, 3), (6, 4)}

Clearly 3R, 4R, SR, 6R,

But 1R3, 2K4, 3R5

Note that AxA = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2,
2),(2,3),(2,4),(2,5),(2,6), 3, 1), (3,2), (3, 3), 3,
4),(3,5),(3,6), 4 1),4,2),(4,3), (44,45, 4,
6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6,
2), (6, 3), (6, 4), (6, 5), (6, 6)}

We see that RCA XA

2.5 Inverse of a Relation:

Let R be a relation from a set A to a set B and let (a, b) be member of the
subset D of A XB corresponding to the relation R from A to B.

To the relation R from the set A to the set B, there corresponds a relation
from the set B to the set A called the inverse of the relation R and is denoted by
R~ such that subset B xA corresponding to the relation R~ is

{(y, ) : (x, y)€D}
i.e. yR7'x < xRy
Examples:

(1) . The inverse of the relation “is a father of” in the set of all men is the
relation “is the son of”

(ii) The inverse of the relation “is less than” in R is the relation “is greater
than”

2.6 Types of Relations
(I) Empty Relation or Void Relation:

A relation R in a non empty set A is called an empty relation if no element
of A is related to any element of A and we denote such relation by ¢.

Thus R = ¢ CAXA

Example: Let A= {1, 2, 3, 4} and let R be a relation in A given by R = {(a,
b): a-b =6}

Clearly no element of A XA i.e. no (a, b)e RCA XA satisfies the property a—
b=6

. R is an empty relation
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(IT) Universal Relation:

A relation R in a non empty set A is called universal relation if every element
of A is related to every element of A.

Example: Let A = {1, 2, 3, 4}. Then

R={(1,1),(1,2),(1,3),(1,4), (2, 1), 2,2), (2,3), (2,4, 3, 1), G,
2, (3,3, 6,4,(4 1,4 2),43), 4 9}

is a universal relation in A.
(I1I) Identity Relation:
The relation I, = {(a, a) : ac A}bis called the identity relation on A
Example: Let A= {l, 2, 3, 4} then
L =1{(1,1),(2,2), (3, 3), (4, 4)} is called the Identity relation on A
(IV)Reflexive Relation:

A telation R on a non empty set A is called a Reflexive Relation if aRa i.e
(a, a)¢RyacA

Example: Let A= {1, 2, 3, 4} and R be a relation on A given by R = {(a,
b) : a—b is even}

Clearly R = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (4, 2), (4, 4)}
We see that (1, 1), (2, 2), (3, 3), (4, 4)<R and hence R is a reflexive relation
(V) Symmetric Relation:

A relation R an a non empty set A is called Symmetric Relation if whenever
aRb then bRa i.e if (a, b)eR = (b, a)eR wa,bcA

Example : Let A= {1, 2, 3, 4} and R be a relation an A given by R = {(a,
b) : a-b is even}

Then R = {(1, 1), (1, 3), (2, 2), (2, 4), 3, 1), (3, 3), (4, 2), (4, 4)}
Clearly, (1, 3)éR = (3, DeR = (2, 49)€R = (4, 2)eR
Hence R is symmetric

(VD) Transitive Relation:

A relation R on a non empty set A is called transitive relation if whenever
aRb and bRc¢ then aRc i.e if (a, b)eR and (b, ¢)€R = (a, )R wa, b, ccA

Example: Let A = {1, 2, 3, 4} and R be a relation an A given by R = {(a,
b) : a-b is divisible by 3}

Then R = {(1, 1), (1,4), (2,2), (2, 5), (3,3), (3,6), 4, 1), (4, 4), (5, 2),
(6, 3), (6, 6)}
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We see that (1, 4)€R and (4, 1)eR = (1, 1)eR
(2, 5)€R and (5, 2)€R = (2, 2)€R
(3, 6)<R and (6, 3)eR = (3, 3)eR
Hence R is a transitive relation
2.7 Equivalence Relation

A relation R an a non empty set A is said to be an Equivalence Relation if
and only if R is

(i) Reflexive (ii) Symmetric and (iii) Transitive
Example: Let R = {(a, b) : a, b€ Z and a+tb is even}
Then
(i) Ris Reflexive: Clearly (a, a)€R since for any ac Z, a + a = 2a is even
(i) R is Symmetric: We see that if (a, b)€R, a, bez
Then a + b is even i.e a + b = 2k for some ke z
i.e b + a = 2k for some kez
ie (b, a) eR
If (a, b)eR, then (b, 2)€R
Hence R is Symmetric.
(i) R is Transitive: Let (a, b)eR and (b, c)eR; a, b, c€Z
Then we see that (a, b)eR = a + b is even
ieatb=2l1lez
Also (b, ¢)eR = b+ ciseven = b+ ¢ =2m, mez
Then (a+Db)+(b+c¢)=21+2m
=at+c=2[+2m-2b
=atc=2(l+m-Db)
= a+ cis even
= (a, c)€R

Hence R is transitive.

Since R is Reflexive, Symmetric and Transitive, therefore R is an
Equivalence Relation.

2.8 Equivalence Class:

Let R be an equivalence relation defined an a non em pty set A and ‘a’ be
a fixed element of A. Then the quivalence class of ‘a’ is the set of all those
elements of A related to ‘a’ by R and is denoted by [a]
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ie. [a] = {x€A : (x, a)€R, acA}
Example: On the set of integers Z. Let R be a relation defined on Z as R
= {a, b):a, bez and a—b is divisible by 3}
Clearly R is an equivalence relation on Z
(Proof of this is same as in 2.7)
Now [0] = {x€z : (x, 0)eR, 0cz}
{x€Z : x-0 is divisible by 3}
= {0, £3, £6,+9, £12,........ }
[11 ={xe€zZ : (x, 1)eR, lez}
{x€Z : x-1 is divisible by 3}
{0, -2, 4,-5,7,-8,10, -11,........ }
[2] ={x€zZ :(x, 2)€R, 2¢7}
= {x€7Z : x-2 is divisible by 3}
={-1,2,4,5,-7,8,-10, 11,........ }
[3]1 ={x€Z : (x, 3)eR, 3¢z}
= {x€7Z : x-3 is divisible by 3}
= {0, £3, £6, +9, +12,........ }
[4] = {x€zZ: (x, 4)€R}
= {x€Z : x4 is divisible by 3}
=1{0,-2,4,-5,7,-8,...... }
Clearly we see that
[0]1=[31=[6]=1[9]= -cceuue.
[11=[4]1=1[7] = [10] = .......
[2]=[5]=[8] =[11]=.......
Note that z = [0] U [1] U [2]

Il

I

Ilustrative Examples
Example 1: Let T be the set of triangle in a plane and R = {(x, y) : x, y€T and
X is similar to y}. Then R is (i) Reflexive (ii) Symmetric (iii) Transitive.
Solution:

(i) R is Reflexive: Let xeT then clearly (x, x)€R i.c xRx ¥ x€T [Since
every triangle x is similar to itself]

Hence R is a reflexive relation.
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(i)

(i)
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R is Synmetric : Let x, y€T such that (x, y)€R i.e xRy
Since (x, y)€R = x is similar to y
=y is similar to x
= (y, x)€R i.e yRx
Hence we see that if (x, y)€R then (y, x)eR ¥ x, yeT
So R is a symmetric relation.
R is Transitive: Let x, v, z€ T such that (x, y)€R and (y, z)€R ie xRy
and yRz
Since (X, y)€R = x is similar to y
Also (y, z)€R =y is similar to z
Thus x is similar to y and y is similar to z
= X 1§ similar to z
= (x, z)€R i.e xRz
Here we see that if (x, y)€R and (y, z)€R then (x, zZ)€R ¥ X, y, zeT
So R is a Transitive relation.

Therefore R is Reflexive, Symmetric and Transitive relation and hence
R is an equivalence relation.

Example 2. Let S be the set of straight lines in a plane and R be a relation defined
in S by the rule R = {(x, y) : x, y¢§ and x is perpendicular to y}. Then R is
Symmetric but not Reflexive and Transitive.

Solution:

(1)

(if)

(ii)

R is not Reflexive: Let x€S. Then any straight line x cannot be
perpendicular to itself i.e x is not perpendicular to x and hence (X,
x)¢R i.e XEx.

Hence R is not a reflexive relation.
R is symmetric: Let x, y€ S such that (x, y)€R i.e xRy
Since (x, y)€R = x is perpendicular to y

= y is perpendicular to x

=y is perpendicular to x

= (y, X)€R i.e yRx
Thus we see that if (x, y)eR then (y, x)eR ¥ x, yeS
Hence R is a symmetric relation.

R in not Transitive: Let x, y, z€ S such that (x, y)€R and (y, z)eR i.e
xRy and yRz ¥ x, vy, ze S
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Since, (x, Y)€R = x is perpendicular to y
Also (y, z)€R = vy is perpendicular to z

Hence x is perpendicular to y and y is perpendicular to z implies that
x is not perpendicular to z. [infact x is parallel to z] i.e (x, zZ)¢R ¢

Thus we see that (x, y)€R and (y, z)eR=4(x, z)€R i.e xKz

Hence R is not a Transitive relation.

Example 3. In the set of natural numbers IN, define a relation R by the rule xRy
if and only if x.y is the square of a natural number. Examine whether R is an

equivalence relation or not. (NEHU, 2004, 2006)
Solution:
(i) Reflexivity: Let x€IN. Then clearly x.x=x> is a square of the natural

(if)

(i)

number and hence xRx.

Hence R is a reflexive relation.

Symmetricity: Let x, yeIN such that (x, y)€R i.e xRy
Since xRy then x.y is square of a natural number
i.e xy = a? for some a€IN

ie y.x = a?

i.e y.x is a square of a natural number

i.e yRx

Thus we see that if xRy then yRx ¥x,y€IN
Hence R is a Symmetric relation.

Transitivity: Let x, y, z€IN such that

xRy and yRz. Then since

xRy = x.y is a square of a natural number

i.e x.y = a? for some acIN

Also yRz = y.z = b? for some beIN

Now (x.y) (v.z) = a’b?

2

cIN

a’b*
=Xz= " =>x2=

Thus x.z is a square of a natural number and hence xRz

Thus we see that xRy and yRz = xRz ¥x,y€IN

Hence R is a Transitive relation

Since R is reflexive, Symmetric and Transitive hence R is an equivalence

relation.
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Example 4: In the set of integers Z, define a relation “congruence modulo 4”.
Show that the relation is an equivalence relation and find all the disjoint equivalence
classes into which z is partitioned. (NEHU, 2005, 2007)

Solution: Let R be the relation. Then
R = {(a, b) : a, bz and a is congruent to b modulo 4}
i.e R = {(a, b) : a, beZ and a-b is divisible by 4}

We now show that R satisfies the condition of reflexivity, Symmetricity and
Transitivity.

() R is reflexive: Let acz. Then a—a=0, is divisible by 4.
i.e a is conguent to a modulo 4
ie (a, a)eR ¥ acz
Hence R is reflexive.
(i) R is Symmetric: Let a, b€z such that (a, b)eR
Since (a, b)eR = a is congruent to b modulo 4
= a-b is divisible by 4
= a—b = 4k for some kez
Now a-b = 4k = ~ (b—a) = 4k = b-a=4(-k) - kez
= b-a is divisible by 4
i.e b is congruent to a modulo 4
ie (b, )R
Thus we see that if (a, b)eR, then (b, a)eR
Hence R is symmetric
(i) R is Transitive: Let a, b, c€z such thatg (a, b)eR and (b, ¢c)eR
Since (a, b)€R = a is congruent to b modulo 4
= a-b is divisible by 4
= a-b = 4m for some mez
Also (b, c)€R = b is congruent to be modulo 4
= b—c is divisible by 4
= b—c = 4n for some nez
Now a~-b=4m and b—c=4n
. (a-b) + (b—¢) =4m + 4n
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= a—-c = 4(m+n) = 4k (say) ke z
= a—c is divisible by 4
= a is congruent to ¢ modulo 4
= (a,¢) €R
Thus we see that if (a, b)eR and (b, ¢)€R then (a, c)eR
Hence R is Transitive
Therefore R is an equivalence Relation.
We now find all disjoint equivalence class of 7
g =[0] ={xez: (X, 0)eR}
= {x€Z: x is congruent to 0 modulo 4}
= {x€z: x—0 is divisible by 4}
= {0, £4, +8, £12,........ }
1 =011 = {xez: (x, )eR}
= {X€Z: X is congruent to 1 modulo 4}
= {x€1Z: x-1 is divisible by 4}
={1,-3,5,-7,9, -11,........ }
-1 =[-1] = {x€z: (x, -1)€R}
= {X€1Z: x is congruent to —1 modulo 4}
= {xeZ: x~(-1) is divisible by 4}
=4{-1,3,-57,-9,........ }
2 =[2] = {x€z: (x, 2)R}
= {x€Z: x is congruent to 2 modulo 4}
= {xe€Z: x-2 is divisible by 4}
= {£2, £6, +10, £14,......... }
—2 =[-2] = {+2, £6, £10, & 14,......}
3 =[3]1={-1,3,-57,-9,...}
-3 =[-3]1=1{1,-3,5,-7,.....}
4 =[4] = {0, £4, +8, +12,......}
-4 =[-4] = {0, +4, £8, £12,......}
Thus we see that

[0]=[4] = [8] = rcoerrernn. =[-4]=[8] = ...
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[11=[51=09]1= cceeeeene. =[-3]1=[-7]= .......

2] =[6] =[10] = .cccun. =[-2] = [-6] = ........

Bi=[7]1=[11]= .......... =[-1]=[-5]= .......

Thus [0], [1], [2], [3] are the only disjoint equivalence class into which Z
is partitioned

ie z = [0Ju[l]u[2]U[3]

Example 5: Let IN be the set of natural number and R be a relation on IN defined
by xRy if and only if x divides y ¥ x,y€IN. Examine whether R is reflexive,
symmetric, antisymmetric and transitive. (NEHU, 2012)

I

Solution: R = {xRy : x, y€IN and x divides y}

(i) Reflexivity: Let x€IN. Then x always divides x (every natural number
divides itself)

Hence xRx ¥ x€IN
So R is reflexive

(i) Symmetricity: Let x, y€IN such that xRy
Since xRy = x divides y

But x divides y does not necessarily imply that y also divides x (2
divides 4 but 4 does not divide 2)

Hence xRy # yRx
So R is not Symmetric
(iv) Transitivity: Let x, y, z€IN such t hat xRy and yRz
Since xRy = x divides y = y = ax for some a<IN
Also yRz =y divides z = z = by for some beIN
Now z = by = b (ax) = (ab)x = cx where c=abelN
i.e x divides z = xRz
Thus we see that if xRy and yRz then xRz ¥ x, y, ze IN
So R is transtive.
Example 6. Let R be an equivalence relation an as set x. Then
@ [x] =yl & (x, y)R
(i) [x] = [y] & [x] N [y]=
Where [x] = equivalence class of x  (NEHU 2001, 2008, 2014, 2016)
Solution: [x] = {aex: xRa i.e (a, Xx)€R}

Suppose [x] = [y]
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Then 3 a€x such that (a, x)eR

Since [x] = [y] = (a, y)eR

Now since R is an equivalence relation, it is reflexive

Hence (a, x)€R = (x, a)eR

Also since R is an equivalence relation, it is tramsitive.

Therefore (x, a)€R and (a, y)¢R=(x, y)eR

Conversely suppose (%, y)€R. Then since R is equivalence relation 3 a€x

such that (x, a)eR and (a, y)eR = [x] = [y]

(i)

Suppose [x] = [v]

We prove that [x] N [y] = ¢

Suppose a€[x] N [y] = a€[x] and a<[y]

Since a€[x] = (x, a)€R

Also a€[y] = (y, a)€R

But [x]=[y] hence (x, a)€R and (y, a)€R is not possible and therefore

[x]Nfyl=¢
Example 7. Let R and R! be two equivalence relations on a set A. Then RNR! is
an equivalence relation on A. (NEHU, 2007)

Solution: Since R and R! are equivalence relation on A

(i)

. RCAxA and RICAA

Hence RNRICA<A

So RNR! is a relation on A

Reflexivity:

Since R and R! are equivalence relation on A
. R and R! are reflexive

Hence (a, a)eR and (a, a)eR' % acA

i.e (a, a)eRNR! ¥ acA

Hence RNR!is also reflexive

Symmetricity:

Let a, be A such that (a, b)eRNR!

Then (a, b)€R and (a, b)eR!

Since R and R' are equivalence relation,

.. R and R! are symmetric

Hence (a, b)eR = (b, a)<R and (a, b)€R' = (b, a)<R!
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Hence (b, a)eR and (b, a)eR! = (b, a)eRNR!

Hence (a, b)eRNR! = (b, a)eRNR! ¥ a, be A

Therefore RNR! is also symmetric

Transitivity:

Let a, b, ce A such that (a, b)eRNR! and (b, ¢) eRNR!
Since (a, b)eRNR! = (a, b)€R and (a, b)eR!

Also (b, ¢)eRNR! = (b, ¢)€R and (b, c)eR!

Hence (a, b)eR and (b, c)€R and (a, b)eR'and (b, ¢c)eR!
Since R and R! are both transitive relations

Therefore (a, b)eR and (b, ¢)eR = (a, ¢)eR

Also (a, b)eR! and (b, ¢)éR! = (a, c)eR!

Hence (a, ¢)€R and (a, ¢c)€R! = (a, ¢)eRNR!

Thus (a, b)e RNR' and (b, ¢)eRNR! = (a, c)eRNR!
Hence RNR! is transitive

Since RNR! is Reflexive, Symmetric and Transitive

.. RNR!is an equivalence relation on A.

Example 8. Let A be a non empty set and ~ be an equivalence relation on A. For
an arbitrary element ac A, define a = {x€A : x~a}. Show that (i) ac a and (ii)
if b€ a then t =a where beA. (NEHU 2002)

Solution: (i) We have a = {x€A : x~a}

Since ~ is an equivalence relation, ~ is reflexive
Hence for any acA, a ~ai.c aca

(i) If b=a then b ~a

Let x€b, x€A, Then x~b

But b~a and ~ is transitive

. X~bandb ~a = x~a = x€3a

ie 5Ca

Conversely if yea, yeA. Then y~a
Now b~a = a~b since ~ is symmetric
Hence y~a and a~b = y~b = y<5b

ie aCh

Hence a=%
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Exercise 2.1

1. Find x and y if (x+2, 4) = (5, 2x+y) (Ans: x =3y =-2)
2. LetA={1,2,3,4} and S = {(a, b) : acA, beA, a divides b}. Write S
explicitly. (Ans: S= {(1, 1), (1, 2), (1, 3), (1, 4),

(2,2),(2,4), 3, 3), (4, 4)}

3. Let A and B be two subsets such that n(A) = 3 and n (B) = 2. If (x, 1), (v,
2), (z, 1) are in Ax B, find A and B, where x, y, z are district elements.
(Ans: A = {x,y, z}, B=(1, 2})

4. IfA={1,2,3},B={3,4} and C = {4, 5, 6}. Find:
(i) A x(BNC) (ii) (A xB) N (A xC) (i) A x (BUC)
(iv) (A x B) U (AxC)
(Ans: (1) {(1, 4), (2, 4), (3, 4)}, (i) {(1, 4), (2, 4), (3, 4)}

(i) {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3) (3, 4),
3, %), G, 6)}

(iv) Same as (iii))

5. If A and B be non empty subsets, the show that AxB = BxA if and only if
A=B

6. Let A be a non empty set such that AxB = AxC. Show that B=C.
7. For any three sets A, B and C, prove that
(i) (A-B)xC = (AxC)- (BxC)
(i) Ax(BUC)=(AxB) U (AxC)
(i) (ANB)xC = (AxC) n (BxC)
8. LetA={l,2,3,4,6}. Let R be the relation on A defined by:
{(a, b) : ac A, be A, a divides b}
Find (i) R (ii) domain of R (iii) Range of R
9. LetA={3,5} and B= {7, 11} Let
R = {(a, b) : ac A, beB, a-b is odd}
Show that R is an empty relation from A to B.

10. Let R be the relation on Z defined by aRb if and only if a-b is an even
interger. Find:

(1) R (ii) domain of R (iii) range of R

Is R an equivalence relation? Justify.



42

1.

12.

Ans:

13.

14.

15.

16.

17.

18.
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Let R be the relation on Z defined by:

R = {(a, b) : a, beZ and a*> = b?}

Find: (i) R (ii) domain of R (iii) range or R

Is R an equivalence relation?

Give an example of a relation, which is —

(i) reflexive but neither symmetric nor transitive

(ii) reflexive, symmetric but not transitive

(i) symmetric and transitive but not reflexive

(iv) reflexive and anti symmetric (NEHU, 2015)
(i) (i) R={(a, b): a, beR and 1 + ab > 0}

() R={(1,1),(2,2),(3,3), (1,2),2,1),(2,3), 3, D}; A= {1, 2,
3}

Define a relation R on the set of integers Z as follows:

aRb if and only if “a-b is divisible by 5"

Show that R is an equivalence relation on Z.

Describe all equivalence classes and hence show that R gives rise to a
partition on Z. (NEHU, 2011, 2013)

Let a relation R in the set of natural numbers IN be define by xRy & (x—
y) (x-3y) = 0. Determine whether R is an equivalence relation?
(NEHU, 2013)

A relation R on the set INXIN is defined by (a, b) R (¢, d) if and only if a+d
= b+c. Show that R is an equivalence relation. Also find the equivalence class
of (2, 3) eINxIN. (NEHU, 2006)

Give an example to show that the union of two equivalence relations an a
set need not be an equivalence relation.

(Ans: Hint A = {(1, 2, 3) R, = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

R, ={(1, D, (2,2),3,3),(1,3),3, D))

Let IN be the set of natural number and let R be a relation in IN defined by
R = {(a, b) : a, b€IN and a is multiple of b}

Show that R is reflexive, and transitive but not symmetric.

Let L be the set of all lines in a plane and let R be a relation on L defined
byR={(,1):1,1 €L anl is parrellel to 1,}. Determine whether R is an
equivalence relation.
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19. On the set of real numbers R define a relation R by R = {(a, b) : a, beR
and 1+ab>0? Show that R is reflexive and symmetric but not transitive.

20. Let R be the set of real numbers and R be a relation on IR define by R= {(a,
b) : a, beIR and a<b?}. Show that R is satisfies none of reflexivity,
symmetry and transitivity.

Functions:

2.9 Definition:

Let A and B be two non empty sets. A relation ‘f” from A to B which
associates every element x of A to a unique elemennt y of B is called a ‘function’
or a ‘mapping’ or a ‘coresspondence’ or ‘transformation’.

If f is a function from A to B, it is denoted by f:A— B,

The unique element y of B is called the ‘value’ of f at x or the “image” of
x under f and is written as y=f(x).

The element x of A is called the pre-image (or inverse image) of y.

The set A is called the domain of f and the set B is called the co-domain of

The set of all images of the elements of A under f is called the range of f
and is denoted by Range (f) or f(A).

Thus Range (f) = {f(x) : for all xeA}

Note: The Range of f is a subset of B which may or may not be equal to

B.
Remarks:
(i) To cach element x in A, there exists a unique element y of B such that
y=f(x)
(i) Different elements of A may be associated with the same element of
B.
(iii) There may exists some element of B which are not associated with any
element of A.
Example:

1. LetA={1,2, 3 4} and B = {1, 4,9, 16, 25}
Consider the rule fA—-B : f(x) = x* ¥ x€A

Then each element in A has a unique image in B.

1
. . 2

So f is a function from A to B 3 .
4

N—
O © B =
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Dom (f) = {1, 2, 3, 4} = A; co-domain (f) = {1, 4,9, 16,25} =B
Range (f) = {1, 4, 9, 16}
Clearly 25¢B but it does not have pre-image in A.

2. LetA={a,b,c,d, e} and B = {p, q, r}. The rule depicted in the
following diagram which associates the elements a and ¢ in A with two
elements p and q of B, is therefore not a function from A to B.

3. Let IN be the set of natural numbers and consider the rule f:IN —IN
cf(x) = 2x, ¥ x€IN

Here clearly every element x in IN has a unique image 2x in IN and
hence f is a function from IN to IN.

Clearly f(1) = 2, f(2) = 4, f(3) = 6,...... and so on.
Dom (f) = IN; co-domain (f) = IN Range (f) = {2, 4, 6,...}

2.10 Types of Functions
(a) One-one Function or Injective Function

A function f: A— B is said to be one-one (or injective) if and only if distinct
element of A have distinct images in B

Le. iff x,=x, = f(x)) = f(x,) or iff x=x, = f(x) =f(x,) ¥x,x,€A
A function which is not one-one is called many one.
Example:
Let IN be the set of natural numbers
Let fIN—IN : f(x) = 2x, ¥ x<IN
Then f(x)) = f(x,) = 2x, = 2x, = X, = X, ¥ X, X,€IN
Hence fis a one-one function.
(b) Onto Function or Surjective Function:

A function f:A—B is said to be onto (or surjective) if and only if every
element in B is an image of at least one element in A.

Thus fis onto iff for each y€B, 3 at least one element x€ A such that y =
f(x)
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Also f is onto<range (f) = B.

A function which is not onto is called into.
Example: '

Let IR be the set of real numbers

Let IR IR : f(x)= 3x-2 ¥ x€]IR

+2
3

Then if yeIR such that y = f(x) i.e y=3x-2, then x = YTZEIR

2

: +
Thus for each y<IR there exist to x = J €IR

such that f(x) = £ [%—2] - 3(%—2] 2-y

This shows that every element in the co-domain has a pre-image in the
domain.

Hence f is an onto function.
(¢) Bijective Function or one-to-one Correspondence:

A one-one and onto function is said tobe a bijective function or a one-to-
one correspondence.

(d) Constant Function

A function f:A — B is called a constant function if every element of A has the
same image in B

In other words, a function f:A — B is called a constant function if f(x) =k,
¥ x€A and keB

Example:
LetA= {1,234} and B={5,6,7}
Let fA—B : f(x) = 5 for all xe A
Then clearly every element in A has same image in B.
So f is a constant.
(e) Identity Function:
The function f:A — B is called an identity function if f(x) = x ¥ x€A
For the Identity Function Domain (f) = Range (f) = A
() Equal Functions:

Two functions f and g having same domain D are said to be equal if f(x)
=g(x) ¥ x€D
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x* —1 .
1 and g(x) = x—1 are equal functions

Example: f(x) =

(g) Even and odd Function:

A function f defined on a certain domain D is said to be an even function
if f(—x) =f(x) + x€D

It is said to be an odd function if f(-x) = — f(x) ¥ xeD
Example
(i) On the set of integers Z Let f:Z—Z be such that f(x) = x? ¥ x€Z
Then clearly f(-x) = (—x)* = x2 = f(x) ¥ x€Z
Hence f is an even function.

(i) On the set of real numbers IR, let f:IR —IR be such that f(x) = sinx
¥ x€IR

Then clearly f(—x) = sin(—x) = —sinx = —f(x) ¥ x€R
Hence fis an odd function.
(h) Periodic Function

A function f defined on a certain domain D is said to be a periodic function
with period o if

f(x+ o) =1(x) ¥ x€D

where o is least positive real number/constant.
Example:

Let IR —IR be such that f(x) = sinx

Then f(27+x) = Sin(2w+x) = Sinx = f(x)

Hence f(x) = Sinx is a periodic function with period 27.’

Similarly, cosx, secx and cosecx are periodic functions with period 27 and
tanx, cotx are periodic functions with period w.

2.11 Algebra of Functions

Like real numbers, the algebraic operations of addition, subtraction,
multiplication and division (zero function is excluded in case of division) yield new
functions.

Let f and g be two real valued functions defined in certain domains D’ and
D’ respectively and let D = D'ND"=¢.Then

(i) The sum function denoted by f + g, is defined by (f+g) (x) = {f(x) +
g(x) with domain D
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(i)

(iif)

(iv)

Remark:

(a)

(b)

(c)

The Difference function denoted by f—g, is defined by (f-g) (x) = f(x)
— g(x) with domain D

The Product function denoted by fg, is defined by (fg) (x) = f(x).g(x)
with domain D

(x) ) w1th

f
The Quotient function denoted by Py is defined by |~
domain {x:x€D, g(x)=0}=0

If f is a function, then ff is denoted by 2, £f is denoted by f* and so
on where (f) (x) = (f(x))" n€IN, xeD’

1
The receprocal function s is defined by [ J(x) = w1th domain
{x:xeD; f(x)=0}

If °k’ is any real number, then scalar multiple of f by k denoted by kf
is defined by (kf) (x) = kf(x) with domain D’.

2.12 Composition of Functions

Let f:A—B and g:B— C be two given functions then the composition of f
and g, denoted by gof is the function defined by

(gof):A—C : (gof) (x) = g(f(x)) + xcA
Clearly Dom (gof) = dom (f)
Also gof is defined only if Range (f) ¢ Dom (g)

Example 1:

Let f:{1, 3,4} = {1, 2, 5} and g:{1, 2, 5} — {1, 3} be defined as f={(1, 2),
(3, 5), (4, D} and g={(1, 3), (2, 3), (5,1)}. Find (fog) and (gof)

Solution:

Clearly Range (g) = {1, 3} < Dom (f) ={1, 3, 4}
-. fog is defined and dom (fog) = dom (g) = {1, 2,5 }
Now (fog) (1) = f(g(1)) = {(3) = 5

(fog) (2) = f(g(2)) = f3) = 5
(fog) (5) = f(g(5) = f(1) = 2

Hence fog = {(1, 5), (2, 5), (5, 2)}

Also Range f = {1, 2, 5} < Dom (g) = {1, 2, 5}

-, gof is defined and dom(gof) = dom(f)= {1, 3, 4}
Now (gof) (1) = g(f(1)) = g(2) = 3
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(gof) (3) = g(f(3)) = g(5) = 1
(gof) (4) = g(f(4)) = g(1) =3
Hence (gof) = {(1, 3), (3, 1), (4, 3)}
Example 2:

1
Let f:IR—IR : f(x) = 8x* and g IR—1IR : g(x) = x*. Find (gof) and (fog)
Solution: Let x€IR, then

(20D () = g(f(x) = g(8x") = (8x°)s = 2x

1 1 3
(fog) (x) = f(g(x) = f(X*) = 8(% ) _ex
.. got#fog.

2.13 Invertible Function

Let f:A— B be a function. If there exists another function g:B — A such that
gof = I, and fog = I, then fis called an invertible function and g is called the
inverse of f denoted by f

Remark: fof! = I, and f'of =1,

Example: Let f.IR - IR be such that f(x) = x + 2
Lety={x) > y=x+2 =>x=y-2 = fi(y)=y-2
Hence we define f': IR—R: f(y) = y-2

Theorem 1: Let f:A—B be a function. If  is one-one and onto, then f is
invertible i.e ' exists.

Proof: Since f:A— B is one-one and onto, then there exists a unique Xx€A
such that for any yeB, y=f(x)

Consider a function g:B— A such that g(y) = x. Then
(gof) (x) = g(f(x)) = g(y) = x = 1,(x) '

cogof =1, ,
Also (fog) (y) = flg(y)) = f(x) =y = Ly
ng = IB

Hence, f is invertible and f-'=g.
Theorem 2: If f:A — B is an invertible function, then f is one-one and onto

Proof: Since f:A—B is an invertible function, then there exists another
functions g:B— A such that gof=I, and fog=I,
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Let x, X,€ A such that f(x) = f(x,)
Then  g(flx,) = g(f(x,)
= (gof) (x)) = (goD) (x,)
=1 x)=1, (x)
= X, =X,
Hence f is one-one
Next, Let yeB. Since g:B— A is a function, hence fa unique x€ A such that
gly) =x
fle(y)) = f(x)
= (fog) (v) = f(x)
= Ly =1
= y=1x)
Hence for each yeB, 3x€ A such that y=f(x)
.. fis onto.
Hence f is one-one and onto.
Theorem 3: A function f is invertible if and only if it is 9 bijective function.
or
f! exists if and only if f is both one-one and onto.
Proof: Follows from theorem | and theorem 2.
Theorem 4: Invertible function has a unique inverse
or
Inverse of a function if exists is unique.
Proof: If possible suppose the function f:A—B has two inverses g and h
Then fog = I, and foh = I
Hence (fog) (y) = (foh) y

= f(g(y) = f(h(y)) + y<B
= g(y) = h(y) -+ f is one-one
=g=h

Hence f has a unique inverse.

Theorem 5: Let f:A— B and g:B—C be one-one and onto functions. Then
gof:A — C is also one-one and onto and (gof)™! = flog™ (NEHU, 2013)

Proof: We first show that gof is one-one

Let X, X,€A such that
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(gof) (x) = (gof) (x,)

= g (f(x)) = g ({{x,))

= f(x,) = f(x,) since g:B—C is one-one

= X, = X, since f:A— B is one-one
Hence (gof) (x)) = (gof) (x,) = x, = x, ¥ X, X,€B
.. gof is one-one
We now prove that gof is onto
Let ze C, then since g:B— C is onto, hence to each z&C there exist ye B such

that g(y) = z.
Also since f:A — B is onto, hence to each ye€B, there exists x€ A such that
fx) =y

Now z = g(y) = g(f(x)) = (gof) (x)
Thus for each z<C, there exists x€ A such that (gof) (x) = z
Hence gof is onto.
.. gof is both one-one and onto and hence (gof)™ exists.
Since f:A — B and g:B— C are invertible functions
ooy =f(x) and z = g(y) x = f(y) and y = g"}(2)
Also (gof) (x) =z = (gof)" (z) = x
Again (fog™) (2) = £ (g'(2)) = f'(y) =x
o (gofh) (2) = (flog™) (2)
Hence (gof)™ = fog™

Mustrative Examples
Example 1: Let f:IN— IN be such that f(x) = 2x % €IN. Show that f is one-one
and into i.e not onto.
Solution: Let x,, x,€IN such that f(x)) = f(x,)
Then 2x, = 2x, = X=X,
.. fis one one.

Lety=2de:>x:%

3
If y =3, then x = 5§ZIN

Thus 3€IN has no pre image in IN under f
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.. fis not onto and hence f is into
.. T is one-one and into

Example 2: Show that the function f:IR —IR: f(x) = x? is neither one-one nor
onto.

Solution: We see that f(1) = 12 = 1 and f(-1) = (-1)* = 1
- (D) = (1) but 1=-1
Hence f is not one-one
Also —1€IR has no pre image in IR under
.. Tis also no onto

Hence f is neither one-one nor onto

Example 3: Find the domain and range of the real function f(x) = \jg_ x2

Solution: Clearly f(x) = J9—x2 is not defined if 9-x? < 0
i.e when 9—x* <0 i.e (x-3) (x+3) > 0
iex>3orx <-3

. Dom (f) = {x€IR : -3<x<3} = [-3, 3]

Alsoify= {9_x? =2y =9xX = x= /9y
Clearly x is not defined if 9-y*> < 0

ie when v > 9ie (y-3) (y+3) >0

i.e y>3 or y<-3

.. Range (f) = {yIR : -3<y<3} = [-3, 3]

Example 4: Find the domain and range of the real function

f(x)= 1—x2

1 .
Solution: Clearly f(x) = P is not defined if 1-x*=0
—X

i.e when x>=11e x = 1

. Dom(f) = IR - [-1, 1]

1 1
Ify = 5 = 1_X2 = — = 1_— = XZ = X = |-
l1—-x y y y
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1 1
Clearly x is not defined if 1-— < 0 i.e 1<— i.e y<lI
y y

Range (f) R = IR —{y€IR : y<1} = {y€IR : y>1}

Example 5: Let ffA—B and I, and I, be identity functions and A and B
respectively. Prove that (fol,) = f and (I of) = f.

Solution: Let x€ A and y=f(x) then
(fol) (x) = f(I,(x)) = f(x)

< (fol,) = f
Also (1,of) (x) = L,(f(x) = L,(y) = y = (x)
< (1) = £

Hence (fol,) = f and (I;of) = f

Example 6: Let f:A —B, g:B— C and h:C—D. Then prove that (hog)of = ho(gof)
(Associative Law)

Solution: Since f:A —B, for each x€A 3 a unique y€B such that y=f(x)
Also g:B—C, for each yeB, J a unique z&€ C such that z=g(y)
Again h:C—D, for each zeC J a unique weD such that w=h(z)
Now [(hog)of] (x) = (hog) (f(x)) = (hog) (y)

= h(g(y)) = h(z) = w
Also [ho(gof)] (x) = h[(gof) (x)] = h[g(f(x))]
. =h[g(y)] =h(z) =w
(hog)of = ho(gof)

Example 7: Let A:A— B and g:B— A such that (gof) = I, show that fis fA—-B
one-one and g is onto

Solution: Let X, x,€A such that f(x)) = f(x,)
Then g(f(x,) = g(f(x,))
= (gof) (x)) = (gof) (x;)
= L (x)=1 (x)
= X, =X,
Hence f(x)) = f(x,) = X, = X, % X, X,€A
.. Tis one-one
We now show that g is onto
Let x€ A and y€B such that y=f(x)
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Then g(y) = g(f(x)) = (goH)(x) = I, (x) = x
Thus for each yeB, 3 x€ A such that g(y) = x
Hence g is onto.

Example 8: Find the inverse function of the function f:IR — IR defined by f(x)
1

=5 ¥ xeIR = 1R - {0} (NEHU, 2010)

Solution: Let y = f(x). Then

1
Yo TSy

1
== [y = x = 1()]
1
Thus we define f:IR — IR, such that f'(y) = ;
Examle 9: Show that the mapping f:Q —Q defined by f(x) = 2x + 3 is one-to-

one and onto, where Q is the set of rational numbers. Also find the formula that
defines the inverse function ', (NEHU, 2013)

Solution: Let x, x,€Q such that f(x,) = f(x,)
Then 2x + 3 =2x,+3
= 2x, = 2x,
= X, =X,
Hence f(x)) = f(x,) = x, = X, ¥ X, x,€Q
.. fis one-one
Lety=1f(x)theny=2x +3
Sx=12

= iy = 12
[Since y = f(x) = x = fi(y)]

Thus we define £:Q —Q such that f(y) = !;—3

1
Example 10: Find the domain of the function f(x) = m

(NEHU, 2016)

Solution: f(x) = m is define if (3—x) (x-5) >0
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ie either 3—x > 0 and x-5 > 0
or 3-x < 0 and x-5<0

ie either 3>xandx > 5
or3<xand x<35

. Dom f(x) = {x€IR : 3 <x <5} =(3,5)

Example 11: Let f(x) = —  show that 20— = XY\ pu 2013
xample 11: Let (x)—x+1,s ow that I TOEy) 1y ( , )
x—1 y-1

_ fO-f)  x+1 y+l
Solution: 1+fO)f(y) 1+X_1 y—1

x+1'y+1

x=Dy+D-G-DE+D
xAD+D+x=D(y-1

Xy+x—y—1l—-xy—y+x-+1
xy+x+y+l+xy—x—y+l1

L 2x-y) _x—y
T 2(l+xy) l+xy

Example 12: Two function f(x) and g(x) are given as follows f(x) = log sinx;
g(x) = log cosx. Show that f(x) + g(x) + log2 = f(2x)(NEHU, 2010, 2016)

Solution: Given f(x) = log sinx; g(x) = log cosx
f(x) + g(x) + log2 = logsinx + logcosx + log2
= log (2sinx cosx)
[.- loga + logb + logc = logabc]
= log (sin2x)
= f(2x) ' f(x) = logsinx
Hence shown

Example 13: Find the domain of the following functions on the real line
(NEHU, 2006)

(i) x) = & (ii) g00) = (Vx|
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Selution: (i) f(x) = x> = x is defined for all real values of x
Hence Dom f(x) = IR
2
(i) g(x) = (&) = x is defined for all real values of x
Hence Dom g(x) = IR

1
Example 14: Find the domain of the function f(x) = m (NEHU, 2008)

Solution: f(x) is defined if
xX|-x>0
Le x| > x\
iex<0
Hence Dom f(x) = IR
Example 15: Let A=IR — {3}, B=1R — {1} and let f:A — B defined by f(x) =

-2
%. Is f bijective? Give reasons. (NEHU, 2013)

Solution: f is one-one since for any x, Xx,€A

f - fx) X—2 X,—2
(x,) X)) = x, -3 x,-3

= (x,-2) (x,-3) = (x,-2) (x-3)
= XX, - 3x1— 2x1 +6= X X, 3x1— 2x] +6
=X, =X,

. T1s one-one

x—2
Also let yeB such that y = <3

3y—-2
Then (x-3)y =x2 = x= 7}

Clearly x is defined if y#1

Also x = 3 will give 1=0 which is false
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3y-2 _, 3y—2-2y-2
y—1 y—1
xE3and f(x) = 3.5 = ————— =
- () 3y=2_ 5~ 3y-2-3y+3 7
y—1 y—1

Thus for each yeB, 3 x€ A such that y = f(x)
.. fis onto
Hence f is one-one and onto and therefore bijective

Example 16: If f:A —B and g:B— C be two function then gof:A—C is one one
and f:A—B is onto = g:B=C is one-one. Prove it. (NEHU, 2012)

Solution: Since gof:A —C and g:B—C is one one. Then
¥ X, X,€A (gof) (x) = (gof) x) & x,=x, ... (1)
Also since f:A — B is onto, then ¥ yeB 3
some x€A such that f(x) =y ......... (i1)
Lety,, y,€B such that g(y,) = g(y,) then
g(f(x,)) = g(f(x,)) since y, = f(x) and y, = f(x,) by (il
= (gof) (x,) = (gof) (x,)
= X, =X, [. gofis one-one]
= f(x)) = f(x,) [ A— B is a function]
=Yy, =V, [.fis onto]
.. Thus for every y,, y,€B such that g(y) = g(y,) =y, =,
Hence g is one-one
Example 17: Let X Y and g:Y -Z be two mapping. Prove that
(i) if gof is onto, then g is onto
(i) if gof is one-to-one, then f is one-to-one
(NEHU, 2016, 2012, 2006, 2003)
Solution: Since £:X—Y and g:Y —Z then gof: X -Z

(1) Suppose gof is onto. Then ¥ zeZ 3 x<X such that (gof) (x)
=z

We now prove that g is onto.

Since £:X—Y is a mapping (function) then for each xe X, 3 y€Y such
that y = f(x)

Now z = (gof) (x) = g(f(x)) = g(y)
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Hence % z€Z 3 y€Y such that g(y) = z
.. g 1s onto.
(i) Suppose gof is one-to-one. Then X, X,€X
(gof) (x,) = (gof) (x,) = x, =x,
Let x,, x,€X such that f(x)) = f(x,)
= g(f(x,)) = g(f(x,))
= (gof) (x,) = (gof) (x,)
=X, =X, [." gof is one-one]
Hence ¥ x|, x,€X such that f(x)) = f(x,) = x, = x,
.. fis one one

Example 18: Let £:X Y and g:Y — X. Then prove that g is the inverse function
of fie g=f", if the composite functions (gof):X — X is the identity function on
x and (fog):Y —Y is the identity function on Y.

(NEHU, 2015, 2008, 2007, 2004, 2001)
Solution: The proof follows from theorem 1, theorem 2 and theorem 3.

Example 14: If A is a finite set, then show that a mapping f:A — A is one-one if
and only if f is onto. (NEHU, 2012, 2006, 2005, 2014, 2015)

Solution: Let A= {a, a,, a,,...a } be finite set of distinct elements.
Suppose f is one-one then
f(a), f(a,),........ f(a ) are distinct elements of A
S, fay,....... fla)} = {a,, a,,......a_} = A. (set of distinct elements)
= Range () = A
Hence f is onto.
Conversely suppose f:A— A is onto then
Range (f) = A
= {f(a), fay,....... fla)} =A={a, a,,...a}
= f(a), f(a,), f(a,),.....f(a ) are distinct elements of A
= f!A— A is one-one

Examplee 19: If A and B be two set and f:A — B is one-one and onto, prove that
f1:B— A is also one-one and onto. (NEHU, 2007, 2002)

Solution: Since f:A—B is one one, hence ¥ x,, X,€A

flx) = f(x,) = x, = x,
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Also f:A—B is onto, hence ¥ yeB 3 x€ A such that y = f(x)

Since fis a bijective function, therefore f':B — A exists. We now prove that
f-! is one-one and onto

(i) f!is one-one
Lety,, y,€B such that ' (y)) = ' (y,)
=X =%, vy, = (X)), y,= f(x)
= f(x)) = f(x,) since f is one-one
=Y, =Y,
Hence f! is one-one
@iy f'is onto.
Since f:A—B is onto. Then + y€B 3 x€A such that y = f{(x)
= (y) = ' (f(x))
= (y)=F"H K
=y =1 ®
=t (y)=x
Hence ¥ x€A, 3 yeB such that ! (y) = x

-, f'is onto

2.14 Graph of a Function

Definition: If y = f(x) be the given function, then the set of points (x, f(x))
is said tobe the graph (or curve) of the function.

We plot some of the points and by joining them, we draw the required
graph.

2
Example 1: The graph of y = X
X

Thus can be broken up into y=x and x=0; y is undefined for x = 0. The
values are:

x=|1| 23 |-1(-2]-3]0 = |~

yv=|1| 2|3 |-1 {-2|-3 |undefined ol
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(0,0) excluded X

1

y
Fig. 1

Example 2: Draw the graph of y = [x|

y = |x| means y = x for x>0

= —x for x<0
= 0 when x=0
The values are:
=10 |1 2 1|23 L L
x= T 100 | T 100
=111 2 341 (2 |3 1 L
Y= 100 | 100
y
\\/"7 4//\¢\
/
X X=0, y=0 X
0
/
y

Fig. 2
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Example 3: The graph of y =[x] where [x] denotes the greatest integer less than
or equal to x.

y=[x]meansy=0for0 <x <1
=lforl £x<2
=2for2 <x<3
=—1lfor-1<x<0

=-2 for -2 < x <1 and so on

—_
—
—
: ﬁ: : 0 L] T + ; X
4 3 -2 144 1 2 3 4
—
—
Fig. 3
Example 4: The graph of y =x?
Y
y=x’
0 X

Fig. 4
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Example 5: The graph of y = /x

y
y=nX
0 X
Fig. 5
Example 6: The grpah of y = ¢*
y

y=e*

Fig. 6
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Example 7: The graph of y = log?

y
/}’Zlogi
1
X 5 . X
y!
Fig. 7

Example 8: The graph of hyperbolic functions
(i) Sinhx (i1) coshx (iii) tanhx

Fig. 8
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2.15. Other Types of Functions

(A) Polynomials: A function of the form f(x) =a +ax +ax’ +..+ta_x"
'+ax" wherea,a,,...a_ are constants and n is a positive integer is said to be
a polynomial in x (of degree n)

ExampleS: f(x) = x?, f(x) = 2x?>+ 3x> + x + | are examples of polynomial
functions

(B) Rational Functions: A function which is the quotient of two polynomial
functions i.e functions of the form

p(x)  a,+ax+ax +..+ax"
q(x) = b, +bx+b,x*+...+b_x"

f(x) =

where q(x)=0 is called a rational function.

In particular, when q(x) = constant, f(x) reduces to a polynomial. A ratioinal
function is even if both p(x) and g(x) are even or odd functions. It is odd if one
is even and the other odd.

(C) Transcendental Functions: Functions like ¢, log?, cosx, sinx, sin"'x,
cox'x, sinhx, coshx, etc. are called Transcendental functions.

(D) Monotonic Functions: Let the function f(x) be defined in the domain
D and x,, x,€D. Then f(x) is said to be monotonic

(i) increasing in D if x, > x, = f(x,) > f(x))

(i) decreasing in D if x, > x| = f(x,) < f(x))

(iii) strictly increasing in D if x, > x| = f(x)) > f(x))
(iv) strictly decreasing in D if x, > X, = f(x,) < f(x))

A function which conforms to any of the above cases is called a monotonic
or monotone function.

Example 1: f(x) = x + 2 is a monotonic increasing function in IR; since for
X, > x, f(x) =x,+2>x +2=1(x)

Example 2: f(x) = is a monotonic decreasing function in [0, 100]

x+1
since as X increases from 0 to 100 f(x) decreases.

(E) Bounded Function: A function f(x) defined on a set D (or domain D)

is said to be bounded above on D, if there exists a number M such that f(x) <
M ¥ xeD

Similarly, a function f{x) defined on a set D (or domain D) is said to be bounded
below on D if there exists a number m such that m<f(x)% xeD
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The function f(x) is said to be bounded on D if it is bounded both and below

1.e. if there exists two real numbers m and M such that

m < f(x) <M ¥ x€D

‘m is called the lower bound of f(x) in D and M is called the upper bound

of f(x) in D.

SN n bW

Example: f(x) x? is bounded in [1,2] since for 1<x<2, 12=1 <f(x) <22 =4

Exercises 2.2

Defined a function what do you mean by the domain and range of a
function? Give examples.

Define and give example of each type of the following (i) injective function
(ii) surjective function (iii) bijective functions (iv) many-one function (v) into
function.

Show that the function f:IR—IR : f(x) = 1+x? is many-one into.

Show that the function f:IR—IR : f(x) = x* is many-one and into.

Show that the function f:IR—IR : f(x) = x° is one-one and onto.

Show that the function

(i) :IN—1IN : f(x) = x? is one-one and into

(1) fz—z : f(x) = x? is many and into

Let £:[0, 5 ]—IR:f(x) = sinx and g:[0, % ]—IR:g(x) = cosx. Show that
each one of f and g is one-one but (f+g) is not one-one.

Show that function f:IN— z, defined by

%(x —1), when xis odd
f(x) =

1 .
— EX’ when x is even

is both one-one and onto
Show that the function f:IR—IR defined by

1, if xis rational
f) = |1, if xis irrational

is many-one, into. Find (i) £ ( %4) (i) f (¥2) (iii) £ (r)
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10.

11.

12.

13.

14.

15.

16.

Find the domain and range of following functions

2 2 3 6
(iti) f(x) = Jx =1 (iv) f(x) = log (x* ~ 5x + 6)

W) f(x) = x> —3x+2 (Vi) f(x) = 8x +2x —3x’
X

1
(v) f(x) = m (viii) f(x) = "
Which of the given functions is (are) even, odd and which is (are) neither
even nor odd?
(1) f(x) = sinx (ii) f(x) = sinx + cosx
(i) fx) =7  (iv) f(x) = x? — x|
Prove that any function of x, defined for all real x, is the sum of an even
and an odd function of x.

[Hints: f(x) = %[{f(x) + f(—x) + {f(x) — f(—x)}

If f(x) = i—j% then prove that 2f(x).f(x?) = 1+{f(x)}* (NEHU, 2014)
Let A ={x€lIR : 0<x< 1}. If 1 A— A is defined by
x,ifx€Q
fix) = {l—x,ifx ZQ
Then prove that (f:f) (x) = x ¥ x€A (NEHU, 2013)

What do you mean by a bijective map? Show whether the mapping
f:IN—IN defined by f(n) = n—(-1)*, n€IN is bijective, where IN is the set
of natural numbers. (NEHU, 2011)

Sketch the graph of the following functions
(i) f(x) =2, whenx is an integer

= (, when x is not an integer
(i) f(x) =0, for x* > 1

=1, forx* <1

1
—2-,forx2=1
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17.

18.

19.
20.

21.

22.

23.

24.

25.

26.
27.

28.
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(i) f(x) = 0, when x is an integer
= 2x, when x is not an integer

(iv) f(x) = x — [x] where [x] denotes the greatest integer not greater than
X

A taxi company charges one rupee for one kilometre or less from start and
at the rate of 50 paise per kilometre or any fraction thereof for additional
distance. Express analytically the fare ‘f” in rupee as a function of the
distance ‘d’ in kilometre and draw the graph of the function.

(NEHU, 2001)

LetA={2,3,4,5} and B= {7, 9, 11, 13} and let f = {(2,7), (3, 9), (4,
11), (5, 13)}. Show that f is invertible and find !

Let :Q—Q : f(x) = 3x—4. Show that f is invertible and find f.
Show that the function f:IR —IR : f{x) = 2x+3 is invertible and find f'.

1
Let iIR—IR : f(x) = > (3x+1). Show that f is invertible and find .

4x +3
6x—4° "

If f(x) =

1

2 2
¢§. Show that (fof) x = x for all xig. Hence find £

Let IR be the set of all non negative real numbers. Show that the function
fIR —[ -5, oo[ defined by f(x) =9x?+ 6x — 5 is invertible and find .

Show that f(x) = 2x? + 4x + 6 in the internal [0, 1] is bounded and has
lower bound 6 and upper bound 12.

Show that f(x) = is monotonic ascending for x>0.

x+1

3x+5 . . .
Show that the function f(x) = is a strictly decreasing function.

2x +1
(i) If f(x) = (x-a) (x-b) (x—c), show that values of f(a), f(b), f(c) and
f(0) are respectively 0, 0, 0 and —abc

(i) If f(x) = e*, show that f(a), f(b) = f(a+b)

(i) If f(x) = x + |x]. Are f(3) and f(-3) equal?

. X f(x+h)—f(x) 1

(v) If f(x) = T—x’ show that - (I—X)(l—x—_h)
When f(x) = logsinx, ¢(x) = logcosx, verify that

(1) f(x) + ¢(x) + log2 = f(2x)
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29.

(i)
(iii)

()

(i)

(iii)

(iv)

(v)

elo = %(1+cost)

le(x) +CZO(X) — 1

If 6(x) =m 1™
m —

TR , show that ¢(/) + &(m) = ¢(/+m)

. fO-fy) _ x-y x—1
Verify that 1+ (%) f(y) I+ xy when f(x) = rl

When y = f(x) = “prove that f(y) = x

l 2
If f{x)= min {x, %( } for x>0; find f(3) and f( %4). For a>0, is it true
that f(a) = f( %/ )2 Can (~4) be found out?

If f(x) = % and ¢=0, be real number, show that |f(c) — f(—c)| = 2



Limit of a Function

Introduction

The concept of limit forms the most outstanding concept in Calculus and
plays an important role in the development of this subject. It is this concept of
limit which make the line of difference of calculus with Algebra, the latter being
based upon the four fundamental operations of addition, subtraction, multiplication
and division. The real essence and strength of this subject lies in the concept of
limit upon which the new and broad structure of calculus.

3.1 Difiniton

When x approaches a constant quantity ‘a’ from either side (but=a), if there
exists a definite finite number ‘/” towards which f{(x) approaches [As a particular
case f(x) may remain equal to / when x is sufficiently close to a] such that the
numerical difference of f(x) can be made as small as we please (i.e less than any
pre-assigned prositve quantity however small) by taking x sufficiently close to ‘a’,
then ‘/” is defined as the limit of f(x) as x approaches ‘a’ and is symbolically

written as }(i_fgf(x) =/or f(x)—/ as x—a.

Mathematically, f(x) is said to have a limit ‘/” (where 1€IR) as x — a, if for
any pre assigned positive quantity € however it may be, there exists a positive
number § (depending on €) such that |f(x)-/| < € when 0<[x—aj<§. Geometrcally
we may say that for all x in the two open intervals a— § <x<a and a<x<a+¢, the
graph of f(x) lies between the horizontal lines y=/-€ and y=/+€.
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y A

X ~ y=lte
A A
4 ¥

v
P y=I-€
0 4— 0,40 pi »X

a0 a atd

Observations

1. Here the graph of y = f(x) has been assumed to be without any break
in the interval considered. In the determination of the limit of y= f(x)
as X —a, we are not at all concerned with the point on the graph
corresponding to x=a. The point on the graph corresponding to x=a
may not belong to the curve or even may not exists at all.

2. If there eixsts a number / such that £i£r;f(x) = | we say that

limf (x) exists. However if no such / exists, we say that imf(x) does
not exists. A limit, if exists, is necessary unique.

3. (a) The definition requires that for every €>0, however small, there exists
a suitable &. Thus, for each value of €, a largest permissible value
of § is determined and so § is a function of € [which is sometimes
denoted by &§(€)], it is however clear, that for a fixed ‘a’, the smaller
the given value of €, the smaller the value of 8.

(b)In order to prove the existence of the limit of f(x), from the above
definition, it is sufficient if we can show that the inequality 0<[x—al<$
follows from the inequality |f(x)-/|<€, € being given in advance and
thus & can be obtained.

4. It is important to note that ‘a’ need not be in the domain of f(x). The
limit has nothing to do with the value of f(x) at x=a itself, and, infact,
f(a) need not even be defined. The existence of the limit of f(x)
depends entirely on the values of f(x) for x near a (not for x at a)

Example 1: Show that lim 5x = 10

Solution: Let €>0 be given (however small), we are to find a value of §
depending on the € such that
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[5x—10| < € for O<|x-2|<$
e Ix-2/< % for O<jx-2/<8
taking § = % we see that O<|x—-|<§ follows from |Sx—10|<€.
Therefore the existence of the limit is assured by definition.

x‘—-9:6

Example 2: Show that lim

x—3
Solution: Here we are to find a >0, depending on any given €>0 (however
small) such that

2
x =9
X —

—6l<e for 0 < |x-3} < §

(x—=3)(x4+3)
x—3

ie 6/<c for 0 < [x-3] < &

e |[xt3-6/ <€ for 0 <Ix-3|< 8§ ["'x—3 x-3=0]
ie x-3|<e for0 <ix-3|<%

Taking =€, we see that the relations are satisfied and hence by definition,
the limit exists.

3.2 One-sided limits: Right-hand and left hand limits.

A function f(x) is said to have a limit /, (say) as x—a from the left, if for
every €>0 ; we can find a number §>0 such that [f{(x)—/,{ < € for a—§<x<a and

it is written as Llim f{(x) = /, or linzo f(x) =/, or f(a—0) = [ and / as called the
left hand limit of f(x).

Similarly, a function f(x) is said to have a limit /, (say) as x—a from the
right, if for every €>0, we can find a number §>0 such that |f(x) —/,|<e for

a<x<a+$ and it is written as R 1xi£n fix) =1, or ngﬂo f(x) = [, or f(a+0) = [, and
[, as called the left hand limit of f(x).

Hence at once it follows from the definition that lim f(x) = / if only if

lim f(x) = /= lim f(x).

X—a~ x—a+0

Observation

1. One sided limit are very useful is solving different types of problems
particularly at the end points of the domain of definition of a function.
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2. If either lim f(x) or lim f(x) fails to exist, then lim f(x) is said to be

Xx—a+0

non existence

2

Example 1: Let f(x) = -X—, find lim f(x) if it exists.
X X—a

2
el X

Solution: Intuitive approach: We see that — =x, when x=0
X

2

. X .
Now lim f(x) = lim —= lim x=0
x—0-0 x~0-0 ¥ x—0-0
XZ
lim f(x)= lim —= lim x=0
=040 x—=0-0 x x—+0-0

Hence }grg f(x) exists and }g’% fx)=20
Analytic Approach:

We are to find a value of § depending on any given €>0 such that
2

X _ol<e for 0<x—0/<$
X

L.e for [x| < € for O<x—0J<?§

Taking §=€ we see that the relations are satisfied and hence existence of
the limit to be 0 is assured.

| x

Example 2: Find lim Tl if it exists

Solution: We know that |x| = x when x>0 = —x when x<0

Now fim 0 = tim =X = lim (1) =1
x—=0-0 X x—0-0 X x—0-0

and tm 2= dim X o gim (1) =1
x—0-0 x x—0-0 x x—0—-0

x| -
Hence {(mg — does not exists
- X

3.3 Distinction between lim f(x) and f(a)

lxifg f(x) is the value of f(x) when x has any value arbitrarily near to a except
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a. In this case, we do not care to know what happens when X is put equal to
a. But f(a) stands for the value of f(x) when x is exactly equal to a obtained either
by the definition of the function at a, or else by substitution of a for x in the
expression f(x), when it exists.

3.4 Different Types of Limits
(I) Function tending to infinity: 1im f(x) = +

A function f(x) is said to tend to > (or —) as x—a if for any pre assigned
positive quantity N, however large, we can find a positive number g, such that

f(x) > N (or ~ f(x) > N) for 0< |x—a|<g and it is writien as 1;3} f(x) = = (or

lim ) = —oc)

X—a

1
Example: Show that lin% Pt

Solution: Here we must find a §>0 as a function of N

1

such that — > N for 0<[x-0| <g
X

. 1

ie x?< o for 0<|x| <g

1
Taking § = _\/ﬁ the result follows

(I1) Limit of a function as the variable tends to infinity: lim f(x)

A function f(x) is said to have a limit / as Xx— oo Or (=X —o0) if for any pre
assigned positive number €, however small it may be, there corresponds a
positive number m, however large such that

[f(x) — ll<e for x>m (or — x>m) and is written as }L‘?C f(x) =1

(or m_f(x)=)

.1
Example: Show that lim — =0

x—oc X

1
-0

Solution: We are to find n as a function of €>0 such that “X‘z <e for x>m
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. 1
i.e — <€ for x>m
X
. 1
iex?< z for x>m
i > ! ( < ! ) fi >
i.ex > (or Xx < ——=) for x>m
Je Je

1 .
Taking m = _\/__e— both the relations are satisfied.

Hence the result.

(III) Function which tends to infinity as the variable tends to infinity:
Iim f(x) = cc or M f(x) = o

A function f(x) is said to tend to co as Xx— oo (0 — X—o0) if for any pre
assigned positive number N, there exists a positive number m such that f(x)>N
for x > m (or — x>m) and is written as

Im fx) = o or M f(x) = oo
Example: Show that lim x2 =
Solution: We are to find m corresponding to N such that x2>N for x>m

ie x> /N (or x <-/N) for x>m

Taking m = /N we see that Im x* = o

3.5 Cauchy Criterion for existence of a limit of a function.

lxig} f(x) exists, if corresponding to any given positive number €, however
small it may be, there exists a positive number s, such that [f(x ) - f(x,)|<€ for
every pair x,, x, of values of x satisfying 0<|x —a| < § and 0<[x,—al<p

In otherwords, this Cauchy condition is sometimes writte as

lim [f(x)) - f(x,)| = 0

Theorem: Cauchy’s general principle of existence of limit.

The necessary and sufficient condition that a function f(x) may tend to a
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definite finite limit as x—a, is that to any pre assigned positive quantity €,
however, small, there corresponds a positive number § such that [f(x,)-f(x)| <
e for every pair x,, X, of values of x satisfying 0<|x —a|<§ and 0<[x,—a|<5.

The proof of this theorem is beyond the scope of this book.

T
Example: Does hrrg sin — exists?
X— X

. N
Solution: Suppose lm[} sin — exists.
X— X

Then by Cauchy’s general principle of existence of limit (above theorem),

to any pre assigned positive quantity €, however small there corresponds a

positive number § such that for every pair x,, x, of values of x
.1 !

Sin— —Sin—|<€ for 0 <|x,| < § and 0 < |x,|<§
X

2
X

2
——— where x€Z we see that
4n — 1>’K

0<x,]< g and 0<|x|< g by choosing n sufficiently large.

)ﬂ and x, = (

2
But if we take x, = MDT

However > =2 &£ any €

X

2n—lJ7r
2

SinL —Sin il‘ =
X

Sin[Zn—l—%]ﬂ—Sin

. L o1 .
Hence our assumption is wrong and llrrg sin — does not exists.
X— X

3.6 Fundamental Theorems on Limits

Theorem 1: If lim f(x) =/ and limg(x) = m, then lim {f(x) + g(x)} =
/+m

i.e. The limit of the sum or difference of two functions is equal to the sum
or difference of their limits

Proof: Let €>0 be given.

Since lxlirg f(x) = I and }(IEI} g(x) = m.

Then to this given €>0, there corresponds two positive numbers
6,and &, such that

If(x) — 1] < &4 for 0 < |x-a| < §,
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and |g(x) — m| < % for 0 < |x—a| < 8,
Let  =min {5, 6,} then for 0 < |x—a| < §; [f(x) — /| < &4 and |g(x) -

m\<%

We have

If(x) £ g(x) - (/ £m)| < |f(x) - /] + |g(x) - m| < % + % =€
Hence the theorem. ‘

Theorem 2: If 1X1£13 f(x) = / and ilgg g(x) = m, then lim f(x) =/and lxliral

{f(x).g(x)} = l.m
i.e the limit of the product of two functions is equal to the product of their
limits.

Proof: Let €>0 be given. Then there corresponds poisitive numbers § and
8, such that
[f(x) — 1| < €' for 0 < [x-a| < §,
and lg(x) —m| < € for 0 < [x-a| < &, .cevrvnnnnn. (D

Choosing § = min {§ and o, } then for 0 < |x—a] < § we have

|f(x).g(x)—L.m| = |g(x) {f(x) — 1} + [{g(x) - m}]
= [f(x) g(x) — im} < |g(x)| [f(x) — £ + |/ [g(x)-m|
< {jml+€}. €+ |Il.€" from (1)
={m/ + ||+ €} €
< € for 0 < |x-a| < %

€
|m{+[1]+1

by choosing € less than 1 and <
Hence the theorem
Theorem 3: If 1x1n} f(x) = I and lim g(x) = m=0, then

lim {&}z

!z
e g m
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i.e The limit of the quotient of two functions is equal to the quotient of their
limits, provided that the limit of the denominator is not zero.

fx) |
Proof: Consider ——

gx) m

)mﬂmﬂ%@)
mg(x)

[m {f(x) ~ 1} ~ 1{g(x) — m}|
f m g(x)

[l £ =1+ ~m|
|m||g(x)|

Since £1£ral f(x) = I and lxlgg g(x) = m=0, to a given €>0, there corresponds
positive numbers § and 9, such that
f(x) — 1| < € for 0<|x—a| < §
and |g(x) — m} < % im| < € for 0<jx-0| < §,
i fmj — 0o < g0~ m| < 5 I
i.e [g(x)| > % Im| for O<jx~a| <§,
Hence by taking g=min (§ and 3, ), for 0<[x—a| < g

We have from (i)

gx) m 1 im |’
{ml|.~{m]|
2

f_@_>~i'< mle' +111e’ _ 2mI+1IDE

m|’ €

- /
by choosing €' < Wm|+11]) the theorem follows.

lim X +x—12
Example: Evaluate 1M T3
Solution: Here if we put x=3, the function takes the form % which is not defined.

Also since the limit of the denominator is 0, we cannot apply Theorem 3
directly.
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Since x = 3 may be excluded by cancelling the common factor we get

2
: +x—12 . (x+4)(x=3)
lim 2727 i TV iy +4) =
x—3 X_3 x—3 X__3 x—3 (X 4) 7
Theorem 4: Limit of a function of a function.

If lim ¢(x) = b and lim f(u) = f(b), then imf {o(x)} = f{lim ¢(x)}

Proof: Since }ll_{r; f(u) = f(b), then for any given €>0, there corresponds a
positive number &, lim f {¢(x)} such that [f{¢(x)} — f(b)| < € when 0<|¢(x)—
b|<$§,. Again since }(l_r}al $(x) = b, therefore, corresponds to this positive number

b,, there exists a positive number § such that |¢(x)-bj<8 for 0 < |x~a| < 5.

Combining these two results, we see that to the given arbitrary positive
number €, there corresponds a positive number § suich that [f{$(x)} — f(b)| <
€ for O<x-a] < §

i.e limf{o(0} = f(b) = f{lim o(x)}
Corrollary:

lim f(x)

) lxl_I}g {o6x)}™ = {£1£1: d)(x)}“” provided ¢(x) is positive for all values

of x
i) lim {foo} = {limfoof
3.7 Evaluation of Some Important Limits:

. sinx
L im>—2==

1
x—a x B T
r tanx
Proof: Let 0 < x < % Aﬁ

Then from the figure, it is clear that
Area of triangle AOB < Area of the sector
AOB < Area of triangle AOT

L ERNPR N R
€ —.IL.ISINX ~ r'x — I rtanx
2 2 2
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i.e sinx < X < tanx

1
<

el < —
sin X COS X

Let x —0+0, then cosx— 1 and —1
COS X
. . sin x
Hence lim ——=1 and therefore lim =1
x—=0+0 §In X x=0+0 X

. sin{—x) sin x
Since —— = ——

—X X

. . . . sinx
Hence no further discussion is required to proof that xh{)no — and
-0 x

sin x

therefore ling =]

2. lim[H—i] =e
X

X—0C

Proof: Let x be any large positive real number. Then without any loss, there are
two consecutive positive integers n and n+1 such that

n<x<n+l

Cielsieloig !
) n X n+1

Since each being greater than 1 and as n+1>x>n

I

1
I+—

n—1 [ l]x
>14—=] >
X n+1

[1+l
n

1
n+1

1 n-1
T e
n+1

Now when x— o0, n— oo and ‘n’ being a positive integer we have both

n

or [1+l
n

1+1] >[1+1] >
X

l n 1 n—1
1+— and I+— — €
n n
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1 1
Also 1+— — land 1+—— — 1
n n+1
Hence the two extremes in the above inequality tend to a common limit e

and hence lim

X—C

1+1] =e
X

Let x be any negative real number
i.e x = —p where p is a large positive real number

Then as p— o, X——00

1 X 1 P P
lim [1+—-] = lim [l——] = lim [_p_]
X0 X pox p p—oc p_l

Hence for all real values of x lim [1 -+ L] =e
X

Corollary: lim (1+ x)% =e
. 1.
Proof: Putting x = ; in 1 and the result follows
3 limllog(l—kx):l
: x=0 X
Proof: We have
i 1 ] 1
xlil(};log(l—i—x) = !(15% log(1+x)x

1
= 10g[1Xi§g (H—X)*} by theorem 4

=loge =1
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X

. a .
4. lim =log? (a>0)

X

Proof: Putting a*~1 = y so that y—0 as x—0 and a*=1+y or x loga = log (1+y)

x*lzlim Y

—]
y=0 log (1 + y) 088

. a
Hence hn%
X

— ; M
loga. lylir(} 7

—log(l+y
log(1+)

1
= log a. loge by (3)
=log a

e —1

5. lim =1

x—0 X

Proof: Take e*-1 = y and proceed as above

oox"=a" .

6. lim =n a*! for a>0 and n a rational number.
x—a  Xx—a

Proof:

Case 1: When n is a positive integer

By actual division we have

x"—a"
— Xn~1 + Xn—2 + Xn—3 a2 + + an—l
X—a
.o x"—a"
. lim - =av! +a2a+aa’ +...+av!
x—a X—a

=1 a"!
Case 2: When n is a negative integer
Suppose n = —m where m is a positive integer
x"—a" x"—a ™" 1 x"—a"

Then = =— .
X—a X—a x™a™ x-—a
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. m a™! by case 1.
m

=—-ma™! =na*!
Case 3: When n is a rational fraction
Suppose n = q’ where q is a positive integer and p is any in teger, positive

or negative.

L 1
Let usput x*=yand a¢ =b

o Xmat Jiah oy o (Y- (y-b)
L. xl_rg ~—a ——;:— = Y <yp_bp)/ y—b

1 1
Now as x—a, x? — a? i.e y—b

v (Y -b)fy-b
Hence }(133 Xx—: yl_f}g '<yq—bq)/y—b

. (1+x) =1
7. lxlg (j)__:n
X

Proof: Put (I +x)"~ 1 =yso thaty—~0asx—0and (1 +xp°=1+y
ornlog (1 +x)=log(1+Yy)

1+x) —
g X)Ly
x—0 X x—0 X

; y  log(+y)
x—0 log(l + y) X
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_ 1 Yy nlog(1+x)
Mgty T x
_ lim y i nlog(l+x)
v=0 Jog(l+y) = x=o X
. 1 !
= 11513 T - nlm&—log(l%—x)
T log(1+y) X
y
. ] . v
=lim _——— n limlog (1+x)*

X —

=0 1
log(1+ y)/y

1.n.1 = n by (3)

Mlustrative Examples

Example 1: Apply (€, §) definition to illustrate that lirrAx1 (2x-2)=6
' (NEHU, 2005)

Solution: Let €>0 be given (however small), we are to find a vaiue §5>0
depending an this € such that

(2x=2) — 6| < € for 0 < [x-4] < §
ie [2x-8) <€ for 0 < |x-4| < §
e 2] x=4) < & for 0 < [x—4| < &
ie [x—4| < for 0 < |x~4] < s

Choosing & = A we see that 0 < x—4| < & follows from |(2x ~ 2) — 6| <
€ and hence the result.

2x*—8

Example 2: Using (¢, &) definition, show that lim =8 (NEHU, 2016)

Solution: Let €>0 be given (however small), we are to find a value §>0
depending an this € such that

2x7 -8

x—2

}

—8|< e for 0 <|x-2] <8
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2
e |80 o< k2 <6
x—2
2
T Sl 150 A R for 0 < [x-2| < §
x—2
2(x—2) .
1e <€ for0<[x-2]<3%
x—2

ie 2x-2|<¢€ for0<[x-2|< 8§ [x—2 x=2 x-2=0]

Choosing 6=% we see that the relations are satisfied and hence the limit
exists.

PR |
Example 3: Evaluate the limit lim — {[1+x)-f[l=x]}  (NEHU, 2005)

x=0 %

Solution: We remove the indeterminate form 0/0 by transforming

| V) == <) %)+ T =%)}
A=) = )

N ) i)
{ (1+x)+ (l—x)}

| —

1 2x
SRR Ty

2
= whereby

JU+x) +(1-x)

2

.1 ) 2
=) = i 2!

5%
e -1 ) -1
=1 and use the result to evaluate !gr(}

Example 4: Prove that }g{}

(NEHU, 2016)
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—1
=1 has been proved in 3.7 (5)
X

. . ¢
Solution: lnrlx
o

Now lim — lim = T im &=
x—0 X x—0 z 5x 5 x—0 SX
5
Put x = 5x, then as x—0, z—0
e 1 7. -1 7 7
lim = —1i = —x1 = —
=0 Tx 50 7z 5 5
. . .1
Example 5: Discuss the existence of llﬂ(} -
=V X
. 1 1
Solution: hm —=o00 where as hm —=—00
0xX -0 x

o1 )
Hence hng — does not exists.
X— x

Example 6: If f(x) = (x=0), prove that lim f(x) does not exists (Cal:

1+e/
1987)

Solution: Since x— 0+0, L 00, e/ — 00
X

lim f(x)=0

T x—0+0

Again, x—0+0, ., o0, e% -0
X

.' x1~1>1(}:1—0f(x) - 1
Jim, £06) = i, fx)
Hence lxl_ff(} f(x) does not exists

USRI

Example 7: Find lim 2= ———

Solution: We first remove the indeterminate form % by transforming
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Nrusi (Vx+h=Vx) (Vx+h+ k)
h = h(\/x-i-h +\/;)
[VoB) () h
T oh(Vxrhivx) n{vx+h +Vx)
1
= b where by
VX —Vx iy _ !
R T Jxrh4dx 2%
sin{ ¥ 1
Example 8: Show that lim E{A ) =3
sin(% sin|® 1. sin{%
Solution: lim—(/ﬁ = lim—LA—) = —hm—ﬁ
x—0 X x—0 3 Xg 3 x=0 %
= —x1 = 1
3 3
3 +8x -3
Example 9: Determine the limit L of the function f(x) = —X—z;_XT as Xx——3.
Hence find a § > 0 such that for all x.
0 <|x—(-3)] <& = |f(x) - L| <0.001 (NEHU, 2004)
. . . 3x*+8x-3 . Bx=D) (x+3)
Solution: xhj{l} f(x) = th{l} e th{l} 2x+3)
10
2

Now for a given € = 0.001 we are to find a §>0 such
[f(x) — L| < € when |x~ (-3)| < 8

3x*+8x—3 10

Le 216 +_2_ < 0.001 when [x+3| < §
ie w—{d < 0.001 when {x+3{ < §
2(x+3)

A
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e [3x-1+10] < 0.001 when |x+3] < §
ie |3 (x+3) < 0.001 when |x+3| < §

e |xt3| < 0.000% when [x+3} < §

0.001
Hence choosing § = N the conditions are satisfied.

Example 10: Using €6 definition, verify that

lim XLl (NEHU, 2008)

Solution: Let € > 0 be a given arbitrary positive no.
We are to find another no & > 0 such that

[f{x) - 2| < € when [x—1]| < &

2
X l*2

< € when [x-1] < ¢
x—1

(x—=DE+D
x—1

2 < € when [x—1| < §

ie [x-1| < e when [x-1| <
Choosing €=8 we see that the condition are statisfied.
Example 11: Using €-8 definition, prove that
. 1
!Eréxsm;———o (NEHU 2009, 2016)

Solution: Let € be any pre assigned possitive no such that

(x) ~ 0] < € i.e <e

1
xsin——0
X

We are to find a §>0 corresponding to a given € such that

xsinl <€ when x-0] < € ie x| <38
X
. .1 . 1
Since |sin—|< 1, by making [x| < € can make (xsin— < &
X X

Hence by choosing €=§, the result follows
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Example 12: Using €~& definition of limit of a function verify that

limx* =4

x—2
Solution: Let €>0 be any pre assigned quantity such that
I(f(x) — 4] < € i.e [x*-4]| < €
We are to find another positive quantity § corresponding to a given € such
that [x*—4| < € when [x-2| < §

Since [x*-4| < € = |(x-2) (x+2)| < € = [x-2[ < %’Wz)

€
Hence by choosing 6=m, the result follows
Exercises 3.1

1. Establish the following limit by exhibiting ¢ as a function of €.

2

0 lim2x =8 (i) lim x 4 =4 (i) lim (2x +1) =35
x—4 X2 X_2 x—2
1 . .
; im — — lim ——— =0 N1 =
(iv) lim N 0 (x—1) (vi) M X +

2. Establish the following limits (use definitions only)

11 L3 1

(i) fim>=3 (if) lim =1 (iif) im ~5 =1
. X x* -1

iv) lim =0 li =3

(iv) 1m =5 =W lim——

3. Use Cauchy Criterion to discuss the validity of the following statements.

. .1 .

0 hrré sin — does not exists
X— X

e 1 .

(i) lmé cos — does not exists
X— X

. 1
(iii) lxlﬁ% e 7 does not exists ( Cal 1987)
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x—0

1 1
i lim x sin —=0 lim x cos —=0
(iv) - (v) lim x cos —

. 1] 1 ‘
(vi) lim|xsin — tsin_+ x* sin | does not exists.

In the following examples obtain the right hand and the left hand limits and
thus discuss the existence of the limits as x approaches the indicated value
of x.

@) fx) = [x], X | (i) f(x) = % X0
N - . 1
Gii) f = Y=y L0 (iv) fix) = —, X0
X 14e/x

(v) f(x) = x when x<1

= 2-x when x>1, x—1
(vi) f(x)= cosx when x>0

= — cosx when x<0;l x—0
(vi1) f(x) = 3 when x is an integer

= 0 when x is not an integer, X — 1
(viii) f(x) = 4x + 3, x=4

=10,x=4;x-4

Exercise 3.2
Evaluate the following limits:
. xX*42x-2 . X*—=3x+2
N i Xt 2X o2 i X T3x 2
M i 2x +2 (i) i x* —4x+3
2 2 2
(i) tim 22V X (iv) fim L) !
X— X x—0 X

1 1 1 . x?
Tm _ | .
(V) }]1—1"13 h {X+h X} (Vl) xli% a— }az _x2

1 1

JI+x —+/1—x (Viii) l’ﬂ% x1—2 )1(
X '

+;
x—3 X

(vii) lim
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. 2xP—x+6 . 1—+/x
i lim ————— lim
(x) Jm 3x% 4+2x+1 () 1++/x

2. Do the following limits exists? If so, find their values

. . sinx . 14cosx
1) lim i) lim i) im ——
() 1m p— (i) 1m P (iif) —
3.  Show that
. tanx . 3x sin 2x
i) lim =1 i) lim =3 ii1) lim =2
(M) X0 (i) x—0 gin X (iid) x=0 CcOSX

. l—cos2x 1 . tanah
=0 (v) }(131) TZE (vi) lim =

l—cosx a
"0 tanbh b

(iv) }(11%

4. Verify the following:

. 0 .
. . sinx N sin” x
lim =— i) 1l =
(1) - 180 (ii) }(1113 1
ooy y. tan”! N
(1ii) hng o X @iv) llrr}(sec2x —tan2x)=0
XH“4
. l—cosx 1 . sin(l—-x) 1
lim == 1 =
™) =0 sin® x 2 (V) ) 1-x? 2

5. Given f(x) = x|, show that lim {f(h)~f(0)}/h does not exist.

2

> = 8. Applying (§, €) definition, find § if € = 0.1

.2
6.  Show that 11rr21 X

XZ aZ 2 2
7. () Is lim —lim =lim ?
xoa X —a x—8 x—a x¢ x—a

2 - 2
(i) Is lim (x* —a? ) lim ———1lim X%
X—a X—a X —_— a X—a X — a
8. Show that:
1 2x ) 3x
(i) th?o 1+;] =g’ (ii) ILIIOlc [1+;] = g®
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x 8 8 8

e . X —a
(iii) lim 4 (iv) fim ——=a
’ 5 3 T e’*—l__1
(v) lim (14 X)x =e (vi) lim =
. log(I+x )
Prove that lxliré—g—(—x——)zl and apply it to show that

. log(1+8x) limicgd+8x) 8
= =8 and 7000 7
. sinx . sin(}é) .
Show that lim——=1 but lim does not exists.
x=0 gin X x=0 Sin(y)
X



Continuity

Introduction

In the definition of the limit of a function f(x) as x —a does not require f(a)
to exist. This restriction enables us to apply the definition to function that fail to
have meaning at x = a, but have definite values for all other values of x near the
point x = a. )

The class of functions in which limits can be found by this substitution
process are called continuous functions. Thus continuity means identity of limits
with values.

Definitions

4.1 Continuity at a point

A real valued function f(x) is said to be continuous at x=a, provided E(liral f(x)
exists, is finite and is equal to f(a)

In otherwords, for f(x) to be continuous at x=a, the following conditions
are to be met

(i) f(a) is defined
(ii) im f(x) exists
(iii) im fix) = f(a)

Thus, a function f(x) is said to be continuous at x=a, if corresponding to
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any pre-assigned positive quantity € however small it may be, there exists a
positive number §, such that {f(x) — f(a)| < € for |x—af < §.

If f(x) is continuous for every value of X in the interval (a, b), it is said to
be continuous throughout the interval.

If f(x) is not continuous at x=a, it is said to have a discontinuity at that point
and this point x=a is called a point of discontinuity.

4.2 Different Classes of Discontinuity

(A) If lim f(x) - lim f(x), then f(x) is said to have an ordinary
discontinuity (or discontinuity of the first kind) at x=a. In this case,
f(a) may or may not exists, or if it exists, it may be equal to one of

lim f(x) and lim f(x) or may be equal to neither.

B) If Xlirg f(x) :xhj? f(x) = f(a), or is not defined, then f(x) is said to
have a removable discontinuity at x = a.
In this case, the funcion can be made continuous there by suitably
defining the function at the particular point only.
These two classes of discontinuties (A) and (B) are termed simple
discontinuity.

(C) If one or both of lim f(x) and lim f(x) tend to +oc or —cc then f(x)

- is said to have an infinite discontinuity at a. Here f(a) may or may not
exist.

(D) Any point of discontinuty which is not a point of simple discontinuity,

nor an infinity is called a point of oscillatory discontinuity. At such a

point the function may oscillate finitely or infinitely and does not tend
to a limit, or tends to +oo or —oo

Examples:
s
1. f(x)=]2+¢*| has an ordinary discontinuity at x = 0 since lirgi f(x)
— 0 and lim (x) =+
B an x—0" (X) B 2
XZ _ a2
2. fix) = has a removable discontiunity at x = a since f(a) is

undefined here, though lim f(x) exists and = 2a
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1
3. f(x) = e * has an infinite discontinuity at x = a since lim f{x)— oo

l .. . . .
4. Af(x) = sin — oscillates finitely at x = 0 since the point x = 0 is an
X

. . o 1 .1
oscillatory discontinuity of sin— and sin — assumes every values
X X

between —1 and +1
4.3 Some Properties of Continuous Functions
(i) The sum or difference of two continuous functions is a continuous function.
i.e if f{x) and g(x) are both continuous at x=a, then f(x) £ g(x) is continuous
at x=a
Proof: By definition of continuity }(I_YE f(x) exists and = f(a) and lxlfg g(x)

exists and = g(a)

Hence lim {f(x) = g(x)} = lim {f(x) = g(x)}

X—a

f(a) + g(a)
where, bydefinition f(x) + g(x) is continuous at x=a

Note 1. The result may be extended to the case if any finite number of
functions.

Note 2. If f(x) is continuous at x=a and g(x) is not, then f(x) £ g(x) is
discontinuous at x=a and behaves like g(x).

(i) The product of two continuous functions is a continuous function.

i.e if f(x) and g(x) are both continuous at x=a, then f(x).g(x) is also
continuous at x=a

Proof: Exactly similar to the above case
Note: The result may be extended to any finite number of functions.

(iii) The quotient of two continuous functions is a continuous function, provided
the denominator is not zero anywhere for the range of values considered.

f(x)
i.e if f(x) and g(x) are both continuous at x=a and g(a)=0, then @ is

continuous at x=a

Proof: Same as in the above case
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(iv) If f(x) is continuous at x=a and f(a)>=0, then in the neighbourhood of x=a,
f(x) has the same sign as that of f(a) i.e we can get a positive quantity §,
such that f(x) preserves the same sign as that of f(a) for every value of f(x)
is the interval a—§ < x < a+§

Proof: Since f(x) is continuous at x=a, then by definition, to an arbitrary
chosen positive number €, we can get a positive number § such that

f(x) ~ f(a)] <€ for x —a] < §
ie fla) — e <f(x) <f(a) + € fora-6 <x <a+§

1
As f(a)=0, if f(a) > 0, choose 6=5 f(a), then from above f(x) > f(a) — €

1 . oy
ie f(x) > 5 f(a) and is accordingly positive when a—§ < x < a+§

1
If f(a) < 0, choose € = -3 f(a), then from above f(x) < f(a) + <

1 1
ie f(x) <f(a) — > fa) i.e f(x) < 2 f(a) and is accordingly negative when

a-§ <x<atg
Thus, whatever be the sign of f(a), we can find § such that f(x) has the
same sign as thatg of f(a) in the range a—§ < x < a+§

(v) If fx) is continuous throughout the internal (a, b) and if f(a) and f(b) are
of oppositive signs, then there is at least one value of x say £ € (a, b) such

that f(&) = 0.
Proof: Proof is beyond the scope of this book

(vi) If f(x) is continuous throughout the interval (a, b) and if f(a)=f(b), then f(x)
assumes every value between f(a) and f(b) at least once in the interval

Proof: Let k be any quantity such that f(a) < k < f(b)

Consider ¢(x) = f(x) -k .......... (1)

Since f(x) is continuous in the interval (a, b), ¢(X) is also continuous there
Also of(a) = f(a)-k < 0 and &(b) = f(b)-k > 0

i.e ¢(a) and o(b) are of opposite signs, hence by (v) above there is at least
one value of x = & in (a, b) such that f(£)=0 i.e (& )-k=0 i.e flE)=k

Hence in otherwords, f(x) assumes the value k at some point in the interval,
between f(a) and f(b)
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(vii) A function which is continuous throughout a closed interval [a, b] is bounded
therein

(viii) A function continuous in a closed interval [a, b] attains it lower and upper
bounds, at least once each in the interval

Proof: Since f(x) is continous in the closed interval [a, b], hence by (vii)
it is bounded there in.

Let M and m be the upper and lower bounds of {{(x) in [a, b] we are to prove
that f(x) attains the value M and m at least once

If possible, suppose f(x) does not attain the value M in [a, b] i.e f(x) = M
¥ x€[a. b]

Consider the function ¢(x) = €[a. b]

1
M-f(x)* ¥
Since f(x) = M ¥ x€fa. b], ¢(x) is continuous in [a, b]
Since M is the upper bound of f(x) in [a, b]

.. f(x) > M—k where k>0

1
ie k>M—f(x) ie yypo > L le o) > k

Contradicting that ¢(x) is bounded

Henc our assuption that f(x)= M -+ x€[a. b] is wrong and therefore f(x)
attains the value M at least once in {a, b]

Similarly we can prove that f(x) attains the value m at least once in [a, b]

Hence f(x) attains its lower and upper bounds at least once in the internal.
4.4 Continuity of Some Elementary Functions

(1) Function x". Where n is any rational number.

We know lim x"= a” for all values of n except when a = 0 and n is negative

X—a
Hence x" is continuous for all values of x when n is positive and continuous
for all values of x except o when n is negative

. . . 1 . .
When n is negative i.e n = —-m, m>0 x" = x™ = - which either does not

tend to a limit or — oo as x—0
(ii) Polynomials

Any polynomial P(x) = ax" + a,x"'+......+a" is the sum of finite number of
positive integral powers of x (each multiplied by a constant) each of which is
continuous for all values of x, the polynomials itself is continuous for all values
of x.
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(i) Rational Algebraic Function

Rational aleebraic functi ax" +a,x" " +o.ta, QX
ational algebraic functions byx" + b+t b, R(X)

being quotient

of two polynomials, are continuous for all values of x except those which make
the denominator zero.

Hlustrative Examples

Example 1. A function f(x) is defined as follows:

f(x) = x when x>0, f(0) = 0, f(x) = — x when x<0

Prove that the function is continuous at x=0
Solution: Here h'r})l+ f(x) = lilg x=0

lim f(x) = lim (%) =0

Thus lir}]l+ f(x) = lirgy fix)=1(0) =0

Hence f(x) is continuous at x =0
Example 2: A function f(x) is defined as follows

‘ 1
f(x) = x sin X for x=0

= ( for x=0
Show that f(x) is continuous at x=0

Solution: Let € be any assigned positive quantity, however small such that

1
If(x) — f(0) < € i.e [x sin ;—O| <€

We are to find a §>0 corresponding to the above given € such that

.1 .
[x sin ;\ < € when x-0} < 8§ ie [x| < §
. 1 . .1
Since |sin —| < 1 by making |x| < € we can make |x sin —| < €
X X

Hence by choosing §=¢ we see that liIré f(x) = liné X sin 1. 0 = f(0)
X— X X

.. f(x) is continuous at x=0
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Example 3: Prove that the function f(x) = e* is continuous for every value of
X

Solution: Corresponding to any preassigned positive number €, however small,
we can choose n sufficiently large such that (1+€)* > ¢

[Since ((1+€)" > 1+n€, e is finite]

Thus ¢ —1<c

1
Hence if 0 <x < ;,e"—l < gh-l< €

Therefore lirgl+ (e~~1)=0or lirgl+ er=

If x is negative, putting x = -y, y>0

. . 1
llm e = lim - = 1
x—0 yﬂo* e

Hence lir% ex=1
X

.. lime ™ =11ie lime* = e°

*, * is continuous at any point x=c.
Since x=c is arbitrary, f(x) = e* is continuous for every value of x
Example 4: The function f(x) = logx, x>0 is continuous
Solution: Note that logx is defined only for values of x>0
Let logx=y and log (x+h) = y+k
Then e’=x and ¢''* = x+h
. h — ey+k — ev

Since ¢’ is continuous (by example 3) function of y, e¥*—e¢¥i.e h—0 as
k-0

Hence {log (x+h) — logx} —0 as k—0 i.e as h—0
Therefore logx is continuous

3x® +5x* +7x

- , x=0 is tobe continuous at x=0. Show that
sinx

Example 5: If f(x) =

f(0) must be equal to 7.

- 3%’ +5x7 +7x
Solution: lim f(x) = lim ——— X
x=0 x—0 sinx
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lim —
x—0 §in x

=7
Therefore for contiuity of f(x) at x=0, f{0) must be equal of 7

i

% (3x2 + 5% +7)

Example 6: Using €—§ definition of continuity, prove that y=sinx is continuous
at every value of x. (NEHU, 2001)

Solutien: Let € be any pre assigned positive number, however small. We have
to show that there exists a positive number § corresponding to € such that

[sinx — sina| < € when [x—a| < §

X—a
2

sin

. . . X+a
Since |sinx — sina| = |2cos

X—a

2

X-+a

. X
<1 and [sin

Now |[cos

a‘g

Hence |sinx — sina| < [xa| < €

Choosing §=¢ we see that |sinx — sina| < € when |x-a| < §

i.e lim sinx = sina

X—a
.. y = sinx is continuous at Xx=a

Since x=a is arbitrary, y=sinx is continuous for every value of x.

Example 7: Consider the function (NEHU, 2004)
. X“—16 x=4
fx)=1x4
0 ,X=4

Is it continuous at x = 4? Is it possible to make f continuous at x=4 by
redefining the value of f{(4)7? Answer with justification. (NEHU, 2004)

li
x4 x—4

P16 -4 4
Solution: lim f(x) = lim X el 'mui_)
x— x—r X

= IEI} x+4)=28
Since lirr} f(x) = 8=f(4) = 0

.. f(x) is not continuous at x=4.

Here x=4 is a point removable discontinuity.



Continuity 99

f(x) can be made continuous at x=4 by redefining f(4) = 8 = lim f(x)
Hence for f(x) to be continuous at x=4, we must have

x*—16
fix) =1 x—4
8 ,x=4
Example 8: Using €& definition of continuity, prove that y=cosx is continuous
in IR. (NEHU, 2005)
Solution: Same as example 6.

Example 9: Discuss the right continuity, the left continuity and then the continuity
of the function

2

5;1 , forx <1
x—1
fx)=1 2 forx =1
x+2, forx>1
at the point x=1 (NEHU, 2006, 2015)

Solution: lim f(x) = lim f(1+h) = lUm(1+h) + 2 = 3=2=f(1)
x—1” - -

f(x) is not right continuous at x=1

2

(1=h) -1
I-h—1

Again, lim f(x) = [im f(1-h) = }im

2
lim LR =20 -1
b0 1—h-1

I

= lim
h0

h(h—-2)
—— =2=1f(1)

o, f(x) is left continuous at x=1
Since lim f(x) = Iim f(x) = f(2)
xel’ ot

.. f(x) is not continuous at x=1
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Example 10: What value should be assigned to a to make the function

x’—-1,x<3
f. =
) 2ax  ,x>3
continuous at x=3? Justify your answer. (NEHU, 2006)

Solution: If f(x) is continuous at x=3, then
lim f(x) = f(3)

ie limx>~1= 6a

x—3
ie 8=6a:>a=%=%

x> cosi L x=0
Example 11: If f(x) = X

0 ,x=0

use €—§ definition show that f(x) is continuous at x=0 (NEHU, 2007)

Solution: Let €>§ be an arbitrary given number, we can find a number §>0
coresponding to this given € such that

[f(x) — f(0)] < € when x-0| < 8

. 3 ]
ie |x cos——0/ <€ when x| < §

X
. .1
ie |x’cos—| <€ when [x| < 8

X

1‘ 1
Since [cos ;I <€ by making |x| < € we see that the condition is

satisfied.
3 1
x’cos—,x=0

oo fx) = X is continuous at x=0

0 ,x=0

Example 12: For what value of a the function defined by f(x) = 2ax+3 when x=2
and f(x) = 23 when x=2 is continuous at x=2? (NEHU, 2009)
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Solution: For f(x) to be continuous at x=2, we must have
}grzl f(x) = £(2)
ie lim (2ax+3) =23
ie 4a+t3 =23 = 4a =20 = a=5
Example 13: Consider the function

3x+2,x<0
f(x) =
x+1 ,x>0
Is this function continuous at x=07? (NEHU, 2010, 2016)

Solution: lir}; fi(x) = lirg; (B3x+2)=2
liI(l]’l f(x) = lim (x+1) =1
x— 0" x— 0"
Since lirg; f(x) = lim f(x)
X x— 0%

.. f(x) is not continuous at x=0

Example 14: A function defined as

1
f(x) = x? cos < when x=0

=0, when x=0

Is f(x) continuous at x=0? (Use €& definition to justify your answer)
(NEHU, 2013)

Solution: Same as example 11.

Example 15: A function f is defined as

x*4+2x4+b ,x=0
=1 .3 oo
For what value of b is the function continuous at x=0? (NEHU, 2016)
Solution: f(x) is continuous at x=0 if
lim f(x) = £(0)
ie lim (x*+ 2x +b) = -3

Leb=-3
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Exercise

A function f(x) is defined as follows
f(x) = %%, when x=1

= 2, when x=1
Is f(x) continuous at x=1?

A function f(x) is defined as follows

£(x)

1 1
3 -x when 0<x< 5

I

1 1

— wh =—

2 en x 5
3 1

= ——x when —<x<1
p T Wie G

. . I
Show that f(x) is discontinuous at x = 5

A function ¢(x) is defined as follows
& (x) = x? when x<1
= 2.5 when x=1
= x?+2 when x>1
Is ¢(x) continuous at x = 1?
A function f(x) is defined in the following way
f(x) = —x when x<0
= x when 0<x<lI
= 2-x when x>1

Show that it is continuous at x=0 and x=1

2
X

The function f(x) = : 6 is undefined at x=4, what value must be
assigned to f(4), if f(x) is to be continuous at x=4?

Determine whether the following functions are continuous at x= 0

x* x4 2x? . x! +4x3 42
; £(0) = 0 (ii) f(x) = T . £(0) = 0

(@) fx) =

sinx
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7.

4.5

Find the points of discontiuity of the following functions:

X 4+2x+5 x> 4+2x45
x? —8x+12 (i) x? —8x+16

(1)
The function f(x) is defined as follows

f(x) =0, when x*>1

=1, when x*<1

1
— when x*>=1

il

Draw the diagram of the function and discuss trom the diagram that, except
at the point x=1 and x=-1 the function is contiunuous. Discuss also why
the function is discontinuous at these two points although it has a value for
every value of x.

Uniform Continuity

A function f(x) is said to be uniformly continuous in an interval if to a given
€(>0) however small, there exists a positive number §, independent of a
such that when [x—a|<§, |f(x) — f(a)] < €

Example 1: Consider f(x) = x%, x in [-a, a] NEHU, 2000)

Solution: Let x! be any point in [—a, a] then

f(x) — f(x})] = |x? — x1¥ = |x — x| x + x!| < 2ajx—x!|
i.e we have [f(x) — f(x!)] < € whenever [x—x!| < E/Za

By choosing & = %a (independent of x') we see that the condition is

satisfied and f(x) = x? is uniformly continuous in the given interval,
y g

Example 2: Show that f(x) = x? is not uniformly continuous in IR

Solution: Let €>0 be given (however small) and x>0 such that x' is less than
any fixed positive number M. Then

f(x) — fxH = x* = x| = Jx = x| [x + x'| <2M [x ~ x/|
Hence, [f(x) — f(x")| < € if [x — x| < Sy,
But if we choose § = 4,,, we see that § is dependent on M and hence on x!

Therefore f(x) = x? is not uniformly continuous on IR

Theorem 1: A uniformly continuous function in an interval is necessarily

continuous in that interval

Proof: Follows from definition of uniform continuity.
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Theorem 2: A function which is contnuous in a closed interval is also
uniformly continuous in that interval

Proof: Follows from definition.

Exercise

1. Define uniform continuity of a function in an interval show that the function
f(x) = x? is uniformly continuous in [-2, 2] (NEHU, 2005)

(Solution: same as example 1)

2. Let f(x) = x* be a function defined in [—a, a]. Show that f is uniformly
continuous in [—a, a] but not in (~oo, o) (NEHU, 2009)

(Solution: same as examples 1, 2)

1
3. Show that f(x) = " is uniformly continuous in the interval [1, 2]

(NEHU, 2007)



Derivative or Differentiation

Introduction

Differentation is about finding the rates of change of one quantity compared
to another i.e when the rate of change is not constant. In other words derivative
is the instantaneous rate of change of a function with respect to one of its
vanables. Denvative or Differentation is equivalent to finding the slope of the
tangent line to the function at a point. In fact the essense of calculus is the
derivative.

Definitions

5.1 Increment

The increment of a vanable in changing from one value to another is the
difference obtained by subtracting the initial value from its findal value. This
increment may be positive or negative according as the vanable in changing
increases or decreases and is denoted by any one of the symbols h, Ax (delta
X) or §x (delta x)

Ifin y = f(x), the independent variable x takes an increament Ax (or h), then
Ay (or k) is the corresponding increment of y.

Le ytAy = f(x+Ax) i.e. Ay = f(x+Ax) — f(x)
or y+k = f(x+h) i.e. k = f(x+h) — f(x)
5.2 Differential Coefficient (or Derivative)

Let y = f(x) be a finite, single valued function defined in any interval of x
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and assume x to have particular value in the interval. Let Ax (or h) be the
increment of x and Ay (or k) by the corresponding increment of y. If the ratio
A%x of these increments tends to a definite finite limit as Ax tends to zero, then
this limit is called the differential coefficient (or derivative) of f{x) (or y) for the

. d d
particular value of x and is denoted by f (x) or a;{f(x)} or ?d% or D {f(x)}

Thus symbolically, the differential coefficient of y = f(x) with respect to x
is

dy _ Ay . f(x + Ax)—f(x)
Px) or o= Jim Zor= fim S —m

or f(x) or ax ~ m

dy lim f(x—}-h}?—f‘(x)

A
Remark: If A—z — 00 or — oo as AX—0, then also we say that the

derivative exists and = +oo or co.

Note: The process of finding the differential coefficient is called
differentiation and we are said to differentiate f(x) or to differentiate f(x) with
respect to X, to emphasis that x is an independent variable.

5.3 Let y=f(x) be a finite real valued function defined in an interval containing
an interor point c. Then

i [O=F© o feth)—f(©)

! 2 if it exists, is called the derivative
—e X—C -0 h

of f(x) at x=c, denoted by f(c) or d%x at x=c. If f(c) exists, we say that

is derivable or differentiable at x=c

) — . f h—f
The number lim M or lim _@j_g_@ if it exists is called the

x-+c+0 X—C h—0"
right-hand derivative of f(x) at x=c denoted by Rf(c)
f(x)—f f h)—f
Similarly, the number [lim -t or lim fe+h) (9 if it exists,
h—c—0 X—C h—0 h

is called the left-hand derivative of f(x) at x=c denoted by L f(c)

Thus for f(c) to exists, R f(c) must be equal to L f(c). If either one fails
to exists or both exists and have different values, then f(c) does not exists.
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5.4 Continuity of a Derivable Function

Theorem: If a function has a finite derivative at a given point, it is continuous
at this point.

or

If f(a) is finite, f(x) must be continuous at x=a

Proof: f(a) = lim

f(a+h)—f(a) .
# ex1sts

fla+h)—f
- lim {f(a+h) - fa)} = lim {ﬁ%? >< h}

= lim
h—0

fla+h)—f(a) .
———— x limh
h h—0
(since both limits exists)
= fi(a) x 0 = 0 (since f(a) is finite)

-, lim f(ah) = f(a)

., f(x) is continuous at x=a

Remark: The converse of the theorem is not necessarily true, that is a
function may be continuous at a point yet not have a derivative at-that point.

For example, consider the function f(x) = |x]

Then f(x) = |x| is continuous at x=0 since for continuity

f(x) - fO) = |x| < €

Whenever x-0| = x| < § and choosing § =€, then conditions of continuity

are satisfied.

1 ,h>0

Byt fOED—£O _ fay _ [h|
h B b |-1,h<0

and hence Rf(0)=1 but Lf(0) =-1
So £/(0) does not exists.
Corollary: If f(x) is discontinuous at x=c, then it can not have a derivative
at that point.
5.5 Differential Coefficients in some standard cases
(1) Differntial Coefficient of x»
Let f(x) = x»
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Then from definition

f _ n _ n
(D)= _ . (xHh) -

h h—0 h
Putting X = x+h i.e. h = X-x then when h—0, X—x

10 = lim

A Xl’l _ n
Hence f(x) = }gljl < X~ nx™ for all values of n
X —X

d
Thus Ei— f(x) :&x“ = f(x) = n x*!

d d 1 d o= M
Cor: w5 1; \/— x o w X T
(ii) Differential Coefficient of e*
Let f(x) = &*
Then from definition
. fx+h)—-f(x) . h-g
fo=fn =5~
. L e —1
= lim e".
h—0 h
e -1

= lim —— =1
e[lmh ]

d
Thus — e* = ¢*
usdxe C

(iii) Differential Coefficient of a*
Let f(x) = a*

Then from definition

f h _f x+h _ %

f(x) = lim fx+h)—-fx) _ lim 2 a
h—0 h h—0 h
h
. a

-a },lﬂ% h

i

a* loga [ lim 2 T = loga]

Thus % a* = a*loga
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(iv) Differential Coefficient of logx
Let f(x) = logx
Then from definition

m f(x+h)—f(x) log(x +h)—logx

P9 = fim -~ i
- 1 ) x+h]
h hl—l»T(} h 08 X

— lim l% 1og[1+3]

h—0 x X

i

1, 1 h
— lim - log(l-l-z) where z = —
X Z—0 zZ X

1 . 1
=— [ 1im log (1+2) =1]

d 1
Thus ™ logx = <

d X — 1 e
Cor: i log} = . log;

(v) Differential Coefficient of Sinx
Let f(x) = Sinx

Then from definition

3 Si o«
fi(x) = lim f(x+h)—f(x) - lim in(x +h)— Sinx
ho0 h h-0 h

zsin[xﬁ-h—x]COS{X—O—th‘x]
= lim 2
h—0 h

2SinE Cos[x +E]
2 2

= lim
h—0 h
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= CosX

h
[Since as h— 0, Cosx being continuous function of x, Cos {X +E] — Cosx

. Sin—
and also lim __2 =1]
h—0 h

2

d
Thus — Sinx = Cosx
dx

(vi) Differential Coefficient of Cosx
Let f(x) = Cosx

Then from definition

h)— —
f(x—&-g f(x) - lim Cos(x +h)—Cosx

F(X) - %111% h—=0 h

= lim
h—0

~—2sin %sin(x + %)
h

h—0

inh
=— lim Slif sinx ()H—%)

= — sinx as in (iv)
(vil) Differential Coefficiant of tanx
Let f(x) = tanx

Then from definition

tan(x +h)—tanx

L fx+h)—f(x) .
f(x) = 1im h = lim h
) 1 |sin(x+h) sinx
= lim — —
-0 h jcos(x+h) cosx
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Siince lim S™P _ | and lim
h-0 |k h—0

d
Thus — tanx = sec?x
dx

X = -
2

. |cosx sin(x+h)—sinxcosx(x +h)
lim
h—0 hcos(x -+h)cosx

) sin(x+h—x)
lim 777 o
n-0 hcos(x+h)cosx

. sinh 1
lim .
h—0  h cos(x +h)cosx

1
cos’ x

X = %(211-1—1)7(

cos (x+h) = cosx

1(2n+1)7r

(viii) Differential Coefficient of cotx

Similar proof as in (vii) above

(ix) Differential Coefficient of secx

Let f(x) = secx
Then from definition

filx) = Em

—0

f(x +h)—f(x)
h

I

= lim

sec(x +h)—secx
h—0 h

1 1
cos(x +h) cosx

1
lim —
-0 h

cosx —cos(x +h)

kg} hecos(x +h)cosx

2sin%sin(x + %)
lim

1—0  hcos{x +h)cosx

. sin%,‘/z/ . h 1
Lim 5 sin(x+17).

1
1.sinx.——5— = tanx secx
cos” X

cos(x +h)coszx

111
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s1i
. . .. h\ _ .
Since {lliré —= EIS sm(x+ A) = sinx

%

and 1‘1113 cos (x+h) = cosx

h
by
h

2

d
Thus —— secx = secx tanx
dx

(x) Differential Coefficientg of cosec x

Similar proof as in (ix) above

5.6 Fundamental Theorems on Differentiation

(In following theorems, the functions f(x), g(x) are assumed to be
continuous and f(x), g/(x) exist)

Theorem 1: The differential cofficient of a constant function is zero.
Proof: Let f(x) = k, where k is a constant for every value of x
Then f(x+h) = k

b —f() _ . k-k _

Now f(x) = %11113 W lim —

. d . d B
le {(fx)} =0 1i.e = k=0
Theorem 2: The differential coefficient of the product of the constant and a

function is equal to the product of the constant and the differential coefficient of
the function.

d d
ie . kf(x)} =k = {(fx)} = k f(x) where k is a constgnt

kf(x+h)—kf(x)
h

d .
Proof: = {kf(x)} = L1£13

e lim TEED =GO
h—0 h

d
=k £(x) =k = {fx))
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Theorem 3: The differential coefficient of the sum (or difference) of two
functions is the sum (or the difference) of their differential coefficients

d d
fe 4 U0 = gx)} = - {0 = g}

Proof: ~- {(x) + g(x)} = lim [focr b +elx +hhﬂ—[f (9 +g00)]

_ f(x+h)—f (x)]+[gx +h)—gx)]
= 11m

h—0 h

- lim f(x-+h)—f(x) + Lim g(x-+h)—g(x)
h—0 h h—0 h

I

d d
5 {00+ o {200}

I

f(x) + g(x)

d
Similarly, - {f(x)} - {0} = f(x) - g(®)
Theorem 4: The differential coefficient of the product of two function = first

function x differential coefficient of the second function + second function x
differential coefficient of the first function.

d d d
Le. ()} {g()} = f(x). {800} + g(x) . ¢ 1)}

= (%) g(x) + gx) f(x)

Proof: % {f0)}. {g)} = lim f(x +h)g(x zh)—f(X)g(x)

- lim f(x+h)g(x+h)—f(x+h)g(x)+f(x+h)gx)-f(x)g(x)

h—0 -
= lim f(x+h)g(x+h)"g(x)+ g(%) f(x+h)—f(x)
h—0 b .

= lim f(x+h) _gix_thF)?@ + lim f(x) &‘_Jf_hl%;fﬂ
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- (9 32 (800} + 85 ()

= f(x) g(x) + g(x) f(x)
Theorem 5: The differential coefficient of the quotient of two functions

(differential coefficient of numerator).denominator —(differential coefficient of deno minator ). numerator

Square of denominator

. d [f(x) £/ —g' (f ,
Le. o {QX_)} - Fe0s) g WI(x) provided g(x)=0

{gOf

f(x+h)  f(x)
d {ﬁﬁ} o B g()

Proof: ax |20 = lim o
g(x)f (x+h)—f(x)g(x+h)
- lim gx +h)g(x)
h—0 h

lim g(x)f (x+h)—g()f(x)+gx)f(x)—f(x)g(x+h)
10 h.g(x +h)g(x)

g (x +h) — ()} —Fx){g(x +h)—g(x)
h

M G et

ﬁ}; . {g(x)f/ x)-fx) g/(x)] (by defn of f(x), g(x)]
g @ -8 (K
{g0}

5.7 Differentiation of a function of a function (Chain Rule)

Let y = f(u) where u = g(x) such that f(u) and g(x) are continuous
functions. Then y is also a continuous function of x,

dy dy du
Then dx du X dx

The above rule can be generalised

i.e. If y = f(u) where u = g(v) and v = h(x)
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hog Gy v
cn dx du.dV'dX and so on.

Cor. _dl,%:l ie. d_y: 1

Cdx ' dy dx d%
y

. d dx .
Provided non of Y or & is zero

dx dy

5.8 Differentiation of Inverse Circular Functions

d 1
N S <
(i) o 6= =, k<1
Proof: Let y = Sin'x

x = Siny
dx
.. . = cosy [By result (v) of 5.5
y ‘

. d
ie 53 = Jl—sin’y = {1-x>

dx 1 1

L — = o = for x=1, or ~1
Cdy Ay N

1

1—x?

d
Thus — (sin”'x) =

i -1 <x <1}

(i) % (coslx)=—\/1—£—x—2— -1 <x <1}

Proof: Same as proof of (i)
(ll) i -1 e ———
: dx (tan™"x) = 1+ x?

Proof: Let y = tan"! x then x = tany

" gi = sec?y [by result (vii) of 5.5]
Y

115
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i.e%=l+tan2y=1+x2
dy

dy 1 1

E dx d%y B 14+ %’

Thus 4 (tan' x) =
dy

1+x°

1

d
1 —_— ~1 = _ ——
(iv) (cot™! x) s

dx

Proof: Same as proof of (iii)

d
) g (ec X = = 5 (x> 1}

Proof: Let y = sec”'x. Then x = secy

d
e secy tany [by result (ix) of 5.5]
. dX 2
ie d_y = secy fsec’ y—1
.odx
1.e &y X x> -1

dy 1 1

R = e x=1, or -1

Thus 4 (secx) =
dx

1
: >
xm s x| > 13}

(vii) % (cosec™'x) = — x—\/—x—t:_-—l ; {jx| > 1}

Proof: Same as proof of (v)
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5.8 Logarithmic Differentiation

Logarithmic Differentiation is used when we have functions raised to the

power which is also a function or if we have the product of a number of functions.

In such a situation it is convenient to take the logarithm of the expression and then
differentiate it.

()

(D)

Let y = {f(x)}&®
Then log y = log {f(x)}s®
i.e logy = g(x) log {f(x)} [."loga™ = m loga]

Differentiating both sides with respect to x

1 1
S o T Fy TO0 T g0 log )

[using result (iv) of 5.5; theorem 4 of 5.6 and chain rule]

f/(x) ;
Lody 27
A y g(x) £x) +g (%) Ing(X)}

i /
Thus % {f(x) 150 = {f(x)}g(x) {g(x) f((f))Jrg ) logf(x)}

Lety = f,(x) x £,(X) x....x f (x)

Then log y = log {f(x) x f(xX) x....x f(x)}

i.e logy = log f (x) + log £,(x) +....+ log f (x)}
['.-logab = loga + logb]

Differentiating both sides w.r.f x

1 4 l 1 y

;&:%xfl(x)x%xfz(x)+ ....... +

[Using result (iv) of 5.5, and Chain Rule]

Ly B H® £1(x)
" )R £X) £ (%)
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+ 2. ) . ) . FK)e E(X) oo

+ ). ) L X ()
Thus di {£,(%) x (%) x £(%) x...xE (%)}
X

= f/(x). [,X)..f(x) + £(x). {,(x) . f,(x)....f (x)

5.9 Differentiation of Implicit Function

If f(x, y) = ¢ be a function of x and y defined in such a way that y is not
expressible directly in terms of x, then in such cases, the function is called an
implicit function. In differentiating such functions, we differentiate both sides of
the equation w.r.t X, regarding y as an unknown function of x having a derivative
dy/dx.

i.e keeping in mind that

d dy d dy
2= P . S S, JC Al
I 2y o ax Y 3y i and so on.

5.10 Differentiation of Parametric Equations

Sometimes x and y are expressed as g functions of a third variable known

d
as a ‘parameter’. In such cases to find a% it is not necessary to eliminate the

parameter and express y in terms of x. We may proceed as follows:

Let x = ¢(t) and y = ¢ (1)

dy dy dt dy /dx [%IO]
dx  dt dx  dt/ dt \dt

Hlustrative Examples
Example 1: Find from first principle, the derivative of Jx (x > 0)
Solution: Let f(x) = Vx

f(x) = lim

f(x+h)—f(x) -
o h (by definition)
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= lim
h—0

N
h

y Wx+h—Vx| Vxh+x]
s h[yx+h-+x]

(o h) ()
20 h[yx+h+x]

Xx+h—x

= lim ——————

0 h[Jx+h Vx|

1

, h
S Wkahve] 2

Example 2: Find, from first principle, the differential coefficient of tan-'x.

Selution: Let tan'x = y and tan™! (x+h) = y+k
Then as h—0, k—0
Also x = tany, x+h = tan (y+k)

d . tan”'(x+h)—tan"' x
- — (t -1 = lim
S (tan™'x) = M 0

. y+k—y
=lim
k—0 tan(y+k)—tany

. k
E—I.% tan(y+k)—tany

i k
P sin(y+k) siny
cos(y+k) cosy

— lim k cosycos(y+k)
k=0 cosy sin(y+k) —siny cos(y +k)
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k cosycos(y+k)
im ——
=0 sin[(y+k)—y]

— lim k cosycos(y+k)

k=0 sink
= lim +
o Sk oS (yt+k) cosy

| 1 1

= v = = =
COSY = sec’y ~ l+tan’y  1+x°

Example 3: A function is defined in the following way:
f(x) = x|
i.e f(x) =x, when x>0
=0, when x=0
=X, when x < 0

Show that f(0) does not exists.

. f(0+h)—f£(0 . f(h
Solution: '(0) = %}{I(l) —(——+—h)——(~) = lim fth)

h—0 h
i TR B Lo —h
Now Jim S = i = 1 and fim =2 = lim = -1

Since Right hand derivative is not equal to the left hand derivative f'(0) does
not exists.

Example 4: A function f(x) is defined as follows
o1
f(x) = x sin — , x=0
X
f0)=0

Show that f(0) does not exists.

P _ o £(0+h)—£(0)
Solution: f(0) = }gr(l) —

= lim @
h—0 h
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hsin i
lim
h—0 h

which does not exists

lim ]
Hm - sin b

f(0) does not exists

Example 5: Find the differential coefficient of sin? (log secx)
Solution: Let y = [Sin (log secx)]? = u?

Where u = sin (log secx) = sinv

Where v = log secx = log w

Where w = secx

dy dy du dv dw

“ g dudv dw dx

1
= 2u. coSV —. secx tanx
W

= 2 sin (log secx) cos (log secx) tanx
= gin (2log secx) tanx
Example 6: Differentiate (secx)®™
Solution: Let y = (secx)™™
logy = tany log secx
Differentiating both sides with respect to x

! dy 1 2
— == =tanx —— secxtanx + log secx sec’x
y dx secx
= tan’x + sec’x log secx
. jx—y= (secx)™* [tan’x + sec’x log secx]

A (x-Dx-2)

E . = /———

xample 7: Find a ify (x—3)(x—4)
Solution: Taking logarthim of both sides

(x—l)(x~2)]%

loy y = log {(X—3)(X—4)
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ielogy= % llog{(x-1) (x-2)} — log {(x-3) (x-4)}]

ielogy= % [log{(x—1) + log (x~2) — log (x-3) — log (x—4)]

Differentiating both sides with respect to x

ll:ll+l_l-1
y  dx 21x~1 x-2 x-3 x-4

o

2x% —10x +11
T T x-DE-2)(x—3)(x—4)

dy _ 2% —10x +11

Td o 2 =3 (- 4"

Example 8: Find %i if x=a(p—sing), y=a (1 + cosg)
y

Soluti o _ 1 & i
olution: o - a (1-cos@), m =a (-sinf)
. Cay
Cdyay & _asne  Bi)peos)
“dx do'de T all-cos®) T 2sin’ 9

. a;=-— cot A

d s 2
Example 9: If siny = x sin (aty), then prove that = w
dx sina

Solution: Given siny = x sin (a+y)

siny
=X sin(a+y)
Differentiating both sides w.r.fto y

dx  sin(a+y)cosy—sinycos(a-+y)
dy - sin® (a+y)
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. dx _ sin@ty-y)
Le Ey_— sin’ (a +y)
dx sina
Cdy  sin’(aty)
dy sin’(a+y)

Hence ——= -
dx sina

Example 10: using the definition of derivative, obtain the derivative of sin’x
(NEHU 2013)
Solution: Here f(x) = sin’x

f(x +h)—f(x)
h

s P = lim

lim sin®(x +h)—sin® x
h—0 h

- lim [sin (x +h)—sinx] [sin(x +h)+sinx]
h—0 h

x+h+x . x+h—-x . . x+h+x X+h—x
sin . cos

. 2¢os 2sin
= %111’(1) 2 2 2 2
B h
2x+h . h . 2x+h h
2cos sin— ., 2sin———¢os —
= lim 2 2 2
h—0 h
=4 lim 2x+h lim sin% im sin 2FD lim cos —
Jm cos > m h . lhlir(]} sin hli% 2

sin %

=4 % COSX X }gr% }%-2 .sin xx1

4

= 7 X cosx x1xsinx = 2sinx cosx = sin 2x
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d
Example 11: Find EXX if X = yx (NEHU 2006)

Solution: Given x¥ = y*
Taking logarithm of both sides we get
ylogx = xlogy [.-loga® = bloga]

Differentiating both sides w.r.t x we get

1 dy 1 dy
— + - = +xT —
Y5 logx i logx Xy i
dy X y
— |logx——| = A
or dx y] logy "
dy |ylogx—x xlogy—y}
or —— =
dx y X
dy y xlogy—vy
or 07— == |
dx x |vlogx —x

1
o(x)’
—0'(x)
lo(x)]

Example 12: If f(x) = &(x) = 0, then using the definition of derivatives,

prove that fi(x) = (NEHU 2010)

f(x +h)~f

Solution: f(x) = lim f&x+h)~f(x)
h—0 h

1 1

= lim 2GR o)
h—0 h

() —o(x +h)
i ho(x) 6(x +h)

~[¢x+h) - k)

- lim h

P20 d(x) d(x+h)
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 (x+h)—6(x)
hm b o ®

lim(x) o(x+h) [o(0)f

Exercise
Find the differential coefficients of the following:
Lo (i) { o0} () (* + 5)7 (iii) x*+a> (V) (&
(v) \/@ (vi) tan’x (vii) sec’x (viii) (sin'x)? (ix) (tan'x)?
2. (i) et (i) e (iii) e™ T (iv) e (v) ¥ (vi) e
3. (D) a®™ (i) 77 (i) 10"
4. (1) log ¢ (x) (ii) log sinx (iii) log cosx (iv) log (x+a)

(v) log Vx (vi) log (ax? + bx + ¢) (vii) log (logx)
(ix) 10z (x) log tan~'x (xi) log (secx + tanx)

I+x
1—-x

(xii) log® (xiif) log (Vx—a+vx—b) (xiv) %log
5. () sin o(x) (ii) cos ¢(x) (iii) tan ¢ (x) (iv) cosec & (x) (V) sec ¢ (x) (vi)

cot &(x) (vii) cos (ax+b) (viii) cosec’® (ix) sin2x cosx
(x) cos2x cos3x (xi) sin X’ (xii) e™ sinbx (xiii) ¢* cosbx

6. (i) sin™ o(x) (i) tan”' (x) (iii) sin”! x? (iv) tan"'vx

(v) sin ;(VI) sec™! x* (vii) cot™ (e¥) (viii) sec™ (tanx)

(ix) tan! (secx) (x) sin”' (3x — 4x%) (xi) sec (tan"'x)

2

. . 1-x"
(xii) tan (sin™'x) (xiii) cos™ Trx (xiv) sin™ T x

2

2

1—3x?

(xvii) tan™!

2x
(xv) tan™! 5 (xvi) tan™
I-x x"—1
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10.

11.
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(i) cos {\/1+x2} (ii) georx (iii) e VR (iy) e(sin"x)z

(v) Jlogsinx (vi) cos {2 sin™' cosx} (vii) sin® (logx?)
() x* (id) X" (iii) a* (iv) e (v) (sin 0™ (vi) x™
(vii) (sin)e* (viii) (sinx)** + (cosx)Fi™

(ix) (tanx)=™ + (cotx)*™ (x) x*’

(i) (1—x) (1-2x) (1-3x) (1-4x) (i) Yx(x+D(Ex+2)

% o 21

d
Find -d% in the following cases:
() 3x* - Xy +2y =0 (D x* + X%y’ +y* =0
(iil) x* + y* = 3axy (iv) X +y% =/ (v) x =y log xy

(vi) y = x¥ (vii) x¥ = y* (viii) X.y* = 1 (ix) e¥ — 4xy = 2
(x) log (xy) = x* + ¥

oy
Find —— when :
dx
(i) x = acosd, y =b sind
(i) x = a cos’g, y = b sin® ¢
(iii) x = at’, y = 2at

. 1 .

(iv) x = a (cost + log tan Et)’ y = a sint
(v) x = a (cost + tsint), y = a (sint — tcost)
(vi) x = 2a sin’t cos 2t, y = 2a sin’t sin2t

3at B 3at
ey T 1+ p

(vii) x =

U S
(viii) tany = g SInx = 0
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1

sin”' x —cos™' x dy . .
12. Ify=c¢e and z =¢ , then show that —(% is independent of x.
13. Differentiate the left side functions with respect to the right side ones
(i) x* w.r.t X2 (ii) secx w.r.t tanx (iii) logj, w.r.t x?

2

(iv) tan"'x w.r.t x* (v) cos™!

2

w.r.t tan™
_ —X

1+ x*
- sin™' x 111
(vi) x w.r.t sin™'x

5.11. Geometrical Significance of derivative and its sign.

Let P(x, y) be any point on the curve y=f(x) and Q(x + ax, y + ay) be a
negighbouring point of P. Let TPR be a tangent at P making an angle ¢ with the
positive direction of x-axis. Let PQ be a chord joining P and Q and making an
angle ¢ with the positive direction of X-axis

Equation of the line PQ is
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A
But A—)}: = tang, the slope of the line PQ

Now, if Q approaches P along the curve indefinitely, Closely Ax —0 and
the chord PQ tends to a definite limiting position TPR which is the tangent to the

curve at P; an as PQ tends to TPR, g— ¢

4y _d ’

Also as Ax —0, lim = gz from definition

? Ax—0 AX

d ..o d .
Hence tand = i Thus the derivative ﬁ for any value of x, if exists

represents the trigonomeirical tangent of the angle of inclination (kown as slope
or gradient) of the tangent line at the corresponding point P on the curve y=f(x)

5.12Signs of derivative
. d . . . .
1 If EZ— (= tand) > 0, ¢ is acute and at that point y increases with x.
.. d . .
G If % (= tand) < 0, ¢ is obtuse and at that point y decreases when
X incrreases or vice versa

d .. .
(i) If Eii (= tand) < 0, the tangent line is parallel to x-axix

7T 0 N
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Hlustrative Example

Example 1: Find the points on the curve y = 2x* — 3x + 5 where the tangent
is parallel to x-axis (NEHU, 2003)

Solution: Since the tangent is parallel to x-axis

dy

dx 0

d
. a 3 _
Le 2x*-3x+5)=0

e 6x2-3=0

1 1
=3 (2x*-1) = 2x X'=S =X NG

Putting x = ijl'—z_ iny=2x*-3x+5 we get

—

TR S

1 3 1 3
L€y \/E \/5 or y \/-2‘ \/5
, V242
Ley= \/5
. _ [y L 522
Hence, the tangent is parallel to x axis at the point NN/

x(x* -1
Example 2: Determine the slope of the tangent to the curve'y = iz " ) at the

origin, (NEHU 2004)

.. d
Solution: The slope of the tangent to the curve is given by :15

x(x2—1>

Now y =
y x*+1
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_ (x2 -H) (3)(2 -—1)—.x(x2 —1).2x

R
" dx (x2+1)2

dy  3x'—x?43x7 —1-2x" +2x°
e~ = 5
dx (x* +1)

i

Cody x+axi—d
le == —————
dx (x —1—1)

dy
dx

=-1

(x,y)=(0,0)

At the origin (0, 0)

Example 3: Find the points on the curve y = 2x3 — 3x2 — 12x + 20 where the

tangents are parallel to X-axis.

d
Solution: Y = ~— (2x*-3x2—12x+20) = 6x°—6x-12
dx dx

Since the tangents are parallel to X axis

Y g mbx—6x-12=0
dx

Toxt-x-2=0
= (x=-2) x+1) =0
=x=-1,2

Putting the values of x = -1, 2 in y = 2x*-3x*-12x+20

We get y = 2(-1)*-3(=1)>12(-1)+20
or y = 2(2)° — 3(2) -12(2)+20
Le y=27,-15

(NEHU, 2006)

The tangents are parallel to X axis at the point (-1, 27) and (2, —15)



Applications of Derivative

6.1 Derivative as a Rate Measurer
Let y = f(x)

d . .
Then d—)}: denotes the rate of change of y w.r.t X and its value at x=a is

dy
denoted by =

=a

Illustrative Examples

Example 1: Find the rate of change of the area of a circle with respect to its
radius r when r = 6cm

Solution: Let A be the area of the circle of radius r. Then

dA d,
A=7? = Er—za;(ﬁr >:27rr

dA
T = 271x6 = 127 cm¥/cm
r r=6cm

Hence the area is changing at the rateof 127 cm*/cm

Example 2: If the area of a circle increases at a uniform rate, show that the rate

of increase of the perimeter varies inversely as the radius.
(NEHU 2008, 2013)
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Selution: Let A be the area at any time t, P the perimeter and r the radius of the
circle

Then A = wr?; P = 27r

PP =dni?= 4mA

Differentiating both sides w.r.t t, we have

dp dA

et S P el
SUEFTER

dp _drdA 1dA

i€ 7=

a P dt rdt

le 57 [ e is constant]

Hence the perimeter varies inversely as the ractius.

Example 3: A balloon which always remains spherical has a variable radius. Find

the rate at which its volume is increasing with the radius, when the radius, is 10
cm. (NEHU 2005)
Solution: Let V be the volume of the balloon at any instant of time t, and r its

radius

4
Then V = gﬂr

Differentiating both sides w.r.t r we have

&4l
ar 300 @

dv
when r = 10 cm,a;=4~n><02=4007r

Hence the volume is increasing at the rate of 400mcm? per sec.

Example 4: The area of an expanding rectangle is increasing at the rate of 48
cm?/sec. The length of the retangle is always equal to the square of the breadth.

At what rate the length is increasing at the instant when the breadth i5 4.5 c¢m.
(NEHU 2008)

Solution: Let A be the area of the rectangle at any instant of time ‘t’ and 7 the
length and b the breadth of the rectangle.

Then A = Ixb ......... ()
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and [ = b2 ......... 2)
A= LI ... (3)
Given & - 48
wven dt =

Differentiating (3) w.r.t t we have
dA 3 dl
a =2V @

) 3 dl
ie 48—2ﬁ 7

. dl
ie 32= 7
Now when b = 4.5,/ = (4.5 = 20.25

dl 32 32 32 320 64

. E-\ﬁ

J2025 T 45 45 9

64
Hence the length in increasing at the rate of ) cm/sec

Example 5: The volume of a right circular cone remains constant. If the radius
of the base is increasing at the rate of 3 cm per second, then how fast is the
altitude changing when the altitude is 8cm and radius 6 cm. (NEHU, 2014)

Solution: Let V be the volume, h the altitude and r the radius of the base of the
cone at any instant of time t.

1, .
Now V = 37! h = constant = k .......... @
dr i h| \L
Also — =3 ...
so m 3 (i)
from (i) h = ~3£2 r
T

Differentiating both sides w.r.t t we have

EREETRY
dt T dt

I,2
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dt ] dt
E}l 3 [——2~]><3
Le & 3 by (ii)
Whenpog S 18 1k
mr=0 g x 216 12%

k
Hence altitude decreases at the rate of o cm/sec

Example 6: A store is dropped into a quiet lake and the waves move in circles.
If the radius of a circular wave increases at the rate of 4 cm/sec, find the rate
of increase in its area at the instant when its radius is 10 c¢m.

Solution: Let r be the radius and A the area if the circle at any instant t

N 1 L 4 i
ow given - =4 ... (1)
Then A = 72 = — :2’]’“’%

dA .
= — =2xr4 by (
5 2 y (1)

dA
ie T &nr
da
When r = 10, = (8x)(10) =80~

dt
Hence the area is increasing at the rate of 80w cm?¥sec

Example 7: The volume of a spherical ballon is increasing at the rate of 20 cm?*/

sec. Find the rate of change of its surface area at the instant when its radius is
8 cm.

Solution: Let V be the volume. S the surface and r the radius of the ballon at
any instant of time t.

4
Then V = gﬂrz,
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dv
Given that m =20 ... 2)
e = [iﬂf] =20
e 37 |3 =
e o 3r? dr =20
e 3m3rt o =
L
Le 0 T R e 3

ds dr
= 2 o~ =4q 2r —
Now S = 4=xr :>dt T &

E~8'trr > —ﬂ by (3
:>dt ’ 2 r Y()

T

Wh =8 b_20_ 5
MITTS g T T
Hence the surface area is increasing at the rate of 5 cm?/sec

Example 8: A 5m ladder is leaning against a wall. The botton of the ladder is
pulled along the ground away from the wall at the rate of 2m/sec. How fast is

its height on the wall decreasing. When the foot of the ladder is 4 cm away from
the wall?

Solution; Let AB be the position of the ladder at any instant of time ‘t” and OB
is the wall such that OA =x and OB =y

X
=2 e 1)

Given that AB = 5, m

Now x> + y? =52 = y? =25 - x?

B
R N LT
TR dt< x’)
5 EZ__ fi_)ﬁ y 5m
Le 2y "4 dt
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Now when x =4,y = \/25_4> =3

8
Hence the height of the ladder on the wall is dereasing at the rate of 3 cn/ .

s€C

Example 9: A particle moves along the curve 6y = x*+2. Find the point on the
curve at which the y cordinate is changing 8 times as fast as the x-coordinate

Solution: Let (x, y) be the position of the particle on the curve at any instant ‘t’.

Gi o 8 & 1
iven om =8 (D
Given curve is 6y = x> + 2 ..., (2)

Differentiating both sides w.r.t t we have

dy _ .., &
6dt~3X dt
i [8%}—3 J
e 6 q) =3x m vy (1)

led8=3x2=x*=16iex=% 4

. . 31
Putting x = £ 4 in (2) we get y = 11, -3

Hence the required points are (4, 11) and (-4, —%)

Example 10: A man 160cm tall, walks away from a source of light situated at
the top of a pole 6m high, at the rate 1.1 m/sec. How fast is the length of his
shadow increasing when he is 1m away from the pole.

Solution: Let MN be the position of the man and MS be the length of his shadow
at any instant ‘t’. Let OM =x, MS =y

. dx
Given that i 1.1 ... (D)

Now from similar A’s POS, NMS we have
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6.2

PO _0S _ 6 i
MN MS 1.6
N
i.ex+y=li 6m
y 4
160m
Ledx +y=15y =x= —y
© X My —°
&gy
dt 4 dt
11 dy
161.1—2 "
dy  4xl.1
T TR

Hence the shadow increases at the rate of 0.4 m/sec
Errors and Approximations

f(x+Ax)—f(x) _

Let y = f(x) then Al)i(ffo Ax

f(x)

" T+ Ax) ) fi(x) + €, where € =0 as Ax —0
Ax

= f(x + Ax) - f(x) = Ax f(x) + €. Ax

= f(x + Ax) - f(x) = Ax f(x) (approximately)

S+ Ax) = f(x) + Ax f(x) (approximately)

or Ay = Ax f(x) (approximately) ['.-f(x + Ax) — f(x) = Ay]

Thus if Ax is an error in x, then the corresponding error in y is Ay. These

small values Ax, Ay are called differentials.

Absolute Error: Ax is called an absolute error in x

. Ax .
Relative Error: — is called the relative error
X

A
Percentage Error: 224100 is called the percentage error.
X
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NMustrative Examples

2

Example 1: Find dx, Ay, Ay—-dy, given thaty = x74—37{ ,x=2and Ax=0.5

Solution: dx = Ax = 0.5
Ay = f(x + Ax) — {(x)

=(y+tay)-y
2 2
_ {95—>+3x25}~{2—+3x2}
2 2
=2.625

d
dy = E% dx = (x + 3) dx = (2+3)x0.5 = 2.5

S Ay - dy =2.625-2.5=10.125
Example 2: Using differentials, find the approximate value of (127 )% upto three
places of decimals
Selution: Let (1274 = (125+2)% = (x+Ax) (1)
Where x = 125, Ax =2
4

Consider f(x) = x| then

fix + Ax) = (x+Ax)5 = (127)5 by (1)

Now f(x) = !
ow (x)—3x%

Hence using f(x + Ax) = Axf(x) + f(x) we get

[

v
K+ (125
3(125)% (125)

(127)% =2

1 v
2x——— (s
P )
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E
75

1

377

7 5.026 (approximately)

i

Example 3: Given that log®, = 0.4343, find the approximate value of log;"

10

(NEHU 2002)
Solution: Let log;' = log, (10 + 0.1)

10

=log,, (X + AX) ........ )
Where x = 10 and Ax = 0.1
Consider f(x) = log x, then

f(x + Ax) = log,, (x + AX) = log}y' by (1)

10

1 € X X
Now f(x) = ;Xlog10 [ log), =log’ x loglzo]

Hence using f(x + Ax) = f(x) + Ax f(x) (approx) we get

|

1 ‘
log!%! = logg+ (O.I)XEX log,

Il

1 +0.01x0.4343
= 1.004343 (approximately)

Hence log),' = 1.004343

Example 4: If the radius of a circle increases from 5 cm to 5.1 c¢m, find the
increase in area.

Selution: Area of the circle of radius r is given by
A = mr?

dA
Now A = 11’ = r = 27r

dA
Whenr=5, — = 10w cm?
dr
Also Ar=(5.1 -5)cm =0.1 cm
A 2
= - Aar= (10mx0.1)cm? = 7 cm
Hence increase in area is © cm?
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Example 5. The time T of oscellation of a simple Pendulum of length / is given

/
by T = 27‘\/2 . Find the percentage error in T, corresponding to an error of 2%

in the value of /.

/
Solution: T = 27‘\/;

1 1
= log T = log2 + log™ + > log/ - > log g

o 1dr _1
T dl 2
1 dr
—Sral= o al

AT 1 (Al 1 Al 2
= T x100 2[1 ] 2><2 1 [ 7~ 100

-, error in T is 1% corresponding to an error of 2% in /.

Example 6. Find the approximate value of log}y* by the use of differential, given

that log?, = 0.6021, logt, = 0.4343 (NEHU 2005)
Solution : Same as example 3.

Example 7. Use differential to Compute the approximate value of log!*'. Given
that log"® = 2303 (NEHU 2001)

Solution : Same as example 3.

Example 8. Find the approximate value of Sin62° by the method of differentials.
Given that Sin 60° = 0.86603 and 1° = 0.0175 radiaus. (NEHU 2018)

Solution : Let Sin 62° = Sin (60° + 2%) = Sin(x+Aax) ... (H
where x = 60° and Ax = 2°

. Ax

. - Qiny — Sin 2%

Consider f(x) = Sinx n 180

f(x + ax) = Sin (x + Ax) = Sin62° by (1)
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T X
Now f(x) = @Cos 1s0

Hence using f(x + ax) = f(x) + f(x) (approx) we get
Sin62° = Sin60° + 2° x Cos60°

1
=0.86603 +2 x 0.0175 x 5

= 0.883853
Hence sin62° = 0.883853 (approx)

6.3. Determination of Roots
Newton’s Method of approximating a root

Newton’s method of approximations depends on having at our disposal some
device by which we can locate a root by trial. The method of trial depends on
the following property of Continuty :

If a continuous function f(x) changes its signs in the interval [a, b] and if
its derivative does not change sign, then the equation f(x) = 0 has one and only
one root between a and b.

YA

P (a, f(a))

4 >

a, —>

If the graph of y = f(x) cuts x-axis at different points, the intercepts on x-
axis are the roots of the equation f(x) = 0

Consider the curve y = f(x) represented by the figure.

Clearly x = r, the intercept of the curve on x-axis, is a root of f(x) = 0. The
exact determination of the value of r may not always be possible, specially when
ris an irrational number.

Suppose by trial, we obtain an approximate value of the root r of f(x) as
indicated in the figure.
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If a be sufficiently close to r, the tangent ling PT drawn at the point (a, f(a))
will have an x-intercept a, (say). this velue a, is in general more approximate to
r than a. The equation of the tangent line PT whose slope is f(a) is .

y — f(a) = f(a)(x~a)
Its x intercept a, which is obtained by putting y = 0 and solving for x is
—-a _ f(a) A
a=a- S (A)]
Having found a,, by (A) we may substitute a, for a in the RHS of (A) and
obtain
_ f(a)
a,=a, -~ f(a)

Then a, is a better approximation to the exact root r. Newton’s method of
approximation of the root of f(x) = 0 consists in using the formula (A) repeatedly.

Iustrative Examples

Example 1: Find the value of the real roots of the equation f(x) = x*- 5x ~ 5
= ( Correct ot 4 decimal places by using Newton’s formula for approximation.

Solution: Since 3 can be taken as an approximate root
We substitute a = 3 in (A)
3 — _—
Q) _, 3-53-5

a, =3~ 3y TT332_5 2.7 approx

We now put a = 2.7 in (A) for better approximation

£Q7) _, ., 1183

_07 7118563 .
2 727 16.87 approx
. £(2.63
Similarly a, = 2.63 — f/(( 5 63)) = 2.63 - 0.00263
= 2.62737

= 2.6274 approx
Example 2. Approximate the roots of 2Cosx — x* = 0
Solution : Draw the graph of y = 2cosx and y = x2

The two curves will be found to intersect in two points whose absussae are
approximately 1 and — 1
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put a =1 in (A) then

- 2(0.5403) -1
a, = 1- 22‘30,51 L1y (05403)-1 _, o)
—2sin1-2 2(0.8415)+2

Now put a = 1.02 in (A) we get

2c0s(1.02)—(1.02)’

8, =102 - ThGn(e2)—2(1.02)
.02+ 22002 0217
o 37442

thus the roots are 1.0217 and — 1.0217 upto 4 decimal places

[Note that in an even function if r is one root then — r is the other]

Exercises

1. A point moves on the parabola 3y = x? in such a way that when x = 3. the
abscissa is increasing at the rate of 3 cm per second. At what rate is the
ordinate increasing at that point?

2. If the rate of change of y with respect ot x is 5 and x is changing at 3 units
per second, how fast is y changing?

3. The radius of a sphere increases at the rate of 7 cm per second. Find the
rate at which the volume of the sphere increases.

4. The side of a square is increasing at hte rate of 0.2 cm per second. Find
the rate of increase of the perimeter of the square.

5. A circular plate of metal expands by heat so that its radius increases at the
rate of 0.25 cm per second. Find the rate at which the surface area is
increasing when the radius is 7 cm.

6.  The side of a square sheet of metal is increasing at 3 cm per minute. At what
rate is the area increasing when the side is 10 cm long?

7. The radius of a circular soap bubble is increasing at the rate of 0.2 cm per
second. Find the rate of increase of its surface area when the radius is 7
cm.

8. The radius of an air bubble is increasing at the rate of 0.5 cm per second.
At what rate is the volume of the bubble increasing when the radius is 1
cm?

9. The volume of a spherical balloon is increasing at the rate of 25. cubic
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10.

I1.

12.

13.

14.

15.

16.

17.
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centimetres per second. Find the rate of change of its surface at the instant
when its radius is 5 cm.

A balloon which always remains spherical is being inflated by pumping in
900 cubic centimetres of gas per second. Find the rate at which the radius
of the balloon is increasing, when the radius is 15 cm.

A stone is dropped into a quiet lake and waves move in circles at a speed
of 3.5 cm per second. At the instant when the radius of the circular wave
is 7.5 cm, how fast is the enclosed area increasing? (Take © = 22/7)

A 2 m tall man walks at a uniform speed of 5 km per hour away from a 6
m high lamp post. Find the rate at which the length of his shadow increases.

An inverted cone has a depth of 40 cm and a base of radius 5 cm. Water
is pouned into it at the rate of 1.5 cubic centimetres per minute. Find the
rate at which the level of the water in the cone, is rising when the depth is
4 cm.

A 13 m long ladder is leaning against a wall. the bottom of the ladder is
pulled along the ground away from the wall at the rate of 2m per second.
How fast is its height on the wall decreasing when the foot of the ladder is

S5m away from the wall? B

A man is moving away from a 40m high
tower at a speed of 2m per second. Find the
rate at which the angle of elevation of the top
of the tower is changing when he is at a
distance of 30m from the foot of the tower.
Assume that the eye level of the man is 1.6m 9

from the ground. A " E

40m

An edge of a variable cube is increasing at the rate of 5¢cm per second. How
fast is the volume of the cube increasing when the edge is 10cm long?

Using differentials, find the approximate values of the following:

M 37 (D) 329 (i) 27 (v) Jo24

1
V) Joag (Vi) 415 (vil) 027

(viii) log!*” given that log" = 2.3026

(ix) logjy", it being given that log; = 0.6021 and log®, = 0.4343.
(x) cos 617, it being given that sin 60° = 0.86603 and 1° = 0.01745 radian.
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18. If the length of a simple pendulum is decreased by 2%, find the percentage

: /
decrease in its period T, where T = Zﬂ\/%

19. Using Newton’s formula for approximation, calculated the root of the
following:

(i) cosx —x =0 (i) cosx +x=0 (ii>i) 3sinx —x =0
iV er+x-3=0")x*+2x-8=0(vi)x*-40=0

20. One root of the equation x* + 10x — 100 = 0 is approximately equal to 3.
Find its roots correct to two decimal places.
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d
7.1 The derivative of the function f(x) denoted by E)}:’ .Y, Y, f(x) or D f(x)

is in general a function of x. This derivative may again be a derivable
function of x, which is called a second derivative (or second differential

cofficient) of f(x) denoted by oy ¥, ¥, £(x) or D? f(x)

dx

Similarly the second derivative, may again be differentiable to give the
third derivative (or third differential coefficient) and so on.

The nth derivatives are denoted by the symbols y_, y®, f (x), D" f{x) etc.

In general although successive derivatives can be found one by one as far
as necessary, it is not always possibe to obtain an expression of the nth
derivative. In some cases, however, it is possible by careful inspection of the
first few derivatives to “infer a law of formation” which will permit an explicit
formula to be written for the nth derivative. Strictly speaking, the nth derivative
are to be established generally by the method of induction.

7.2 The nth derviatives of some special function:
(i) y=x" where n is a positive integer
By actual differentiation

y, = nx™, y, = n(n-Dx"2 y, = n(n-1) (n-2) x*
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Proceeding in a similar manner we have
y. = n(n-1) (n-2) (n-3)...... {[n—(r-1)]}x"* (r<n)
y, = n(n-1) (n-2) (n-3).....3.2.1 = n!

ie D" (x) = n!
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Cor: Since y_= n! which is a constant , ,....are all zeroes in this case
n n+l n+2

(i)

y = (ax + b)™ where m is any number

By actual differentiation

y, =ma (ax + b)™', y =m (m~1) a?(ax + b)™?

y, = m (m-1) (m-2) a* (ax + b)™3

Proceeding in a similar manner we have

y, = m(m-1) (m-2)......(m—(n—-1)) a" (ax+b)™™

D = (ax+b)" = m(m—1) (m-2)......(m-n+1) a* (ax+b)™

Note: If m is a positive integer greater than n

m!

Then since m(m-) (m-2)....(m-n+1) = (m—n)!

D" (ax + b)" = a" (ax + b)m=

(m—n)!

Note: If m is a positive integer less than n.

(iii)

Then D" (ax + b)* = 0

When m=n D" (ax + b)" = a”.n!

y =™

By actual differentiation

y, = ae™, y, = a?e™, y, = a3 et
Proceeding in a similar manner we have
y = ane™

Dn (eax) - an eax

Cor: D" (e¥) = ¢*

Cor: D" (a¥) = a* (log;‘ )n

(iv) y=

1
X+a
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By actual differentiation

y, =-1 (xta)? y, = (-1) (-2) (x+a)” = (-1)* 2! (x+a)”
Y, = (1) (-2) (-3) (x+a)*= (-1)’ 3! (x+a)™
Proceeding in a similar manner we have

y, = (=1)" n! (x+a)y ™"

1 (—1)"n!
D [x+a] T (x+a)!

Cor:

i 1 (-D"a"(m+n-1)!
D" lax+ 0" = m—D! @x b

(v) 'y = log (x+a)
By actual differentiation

i = y, =-1 (xta)? y, = (1) (-2) (x+a)”

x+a’
= (-1)* 2! (x+a)”?

Hence using (iv) above we have

D (log (x+a)) = (-1)™' (n-1)! (x+a)™

=D -t
T (x+a)y

D" (n—Dta"

Cor: D, {log (ax + b)} = (ax + b’

(vi) y =sin (ax + b)
By actual differentiation

y, =acos (ax + b) = a sin {g+(ax+b)}

J

T
y, = —a? sin (ax + b) = a’ sin {2—2—+(ax+b)}

™
y, = —a’ cos (ax + b) = a* sin {35+(3X+b)}
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Proceeding in a similar manner we have

y =a" sin {n§+(ax —l—b)}

Iy
Therefore Dn {sin(ax + b)} = a" sin {n5+(ax+b)}

(vii)) y = cos (ax + b)
By actual differentiation

T
y, = —a sin (ax + b) = a cos ‘[5+(ax+b)}

T
y, = —a’ cos (ax + b) = a cos {25“‘(2"“”’)}

™
y3 = 3’ sin (ax + b) = a3 cos {35+(3X+b)}

Proceeding in a similar manner we have

yn =" .COS {n%+(ax+b)}

D" (cos (ax + b)) = a" cos {ng+(ax+b)}

Hlustrative Examples
Example 1: If y = sin’x, find y_

Solution: We know that sin 3x = 3sinx — 4sin’x

1
y = sin’x = 2 (3sinx — sin3x)

By actual differentiation and using (vi) we have

3 sin[nf——l— x]—?a" sin[n3+3x]
2 2

.
V.= 3

. . 1
1.e D® (sin’x) = 2

3 sin{n%—f- x]—3“ sin{n§+3x]
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Example 2: If y = ¢* sinbx, find y_
By actual differentiation
y, = ae*™ sinbx + be™ cosbx

= e* (a sin bx + b cosbx)

Putting a = r cos¢ and b = r sind so that r* = a? + b? and tand = E we
have

y, = € (r cosd sinbx + r sind cosbx)

=r e™ sin (bx + ¢)
Similarly y, = r e* [a sin (bx+®) + b cos (bx+o)
= 1?2 e™sin (bx+2¢)

Procceding in a similar manner we have

y, = r"e*sin (bx + no)

i.e. D" (e*sinbx) = r"e*sin (bx + n¢)

Cor : D*(e*cosbx) = r"e*cos (bx+tn¢)
Example 3. If y = sin (m sin"'x), Show that

(1-x3y,-@n+Dxy , +@0-m)y =0 (NEHU 2007)
Solution : y =sin (m sin 'x) ... (1)

By Actual diffentiation we get

1

1—x

m2
1—x2

ie y?(1-x*) =m’ cos’ (m sin'x)

y, = cos (m sin™'x) [m

ie y?=cos’(m sin"'x)

= y?(1-x*) =m’ [I - sin’ (m sin"'x)]
=y (1=x)=m’[l-y] (1)
=y (1x)+miy’=m’ ... (A)
Differentiating (A) w.r.t X we have

2y, (1-x) y, + y2 (-2x) + m?2yy =0
= 2(1-x)y,-2xy +2m’y =0
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= (1x)y,—xy +mly=0.... )
Differentiating again w.r.t x we have

(I-x}) y, + y,(-2x) = xy, -y, + m’y, = 0
= (I-x)y, - 3xy,- (I-m)’y, =0
e (Ix)y,-Ql+hxy, +(1*md)y =0

Procceding in the same manner and differentiating successively (A) n times
we get

(A-x)y.,,—@nthxy , + (n*-m?)y =0

Example 4: If y = log (X +4a’ +XZ), then show that

(@+x)y+xy =0 (NEHU 2013)

Solution: y = log (x+\/a2 +X2) ........... (i)

By actual differentiation

1 n 2x
YT izt | a4k
1 X ++/a’ +x°
X

ey = x—l—\/;Z—}-XZ \/a2+X2

1
ie y = W
= y @+x) =1.... (A)
Diff (A) w.r.t x we get
2yy, (@2 +x) +y22x =0
ie y,(@+x)+xy =0

1
Example 5: If y = P find y_ (NEHU 2016)

Solution: Given y = = (ax + b)'

ax+b

By actual differentiation we get
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y, = (1) (ax+b)2.a
y, = (1) (-2)7.a> = (-1)* 2! (ax+b)~.a?
= (1) (-2) (ax+b)3.a?
¥, = (=1 (-2) (-3) (axtb)* a’= (~1)’ 3! (ax+b)*.a’
Proceeding in the same manner and differntiating successively n times we get
y, = (=1)" n! (ax+b)™*D.an
) (—-D"a"n!
ey = _(ax—i—b)"'l
Example 6: If log y = tan"'x, then prove that
O A+x)y,+(2x-1y =0
i (1+x)y,+Qox+2x-1)y_ +n@t)y =0
(NEHU 2010 2016)

nt+]

Solution: Given log y = tan"'x

By actual differentiation we get

1 1
y 17t
e (MHxX)y, =Yy e N

Differentiating again w.r.t x we get

(I+x)y, +y2x =y,
e (I+x)y, +2x-Dy=0.... (A)
Differentiating (A) w.r.t x we get

() y, +y,. 2x + (2x-1) y,+ 2y, =0
e (I+x)y, + 2x+2x-1)y,+ 2y, =0 ...... (i1)
ie (I+=x)y,, + 2.1x+2x-1y,  + I(1+1)y, =0
Differentiating (ii) again w.r.t x we get

(I+x?) y, + y,2x+ (4x-1)y, + 4y, + 2y, = 0
ie  (I+x)y, + (4x+2x-1)y, + 6y, =0
e (1+x)y,, + 2.2x+2x-1)y,,, + 2(2+1)y, =0

Hence proceeding in the same manner and differentiating (A) w.r.t X n times
we get

(1+x3) Yoo T (2nx+2x—1)yn+1 +n(n+l)y =0
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-1

sin
Example 7: If y = ‘“—\/1—2— , x| < 1, then show that
BEVIEED ¢

(1) (1_X2) y2 - 3Xy1 —-y= 0
(i) (1-x)y,,,—@n+3)xy_ — (n+rl)ly =0 (NEHU 2014)
sin™' x _
Solution: Given y = ﬁ ......... (1)
ie y? (1-x2) = (sn7'x)?

By actual differentiation we get

1
2yy, (1-x?) + y? (-2x) = 2(sin"'x) \/— I——X_Z—

ie 2yy, (1-x») - 2xy? = 2y by (i)
ie (1-x})y, —xy=2 ... (i1)
differentiating again w.r.t x we get

(1-x3) y, * y,(-2x) = xy, —y =0
ie (1x)y,-3xy,-y=0.... (A)
Differentiating (A) w.r.t. X we get

(1-x) y, — 2xy, - 3xy, - 3y, -y, =0
ie (Ix)y,-5xy,—4y, =0 ..... (iii)
e (1-x)y,,- Q1+3)xy,, - (1+1)y, =0
Differentiating (iii) again w.r.t x we get

(1-x%) y, — 2xy, — 5xy, — 4y,= 0
ie (I-x)y,~7xy,-9y,=0
e (1-x)y,, — (22+3)xy,,, — (2+1)’y, =0

Proceeding in the same manner and by differentiating (A) successively w.r.t
X n times we get

(1-x?) Yoo — @0t3)xy , — (nt1)’y =0
Example 8: If y = tan'x, show that
(I+x?) y,, +2nxy +n(n-1)y =0
Also find (y), (NEHU 2006, 2016)

Solution: Given y = tan"'x
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Example 9: If y = x» where n is a positive integer. Show that y,_
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By actual differentiation
1

Tk

ey (1+x) =0 ... (A)

Differentiating (A) again w.r.t X we get
y, (I+x%) + 2xy, = 0 ........... (ii)

ie  (I+x%)y,, +2.1xy, + I(I-Dy,_ =0
Differentiating (ii) again w.r.t x we get
y, (1+x?) + 2xy, + 2xy, + 2y, = 0
e (I+x%)y, +4xy, + 2y, =0 ........... (11i)
ie  (1+x%)y,,, +2.2xy, + 2(2-1)y, , =0
Differentiating (iii) again w.r.t x we get
(I+x%)y, + 2xy, + 4xy, + 4y, + 2y, = 0
ie (I+x)y, + 6xy, + 6y, =0 ......... (iv)
ie  (1+xdy,,, +2.3xy, + 33~Dy, , =0
Hence by differentiating (A) successively n time w.r.t x we get
(I+x)y,,, + 2nxy, + n(n-1)y_, =0
From (iv) when x = 0
Y, = -0y,
and from (ii) when x=0, y=0
Hence y,=0

2041.3.5....2n~1)}x" (NEHU 2002)

Solution: Given y = x®

By actual differentiation we have

y, =2nx"',y, =2n(2n- )x*?

y;, =2n(2n-1) 2n -2)x"?

Proceeding in the same manner we have

y, =2n(2n-1)(2n-2) ... 2n — (n - 1)) x?-n
=2n(2n—-1) 2n - 2) ..... (n+1)x"
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7.3. Successive differentiation of product of two differentiable functions
Leibnitz’s Theorem
If u and v are two functions of x possessing derevative of n* order then

rUn-r’r n n

(uv) = ‘e u,v+to y,u + e, v+, v, e+ "o uv
where the suffixes of u an v denote the order of differentations of u and v
with respect to X.

Proof :

Lety =uv

Then by actual differentiation, we have

Yy, = wvtuv,

y, = uv -+ 2u1V1 T uv, =uv,

ie y,=uv+2uyv, +uv,=uv+ ‘cu, v, +7cuy,

Again Y, =uvtuy +2uyv +2uv,tuv,+uy,
=u,v+3uyv +3uyv, + uv,
ie — + 3 3 3
. Y uv Cu, vV, +7Cu, ,v, +7cuv,

Thus the theorem is true forn =1, 2

We assume that the theorem is true for any possivive integral value of n
say kien=k (k <n)

Then
Y, = @), =uv+rc u v+ ke, u v, ..+ u v
k
Ttk uv, L (A)
Differentiating both sides with respect to x again we get

_ _ k
Y™ (uV)kH— U, Vvt (uk—lvz+ u‘kvl) +

k k
¢, (U, vyt oy ,vy) +ot e (uk—(r+1)V2

k
+u_v.) et (wy tuy, )

ey, =@ =u, v+uv+t ‘euv) + (keu v, e, u V)

+ (*c, u v, T *eu v ot (e uyv

k k
+Hreu vy T v,

ie y.,=u,v+d+k)uyv, + (c,+*c)u v, + (¢, + ) u v,

ot (e ) uyv e uv, e @)
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kn = k+l =
But *c, c, =1

kn — kil k k — kA . ka — Kkt
1 +*c, c,and c + ¢ ¢ ; fc, Cory

r+l

Hence

= — kti e k+1
Yien (uv)kﬂ Co U Ve uy, 5, u v,

+¥e v+ uv, + e uv,
ie Y, = @), = ey, v+le u(k+1H v, +¥le, Yiern2V2
+ kHC} u(k+1) 3V3 + X 4 (k+1)4 4+
+ k”cku(kﬂ) Vot k”c A

y=(v), = "c,uv+rcu v +o%u ,v,*%cu v.+..
+%.u v, t. e uv,
Thus the theorem is true for any integral value n=k+1 and by Principle of
Mathematical Induction, it is true for every positive integral value of n.

7.4 Important Results of Symbolic Operation

d
If F(D) is any rational integral algebraic function of D or — (the symbolic

operator) i.e. if

FD)=AD'+A D"'+.+AD+A=3SAD"
where A_is independent of D, then

(1) F(D) e =F(a) e*

(i) F(D) e*V =e*F(D+a) V, V being function of x

sin (ax +b) , |sin(ax +b)
(i) F(D?) {cos (ax +b) =FCay {cos(ax +b)
Proof:
(i) Since Dre™ = a'e™
F(D) e = TAD (%) = LA a e*
= X(A @) e™
=F (a) e~
(i) Lety=e*V
Since D e™ = a’e™
by Leibnitz’s theorem we have
y, =™ (aV + "¢, a' DV + %, a"? D*V +......+D"V)
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D (e*V) =e™ (D+a)* V
F(D) eV = (XA D)e*V
| = $A D' eV
=e”LA (Dtay Vv
= &= F (D+a) V
(i) We have D sin (ax+b) = a cos (ax+b)
So D? sin (ax+b) = (—a?) sin (ax+b)
D% sin (ax+b) = (—a?)" sin (ax+b)
Hence as in (i) and (ii)
F(D?) sin (ax+b) = F(-a?) sin (ax+b)
and F(D?) cos (ax+b) = F(-a?) cos (ax+b)

Iustrative Examples
Example 1: If y = e* x%, find y_
Solution: Let u = e, v = x>
Then u, = ae*, u, = a’e™,......... u = a"e®
v, =3x,v,=6x,v,=6,v,=0
By Leibnitz’s Theorem

157

— 3 — —
yn - (eax X )n - (uv)n - nC0 U.nV + nc1 un—lvl + ncZ un—ZVZ

n 1
+ c3 un—3V3 + C4 un-4V4

— nc0 ant e X3 + nc1 an—l eax 3X2 + nC2 an—2 eax

6X + "c, a"e™6

3 -1 ,, pe-b
=3a"e™x’+na ea"3x+—2'—a" e
+ w an—3 eax 6

3t

=e= x™ {a’x® + 3na’x*+ 3n(n-1) ax +

n(n-1) (n-2)}

n

dxn s

Example 2: Let y = x? e*. Compute

theorem you have used

where n is a positive integer. State the

(NEHU 2003)
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Solution: Let u = e, v = x?
Then u, = ae™, u, = a%™,...u = a"e™
v, =2x,v,=2,v, =0

.". By Leibnitz’s Theorem we have
Yo T (x? ™), = "¢, W,V + ¢, U, vt ULy

n(n—1)
2!

= a"e™.x?+ navle™ 2x + a2 g2

=a"e™x’+ 2n.a™'e™ x + n(n-1) a*? e*
n

dxn H
the theorem you have used. (NEHU 2008)

Solution: Let u = sinx, v = x°

Then u, = cosx = sin (%+ X)

Example 3: Let y = x* sinx. Compute where n is a positive integer. State

u, = —sinx = sin (2%+ X)

u = sin (n%+ X)

= 2 = = =
v, =3x% v,=6x,v,=6,v,=0

*. By Leibnitz’s Theorem we have
— 3 einXy = n n n

Yo T (¢ 5in%), ="y w v+ e u v, FIC U v, e U LY,
_ . 3 .
= "¢, sin (n% +x) X’ + "¢, sin {(n—l)% + x}

+7c, sin {(n-2)7 + x)} 6x + "¢, sin {(n~3)74 + x)}6

-1
= sin (n% + x) x} + n sin {(n—l)% + x}.3x% + %
sin {(n-2)7 + x)} 6x + &_——13)'(“_—2)

sin{(n—S)% +x)}6
= gin (n% + x) x* + n sin {(n—l)% + x}.3%x* + n(n-1)

sin {(n-2); + %)} 3x + n(n-1) (n-2) sin{(n-3)7 + x)}
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(n—1)!
X

Example 4: If y = x™' logx, prove that y_= (NEHU 2005)

d
Solution: y_= D"y = D! (Dy) = D™ {a; x"! logx}

=D {(n-1)x" logx + x' 1}

=D {(n-1)x"?logx + x*2}
= (n—1) D™ {x?logx} + D! {x?}

= (1) D (= (x o)} + D™ {x°

= (n-1) D2 {(n-2) x** logx + x™3} + D~ {x"?}
= (n-1) (n~2) D*? {x?logx} + (n-1) D2 {x"?}
+ Dn—l {Xn—Z}

d
= (n-1) (n-2) D3 {d—xXH logx} + 0

cIfu=x%Du=nD"lu=0
= (n—-1) (n-2) D** {(n-3) x>*logx + x4}
= (n-1) (n~2) (n-3) D™* {x"*logx}
+ (n-1) (-2) D™ {x4}
= (n—-1) (n-2) (n-3) D™* {x**logx}

(n-1) (n-2) (n-3) (n-4) .....3.2.1 D{x° logx}

(n—=n!

d
= (n-1)! &logx =

Exercises

I Find y_in the following cases:
. . ! |
)y = (@-bom i) y = Gy (Dy= 775 (VY= Vx

1
Wy= ﬁ (vi) y = (2-3x)" (vil) y = 10%% (viii) y = e*cosx
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(ix) y = e*sindx (x) y = e*sin’x
2. Ify =x%, where n is a positive integer, show thaty = 2" {1.3.5....(2n~
}x®

3. Apply Leibnitz’s Theorem to find
(1) y, when y = x*logx (ii) y, when y = x*cosx
(iii) y, when y = ex® (iv) y, if y = e™ cosx
(v) u, when u = xy, (vi) v, when v = (1+x?)y,
4.  Find y by Leibnitz’s Theorem in the following cases:
(1) y = x%e* (ii) y = x%sinx (iii) y = e** cosbx
(iv) y = e¥logx (v) y = x*tan”'x (vi) y = x’logx
If y = A sinmx + B cosmx, then prove that y, + m?y = 0
If y = ™ sinbx, then show that y, — 2ay, + (a* + b))y = 0
Ify= (x+ 1+x° )m, then prove that (1+x%)y, + xy, - m?’y = 0

NI, N

If y = tan"'x, show that
(i) (1+x*)y, = 0 (ii) (1+x?)y, + 2xy, = 0
(iil) (1+x%y,,, + 2 (n+D)xy_,, + n(n+l)y =0
Also find (y,),
9. Ify=sinx, prove that
() (1% y,— xy, =0
(i) (1) y,., ~ @n+1) xy,,, - ny, = 0
Also find yn when x=0
10. Ify = (sin"! x)?, prove that
(@) (1-)y, - xy, = 2
(i) (1-x%y,,, = @n+l)xy ,, —n%y =0
11. Ify = a cos (logx) + b sin (logx) for x>0, show that
() x’y, +xy, +y=0
(i) x’y,,, + @x+) xy_, + (n+1)y =0
12. If y = sin (m sin"'x), show that
(i) (1-x¥y, - xy, + m’y = 0
(ii) (1-x)y, ., ~ (20+1) xy,., ~ (0-m?)y, = 0
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13.

14.
15.

16.

17.

18.

If y = cos (m sin™'x) show that

() (1-x?) y, — xy, + m?y = 0

(i) (1-=xY)y,_,, — @n+l) xy_, + (m*n?)y =0
Also find the value (y ),

If y = cos(10cos'x) show that (1-x*)y , = 21xy,
If y = emsin"'x, show that

(i) (1-x%) y, ~ xy, - mly = 0

(i) (1-x%)y,,, — @n+1) xy,,, — (0*+m?)y =0

If y = (x*~1)", show that

x*-Dy,,*+2xy, —nnt)y =0

-1
If y = x*'logx, then show thaty = (=D

Iry= SX <l show that
y = Nk [x|<1 show tha
) (A-x)y,—3xy, -y =0

(i) (1=x¥y_,, - @n+3) xy_,, — (n+1)’y, =0



Mean Value Theorems and
Expansion of Functions

Introduction

In this chapter we shall discuss few very useful theorem which are directly
connected with the subsequent development of the subject.

8.1 Rolle’s Theorem
If (1) f(x)is a continuous function in the closed interval a<x<b
(i) f(x) exists (i.e f(x) is derivable) in the open interval a<x<b
and (iii) f(a) = f(b)
then there exists at least one value of x(say ¢) such that f(¢) = 0 for a<¢<b

Proof: If f (x) is constant throughout the interval a<x<b and f(a) = f(b)
being true, then evidently f(x) = 0 at every point in the interval.

Since f(x) is continuous in the closed interval {a, b] it must be bounded both
above and below in [a, b] and it attains its bounds. Let M, m be the least upper
bound and greatest lower bounds of f(x) in [a, b] then

(1) If m =M, we have M=m=f(a)=f(b)=f(x) for a<x<b.
So f(x) is constant throughout in the interval [a, b] and as before in the
previous argument f(x) = 0 at every point in the interval.
(i) If m=M then either M or m, if not both must be different from the
values f(a), f(b).

Suppose M = f(a) = f(b)
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Now if f(x) attain the value M at x = ¢ then a<c<b. Since f(x) is
differentiable in a<x<b, it is in particular differentiable at x = ¢ i.e f(¢) exists.

If £(£) > O then there exists an open interval ¢<x<¢+b such that for every
x in this interval f(x) > f(¢) = M which is again absurd.

Hence the only possibility is that f(¢) =0
Thus we can definitely specify at least one point where f(x) = 0

Hence the theorem.

8.2 Corolary

If a, b are two roots of the equation f(x) = 0, then the equation f(x) = 0
will have at least are root between a and b provided

(1) f(x) is continuous in a<x<b
and (ii) f(x) exists in a<x<b

If f(x) is a polynomial the conditions (i) and (ii) are evidently satisfied.

8.3 Geometrical Interpretation of Rolle’s Theorem

If the graph of y = f(x) has the ordinates at two points A and B equal, and
if the graph is continuous throughout the interval from A and B an if the curve
has a tangent at every point on it from A to B except possibly at the two extreme
points A and B, then there must exists at least one point on the curve intervening
between A and B where the tangent is parellel to x-axis.

Y YA

Fig 1 Fig2

8.4 Remarks

If f(x) statisfies all the conditions of Rolle’s Theorem in [a, b}, then the
conclusion f(¢) =0 where a<¢<b is assured, but if any of the conditions are
violated then Rolle’s Theorem will not be necessarily be true; it may still be true
but the truth is not assured.
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In other words, the three conditions of Rolle’s Theorem are only a set of
sufficient conditions but they are by no means necessary.

The following are some illustrations:
1. Consider f(x) = x /32 _x* in [0, a]
Here

(i)  f(x) is continuous in 0 < x < a i.e [0, aj

a” —2x°
(i) f(x)= === exists in 0 < x < aie (0, a)
a —Xx°

(i) f(0) = fla) = 0

All conditions of Rolle’s Theorem are satisfied and as such there exists an

a

x = ¢ where f(¢)=01ie ¢ = f in (0, a)

2. Consider f(x) = |x} in [-1, 1]
Here
(1) f(x) is continuous in -1 < x < 1 i.e [-1, 1]
(i) fx)=1lin0<x<1,
=-lin-1<x<0
and hence f(x) does not exists at x = 0
(i) f(1) = fi-1) =1
Note that f(x) does not vanish anywhere in [~1, 1] and as such Rolle’s
Theorem fails.

The failure 1s due to the fact that f(x) = x! is not differentiable in -
1 < x <1 all other conditions being satisfied.
. I .
3.  Consider f(x) = —+—— in [0, 1]
x x-1

Here
(1) f(x) is continuous in 0 < x < 1 1.e (0, I)
(but notin 0 < x < 1 i.e {0, 1]]

| 1
(i1) f(x) = (1—x)2 T existsin0<x<1ie(0, 1)

(1i1) f(0) = (1) both being undefined.
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Thus the condition of Rolle’s Theorem do not hold. But yet there exists an
1
x=¢ where f(¢) = 0 (namely £=~2—) where 0 < ¢ < 1.

8.5 Mean Value Theorem (Lagrange’s form)
If
(iy f(x) is a continuous function in the closed intervala < x < b
(i) f(x) exists (i.e f(x) is derivable) in the open intervala < x <b
Then there exists at least one value of x say ¢ such that f(b) — f(a) = (b-
a) f(e), fora< g <b
Proof: If f(a) = f(b), then the theorem reduces to Rolle’s Theorem.
Suppose f(a) = f(b) and consider the function
F(x) = f(x) + Ax where A is a constant to be chosen such that F(a) = F(b)
i.e fla) + Aa = f(b) + Ab
i.e A(a-b) = f(b) - f(a)

B -f@  f(b)-f(a)
AT ™% 77 b-a

f(b) - f(a)
- X

F(x) = f(x) — b_a

f(b)—f(a)
a

Now f(x) is continuous ina < x < b and { b ~X} being a polynomial

1s also continuous ina < x < b

Since the sum or difference of two continous functions is continuous, it
follows from (2) that F(x) is continuous ina < x < b

Again, f(x) is differentiable in a < x < b and the polynomial function

f(b)—f(a) - :

[T_-a_J‘} is differntiable in a < x < b, it follows that F(x) is differentiable
na<x<b

Hence we see that

(i) F(x) is a continous funtionina < x<'b

(ii) F(x) is differentiable in a < x <b and

(iii) F(a) = F(b)
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Thus all condition of Rolle’s Theorem are satisfied by F(x) and also there
exists at least one value of x say ¢ where a < ¢ < b such that f(¢) =0

o f(b) f(a)
te f(g) -~ =00 by (2)
S fib) f(a)
Le f(8) =

e f(by - t{a) = (b-a) f(<)
8.6 Geometrical Interpretation of Mean Value Theorem (Lagrange’s

form)

It the graph of y = f{x) is continuous throughout the interval [a, b] and if
the curve has a tangent at every point in the interval a to b except possibly at
the two extreme points a and b, then by Lagrange’s Mean Value Theorem.

f(b)—f(a)
b--a

for some point £, wherc a < ¢ <b

Now if we draw the curve of y = f{x) and take the extreme point A (a, f(a))
and B (b, f{b)) on the curve, then
. t(b)—~f(a)
Slope of the Chord AB = “boa
and thus f(¢) = slope of the chord AB

Thus the tangent to the curve y = f(x) at the point x = ¢ 1s parallel to the
chord AB

YA

"/
%y

B (b, f(b))




\ean Value Theorems and Expansion of Functions 167

8.7 Physical Significance of Mean Value Theorem (Lagrange Form)
Let a particle be moving in a straight line and let f{a) and (b} be its position

from the starting point at times a and b respectively then average speed of the

article = f(b) - f(a)

particle = Tboa

As f(¢) is the instantaneous speed of the particle at ime ¢ and by Mecan
Value Theorem

f(b) - f(a)
fito) = b-a

Hence, Mean Value Theorem says that at some time ¢ between a and b, the
mstantaneous speed of the particle is equal to the average speed.

8.8 Alternative Forms of Lagrange’s Mean Value Theorem

(i) Putting b = a + h, then any point ¢ between a and b can be written
as £ =a+ pgh, 0 < p <1 and consequently Lagrange’s mean value
theorem takes the form

fa+h) - fa) = h f(a~ph) for ) < ¢ <

(i) Puttinga=h and b = h + x, then any point ¢ between a and b can
be written as ¢ = h ~ gx where 0 < ¢ < I and Lagrange’s Mean Value
Theorem can be stated as

If (a) f(x) is continuous in the closed interval [h, h=x]
(b) f(x) exists (i.e f(x) is derivable)in the open interval Jh, h=x{
Then f(h=x) - fth) = x f(h ~ 9x), 0 < g <1
(iit) Putting h=0 in (ii) above we obtain Maclaurin’s Formula which is

fix) = f(0) = x f(gx), 0 < g <1

8.9 Important Conclusion from Lagrange’s Mean Value Theorem
Corollary 1: If f(x) = 0 in the interval a < x < b then f(x) is constant in this
nterval

Proof: Leta < x, < x,<b

) Since f(x) satisfies the condition of Mean Value Theorem in x| =
then

X <X, ,

fix,) - f(x,) = (x, - x)) f (<) where x, < £ < x,

e fix,)-fix)=0 - f()=0
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i.e f(x,) = fix))
Thus fix) has the same value at all points between a and b and hence f(x)

is a constant
Corollary 2: If f(x) =0 ina* x < b, then f(x) =flayina<x <b

Corollary 3: If f(x) = g(x) in the interval a < x < b, then f{x) -~ g(x) = cons
tantina < x < b

Proof: Consider a function
G (x) = f(x) - g(x)ina<x<b
Then o (X) = f(x) - g(Xx)
e o (X)=01Iina < x < bsince f(x) = g(x)
Hence by corollary I, ¢ (x) is constant ina < x < b
e f{x) - g(x) = constant
Corollary 4: If f{x) is continuous an a < x < b and f(x) > 0 ina < x < b, then
t(x) is strictly increasing function tna < x < b
Proof: Let x and x, be such thata < x < x, < b
Then by mean value theorem (Lagrange’s form)
fix,) - f(x)) = (x,-x)) £(£) where x, < ¢ < x,
1.e fix.) - f(x,) > 0 since f(¢) >0
e f(x,) > f(x)
Hence we see that if x| < X, then f(x,) < f(x,)
Showing that f(x) is a strictly increasing function.

Corollary 5: If f(x) is continuous ina < x < band f(x) <0 ina < x <b, then
f(x) 1s a strictly decreasing functionina < x < b

Proof: Similar to corollary 4

8.10 Mean Value Theorem (Cauchy’s Form)
If
(i) fix) and g(x) be both continuous ina < x < b

(i)  f(x) and g(x) both exists t.e f(x) and g(x) both are derivable in a <
x<b

(iti) g(x) does not vanish at any value of x in the open intervala<x <b
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Then there exists at least one value of x say ¢ such that

f(b)=f(a) _ f(5)
gb)-g@ g ©)

fora<e¢ <b

Proof: Consider a function

F(x) = f{x) + A g(x) where A is a constant to be chosen such that F(a) =
Fib)

e f(a) + A g(a) = f(b) ~ A g(b)

ie A (g(a) - gb)) = f(b) + f(b)

. f(b) - f(a)
Le A~——g(a)A_g(b—)-
f(b)—f(a)
F =f(x) + ———— . g(x) ......... |
(x) = f(x) 2(a)—g(b) g(x) (n

Now f(x) and g(x) are continuous on a < x < b hence F(x) is continuous
ma<x<b

Also f(x) and g(x) are both differentiable derivable in a < x < b hence F(x)
is derivable ina < x <b

Thus we see that

(1) F(x)iscontinousina < x < b
(1) F(x) is derivable ina < x < b and
(i) F(a) = F(b)

Thus all the conditions of Rolle’s Theorem is satisfied by F(x) and so there
exists at least one value of x say ¢ where a < ¢ < b such that F(¢) =0

f(b)-f(a)
e f(e)~ ————— g(¢)=0
. f(b)—f(a)
e @) _gb) gy =-1f(g)
e fiby-fa _ fqo
T g@)—g(b) g ()

fb)—f(a) £
gla)-gb) g (g
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Note: In the above theorem g(b) — g(a) = 0
For if g(b) — g(a) = 0 i.e g(b) = g(a)
Then g(x) being continous ina < x < b
and g(x) being derivable ina <x <b

Then by Rolle’s Theorem there exist at least one value of x say ¢ such that
g(e)=0wherea< £ <b

But g((¢) = 0 contradicts the hypothesis that g'(x) does not vanish at any
value of x in a < x <b.

Hence our assumption that g(b) — g(a) = o is wrong and therefore g(b) —
g(a) = 0.

Illustrative Examples

Example 1: If f(x) = tanx, then f(x) vanishes for x = 0 and x = 7. Is Rolle’s
Theorem applicable to the function f(x) in [0, ®]? Give justifications for your
answer.

Solution: We see that f(x) = sec’x does not vanish for any value of x between
0 and .

Hence Rolle’s Theorem is not applicable

Also note that f(x) = sec’x exists in 0 < x < ® except at x = % and f(x)
is continuous in [0, ®] except at x = %

Hence the conditions under which Rolle’s Theorem is valid do not hold and
this explains the failure of the theorem.

Example 2: Is Mean Value Theorem valid for f(x) =x*+3x+2in 1 £ x < 2?
Find ¢ if the theorem is applicable

Solution: Clearly f(x) = x* + 3x + 2 being a polynomial is continuous in [1, 2]
Also f(x) = 2x + 3 exists in 1 < x < 2
Hence MVT is applicable
So using Lagrange’s MVT we have

£(b) - f(a)
f(e) = Ta(a
o (o) = fO=FO _12-6

2-1 1

ie2¢+3=6=2¢=3=¢=2¢[l2]
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Example 3: Use MVT in making numerical approximations to (28)%
Solution: We have f(x+h) = f(x) + hf (x+6h), 0<8<1

1
Putting x = 27, h =1 and f(x) = XA we get

1

%= (27)0 + 1 ———
28 = (27 327 + )

1
whichis<3+Wand>3

1
,~,3<(28)% <3+-27

Example 4: Show that x > sinx for 0 <x < % ,
Solution: Let f(x) = x — sinx
Thenf’(x)=1—cosx>0in0<x<%
Also f(x)=0atx =10
Thus f(x) = x — sinx is an increasing function and > 0
Hence x > sinx

Example 5: Find a point on the parabola y = (x—3)? where the tangent is parrallel
to the chord joining (3, 0) and (4, 1)

Solution: We apply Lagrange’s MVT for the function
f(x) = y = (x=3)? in the interval [3, 4]
Now f(x) being a polynomial function, it is continuous in [3, 4]
Also f(x) = 2(x-3) exists in (3, 4)

Thus both the conditions of Lagrange’s MVT hold in this case, hence there
exists a point ¢ € [3, 4] such that

£(4)—£(3)

fle) = =3

1-0=1

1 7
Le2(c-3)=1=c3=<- =c= 5+3=§€ [3, 4]

| —

7 7 V1
= — = ——3 = —
Now at x 2,y [2 ]
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1
273
chord forming (3, 0) and (4, 1)

Example 6: If f(x) = (x-a)™ (x-b)* where m and n are positgive integers, show
that ¢ in Rolle’s Theorem divides the segment a < x < b in the ratio m:n
(NEHU 2008)

Thus at the point

on the given curve the tangent is parallel to the

Solution: Clearly f(x) = (x~a)™ (x~b)" is a continuous function in a < x < b and
f(a) = 0 = f(b)

Also f'(x) = m(x-a)™"' (x~b)* + n(x—a)™ (x—b)*! exist for every value of x
inma<x<b

Hence by Rolle’s Theorem, there exists ¢ € [a, b] such that f(¢) = 0

ie  m(c-a)™' (c-b)" + n(c—a)™ (c-b)>'=0

or (c—a)™! (c-b)*! [m(c-b) + n(c-a)= 0

or m(c-b) +n(c—a)=0 ra<c<b

or mc—mb+nc—na=90

na + mb
m-+n

or c =

Showing that ¢ divides the segment a < X < b in m:n

8.11 Taylor’s Theorem in Lagrange’s Form of Remainder

If f(x) possesses differential coefficients of the first (n—1) order for every
value of x in the closed interval a < x < b and the nth derivative of f(x) exists

in the open interval a < x <b i.e f*! (x) is continuous in a < x < b and f'(x) exists
ina<x <b then

f(b) = f(a) + (b-a) fi(a) + (b—'a) 2(a) +.....+

(b—a)"" (b—a)

=1 1 (a) + = f'(¢) where a < £ <b
. If b = a+h, so that b—a=h, then
B2 oo
f(a+h) = f(a) + h f(a) + >1 f2(a) +......+ m f-1(a)

n

h
+;7 f' (a+ gh) where 0 < g <1
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If a = x, then

2 hn—l

h
f(x+h) = f(x) + h f(x) + B 2(x) +.....+ (n_D!

1(x)

n

h
+; f* (x + gh) where 0 < g <1

Proof: We observe that f(x), f'(x), (%) ....... f-1(x) are continuous ina < x < b
Consider the function ¢(x) defined in (a, b) by
(b—x)’

() = (b) = 100 = (b=%) £(x) = ~— = £ (x) oo

(b—x)%l ’ (b—x)"fl

...... Wfﬂ (X)_‘ (b—a)" qJr’(a)
(b— x)n_l

Where 1 (x) = f(b) - f(x) — (b—x) f(x) ......... P -l (x)

Then ¢(a) = ¢(b) = 0 since ¥ (b) = 0 identically
Now /(x) = - f(x) + {f(x) - (b—x) £ (x)} + {(b—=x) £(x)

n-2

(b—x) (b—x) . (b-x)"
Y PO} + ot Y <>~( )f(x)
(b—x)"
=T oy T
(b—x)"" n(b—x)""

Hence ¢'(x) = (n—1)! (x) + “b-ay P (a)

Since $(a) = ¢(b) and ¢'(x) exists in a < x <b, by Rolle’s Theorem ¢’ (&)
=0 wherea< ¢ <b

—(b-¢)" . n(b-g)"
P T TR

ie

b(a)=0
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(b—a)

= V()= £7(8)

and since v (a) = f(b) — f(a) — (b—a) f'(a) - (3—;&—) 2(a)

(b_a)n‘_l n-l1
.......... F.——l)_‘ "7 (a)
_ 2 b— n-1
Hence f(b) = f(a) + (b-a) f(a) + (bTa) f2(a) + +——-——< (n_az)! £"'(a)
b_ n
B2

and hence the result follows
Since a < ¢ < b, we write £ = a + (b-a)g
e ¢ =a+hg where0 < g <1 and h=b-a
and hence

2

f(a+h) = f(a) + h f'(a) + % f2(a) +......

Note 1. The series

ftb) = ft) + (b-a) £0) + 252 o) +e ey + o2 e

. 2 h“*1 n
f(a+h) = f(a) + h f(a) + %fz(a) bt 1(a) + % f (a+ g h)

2 n—1 n

and f(x+h) = f(x) + h f(x) + %fz(x) T ;P %  (x+gh)

is called the Taylor’s Series with the remainder in Lagrange’s form where the

(b—a) h” b
n!

°(¢), or ol f'(atgh) or o f*(x+gh)

remainder after n term being

0 < g <1 is generally denoted by R .
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Note 2. Putting n = 1, we get
f(a+h) = f(a) + h f(a+tgh) 0 < g < 1 which is the Mean Value Theorem.

Remark: Taylor’s Theorem is sometimes called the Mean Value Theorem of
the n™ order.

Note 3. Putting n = 2 we get
2

h
f(a+h) = f(a) + h f(a) + = £(a+gh) 0 < ¢ <1

which is often called the Mean Value Theorem of the Second order and so on.

8.12 Maclaurin’s Series in Finite form
Putting x=0, h=x in
2 n

f(x+h) = £(2) + h f(x) + % £ (%) +.ot %()H—eh)

We get

2 xnwl

f(X) = f(O) + X f(O) + % fz(x) +... + m fnvl(o)

n

X
+Ef“(ex) 0<g<l

Which is called the Madaurin’s Series for f(x) with the corresponding

n

X
remainder R being o f(gx)

8.13 Cauchy’s Form of Remainder R

If we take &(x) = 1 (x) E—_—: v (a)
(b—x)"

where 1 (x) = f(b) — f(x) ~ (b—x) f'(x) ..... (-1

f(x)

with ¢(a) = ¢(b) = 0, we get as before

b_x n—1i

, ( !
o' (x) = — W f'(n) + (b—a) v(a) ....(1)
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Since &(a) = ¢(b) and ¢’ (x) exists in (a, b) by Rolle’s theorem, we have
¢ (e)=0,a<¢g<b

. (b—g)" N 1 B

e - ———_(n«l)! (¢) + v P(a) =0
(b—a)(b—£)""

= Y(a)= —Z1Ty_“ (€)oo (2)

Putting ¢ = a + (b—a)g where 0 < ¢ <1

We have b—¢ = b-a-bg+ag = (1-¢) (b-a)

b= = (1-9)! (b—a)~!' = (1-9)""' h*' where h = b-a
h* (1—-6)""
——(n—l)! f* (a+gh)

Replacing a by x, we get the expression for the remainder

.. from (2) we get | (a) =

h" (1—6)""

» T o) " (x+gh),0< g <1

(ii) This is known as Cauchy’s form of remainder in Taylor’s expansion.

The Corresponding form the Maclaurin’s expansion is

xn (1 . e)nfl
R, = _—(n—l)! f(px) 0< g <1
Remarks: Cauchy’s form of remainder is sometimes more useful than that
of Lagrange’s form. The value of ¢ in the two forms of remainder for the same

function need not be same.

8.14 Taylor’s Infinite Series

If f(x), f(x), 2(x),...... (x) exist finitely however large n may be in any
interval [a, a+h] and if in additon R _ tends to zero as n tends to infinity i.e. R, =0
as n— oo, then Taylor’s series in infinite form is

2

f(a+h)=f(a)+hf(a)+%f2(a)+ ..... to oo

2 n—1

h
Denoting S_ = f(a) + h f(a) + a1 2(a) + ..... h -1 (a)
! n—1)!
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Then f(x+h) =S _+R_

Now, in addition R, —0 as n—oo, then lim S = f(x-th)

2 n—l1

h h 1
or f(a) + h f(a) + > fP(a) + ...+ (n—l)!fh/ (a) +

...... to s = f(a+h)

Corollary: Putting h = x — a i.e x = a + h we get another form of Taylor’s
Series which is

fx) = f(a) + (x—a) f(a) + (x-

8.15 Maclaurin’s Infinite Series

When a = 0, h = x in the theorem, we observe that if f(x), f(x), f2(x),...{*x)
exists finintely however large n may be in any interval and if R, —0 as n— oo, then
Maclaurin’s infinite series is

2

f(x) = f(0) + x £(0) + —’;—, £2.(x) + ...t0 50

Iustrative Examples

2

h..,
Example 1: If f(h) = f(0) + h f(0) + Y f2(ph), 0 < g <1 find § when h=1

and f(x) = (1—x>%

Solution: We have f(h) = (1—h)% o fx) = (1——x)%
f(h) = — %(l—h)%

15,
£hy) = - (1-hY"

£(0) = 1, £(0) = — %

.. from the given relation, we get
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2
5 2 15 Y
(1-hy* =1+h |[=5| + 5 - (1-0n)"
5 15 1 .
= 0=1- >t% (1~9h)Z by putting h = 1
Con)s = 2
= (1—6h) 5
SO R )
= 70755 =875
Example 2: Prove that the Lagrange’s remainder after n terms in the expansion

(az +b:)%

of e™cosbx in powers of X is X" e cos (bgx + ntan” =), 0 <9 <1

n!

n

. « . X
Solution: Lagrange’s remainder after n terms in the expansion of f(x) is ol fr

(9x) 0 < g <I
Here f(x) = e cosbx
fl(x), = ae™ cosbx — be™ sinbx

= ¢* (a cosbx — b sinbx)

b
Putting a = rcos¢ and b = rsin¢ so that r? = a> + b? and tan¢ =— we get
g a g

f(x) = e* (rcosdcosbx — rsinsinbx)
= re®™ cos (bx + &)
Similarly f2(x) = r?e* cos (bx + 2¢) and proceeding in this manner

f'(x) = " ™ cos (bx + nd)

b
=" e* cos (bx + n tan™ ;)

Hence Lagrange’s Remainder after n terms is

n n

X b
P — il pa8x -1 — R
o 2 (gx) = 1" e*** cos (bgx + n tan a) ol
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<az+b2)% b
= X" e"* cos (bgx + n tan*‘;) 0<g <1
n!

! n,
[ r= (aZ _‘_bZ)A "= <a2 +b2)A]
Example 3: Prove that Cauchy’s remainder after n terms in the expansion of

(1+x)™ (m being a negative integer or fraction) in powers of x is

m(m—D)(m-—2).... . m—n-+1)
(n—1!

n—1|
X" (I+gx)m! [ J 0<g <l

14 6x

Solution: Cauchy’s remainder after n terms in the expansion of f(x) is

x" (1—6)%l
W (), 0<¢ <l
Here f(x) = (1+x)™
f'(x) = m (1+x)™!
2(x) = m (m-1) (1+x)™?
f'(x) = m (m-1) (m-2)....... (m-n+1) (1+x)™™

Hence Cauchy’s remainder after n terms in the expansion of (1+x)™ is

m(m —1)(m—2)....(m—m+ 1) (1+6x)" "

(n—1)!

x" (1-g)"!

n—1
n m-1 | —
x" (1+gx) [1+ex] 0< g <l

m(m—-H(m-2)....(m-m+1)
(n—1)!

Example 4: Prove that the Cauchy’s remainder after n terms in the expansion of
log (1+x) in powers of x is

_1 n-1 xn
D 1+6x

n—1
1_9] 0<g<l -
1+6x

Solution: Cauchy’s remainder after n terms in the expansion of f(x) is

x"(1- 9)"_1

(I'l—l)’ fh(ex)’ 0< 0 <1
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Here f(x) = log (1+x)
1
f(x) = I——I———x_ = (1+x)!
£(x) = (-1) (I+x)? = (-1)L.1 (1+x)7
£(x) = (=1) (2) (1+x)° = (-1)* 2! (1+x)7
(x) = (D! (n=1)! (1+x)™

Hence Cauchy’s remainder after n terms in the expansion of log(1+x) is

x"(l—@)’k1
—THr CU7 D! (e
= XG0T <<
1+0x 1+4+6x

Example 5: From the relation f(x) = f(0) + xf (0) + X?Z'f’/( §x), 0<p<1 show that

1
log (1+X)> x = 5 %, if x>0 (NEHU 2014)

Solution: Let f(x) = log (1+x). Then

f(x) = = (1+x)™!

1+x
£(x) = £(x) = (-1) (1+x)2 = (~1)*! (1+x)?

f(x) = P(x) = (=1) (2) (1+x)7 = (1) 2! (I+x)7
£1(x) = (=1) (=2) (=3) (1+x)*= (=1)*! 3! (1+x)*

D" -1

£ = D @-D! (07 = oy

2

.. From the relation f(x) = f(0) + x £(0) + % '(0)

2

We get log (1+x) =logl + x.1 + %(—1)

2

= log (1+x) > x — %
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Example 6: Expand sinx in a finite series in powers of x with remainder in
Lagrange’s form (NEHU 2003, 2007, 2016)

Solution: Let f(x) = sinx then
f(x) = cosx = sin (%+x)
f2(x) = —sinx = sin (2%+x)
f3(x) = —cosx = sin (3%+x)

f'(x) = sin (n%+x)

Also °(0) = sinn?TY which is 0 or =1 according as n is even or odd

n n

X X in | = +0x
Now R = o f'(gx) = TS|
x|, LU x" in 1T o
R | = | [sin 5 X || < ol as s1n—2—— x| < 1

n

. X
R —0 as n— , since — —0asn—
n:

By Maclaunn’s series in finite forms we get
2 n

f(x) = (0) + x £(0) + 37 OV "0 P(gx) 0 < g < 1

. x> X X . X" LU
lLesmx =X-— - + —— -7 +..... — sIn [/
3! 5! 7! n! 2

0<p<l1

Which is expansion of sinx in powers of x with Lagrang’s remainder

As R —0 as n— oc the condition for Maclaumn’s expansion are also
satisfies

»

. X X
LSInX =x— T + —— — +... to o for all values of x.

Example 7: Expand cosx in a finite series in powers of x with remainder in
Lagrange’s form (NEHU 2008)

Selution: Let f(x) = cosx. Then
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f(x) = cosx = sin (%+x)
f2(x) = — cosx = cos (2%+x)
f3(x) = sinx = cos (3%+x)

. P(x) = cos (0 +x)
By Maclaurin’s series in finite form we get

2 n

f(x) = f(0) + x £'(0) + % £2(0)+...... +—}:1—' fM(px) 0< g < 1

2
X x* x"

i [n—ﬂ—l—@x]
L.e cosx = 1- 2!+4—! ..... +n cos |7 0<p<l1
Where the Lagrange’s remainder is given by

n n

X X nm
= =~ = = —+0x
R 0  (px) o1 cos [2 J

n

n

. X
As R —0 as n— > since - —0as —x
n!

The condition for Maclaumn’s infinite are satisfied

cS.cosx =1 - 3'- + z ..... to > for all values of x.

Example 8: Expand (1+x)™ in a finite series in power of x with remainder in
Lagrange’s from (NEHU 2004)
Solution: Let f(x) = (1+x)™ Then

f(x) = m (1+x)™!

2(x) = m(m-1) (1+x)™2

3(x) = m(m-1) (m-2) (1+x)™3

. '(x) = m(m-1) (m-2).....(m-n+1) (1+x)==
By Maclaurin’s series in finite forms with Cauchy’s form of remainder we

get

2 xn 1 __ e)n—l

f(x) = £(0) + x £'(0) + % POt T Ty F6%)
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2 3

=1+mx+ % m(m—1)+ —’;7 m(m-1) (m=2)+......

+ n
(n—1)!

Where Cauchy remainder is given by

(1-9)'m(m-1) .... (m—n+1) (1+6x)"™"

n

X

— _ n-1
R, (n—1)! (1-6)" f(6x)
Xn
= m(m-1)..... —n+ —0)™! (1+ 9 )™
m(m—1)..... (m-n+1) 1! (1-0)'(1+6x)"™", 0<6<l
Example 9: Expand log(1+x) in a finite series in powers of x with Cauchy’s form
of remainder (NEHU 2016)
Solution: Let f(x) = log (1+x)
Same as example 4.
xz x} n . n-1
HX)=x- —+ — + (=D!
log (1+x) = x 5 3 - 11 ox l+6x] 0<6<1
Exercises

1. Find the value of ¢ in the Mean Value Theorem
f(b) - f(a) = (b—a) f(¢)
(i) Iffx)=x*,a=1,b=2

@) Iffx)=+vx,a=4,b=9

(i) If f(x) = x(x~1) (x-2); a=0,b =

N |

(iv) Iff(x) = Ax?+ Bx + Cin (a, b)
2. In the Mean Value Theorem
f(x+h) = f(x) + hf’ (x+6h)

If f(x) = Ax? + Bx + C, where A=0. Show that § =

N =

3. In the Mean Value Theorem
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10.

11.
12.

Differential Calculus for Degree

fa+h) = f(a) + hf (x+6h)
Ifa=1,h=3and f(x) = Vx, find 0

2

h
If f(h) = f(0) + hf'(0) + e f2(6h) 0 < 9 < 1 find @ when h = 7 and f(x)

1
1+ x

From the relation

2

fih) = £0) + xF(0) + >, F(Bx) 0 <0< 1
Show that log(1+x) > x — %xz if x>0

and cosx > 1—%){2 if0<x< %ﬂ
If f(x) = tanx, then f(0) = 0 = f(x). If Rolle’s theorem applicable to f(x) in
(0, m)?
Show that
A 31 h* 1

x+h)/—x~+—Xh 2231 m0<6<1
Find 6 when x=0
Expand in a finite series in powers of h and find the remainder in each case.
(i) log(x+h) (ii) sin(x-+h) (iti) (x+h)™

Apply Taylor’s theorem to obtain the Binomial expansion of (a+h)”, where
n is a positive integer.

If f(x) is a polynomial of degre r, then show that
n !

f(a+h) = f(a) + hf'(a) + o fP(a)+....... +F f (a)

Expand 5x* + 7x + 3 in powers of (x-2)

Expand the following functions in a finite series in powers of n with
remainder in Lagrange’s form in each case

(1) e* (i) a* (iii) sinx (iv) cosx (v) log(1+x)

(vi) log(1=x) (vii) (1+x)™ (vii) e*cosx (ix) e*sinbx
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13.

14.

15.

16.

17.

18.

19.

20.

Expand the following functions in finite series in powers of x with
remainder in Cauchy’s form in each case:

. 1
(i) e~ (i) cosx (ii1) T
In Cauchy’s Mean Value Theorem; show that § is independent of both x and

h and equal to % in each of tghe following case:

(i) If ¢(x)=¢e*and Pv(x)=¢e™*
or (i) If ¢(x) = sinx and ¢ (x) = cos*
or (iii) If ¢(x) =x*+x + 1 and ¥(x) = 2x* + 3x + 4

If f(x) = x2, ¢(x) = x, then find the value of ¢ in terms of a and b in
Cauchy’s Mean Value Theorem.

If f(x) and g(x) are differentiable in the interval (a, b), then prove that there
is a number ¢, a<¢<b such that

f(a) f(b)_

=(b—-a
g(a) g(b)

f(a) f’(&)‘
g(a) g'(t)

Expand in infinite series in powers of h:

(1) e¥" (ii) cos(x+h) (iii) sin(x+h) (iv) log(x+h)

Show that /x and x’* cannot be expanded in Madaurin’s infinite series.
Show that f(x) = x” cannot be expanded in Madaurin’s infinite series or

that for this function the expansion f(x+h) fails when x=0, but that there
exists a proper fraction 6 such that

f(x+h) = f(x) + hf'(x) + % h? £2(x+6h) holds when x=0

Find the conditions under which a function can be expanded in Taylor’s
infinite series



Maxima and Minima

Introduction

Maxima and Minima is one of the most important branch of calculus and
has various practical applications to Geometry, Physics and other sciences.

9.1 Definition

A function f(x) is said to have a maximum (or local maximum) at the point
x=a, if f(a) = f(x) for all values of x in some suitably small neighbourhood of a
i.e flath) < f(a) for |h| sufficiently small.

Similarly, a function f(x) is said to have a minimum (or local minimum) at
x=a if f(a) < f(x) for all values of x in some suitably small neighnourhood of a

Le flath) > f(a), for |hj sufficiently small.

The figure below represents graphically the continuous function f(x) with
maximum values at x , X, and minimum values at X,, X, observe that, maximum
value of f(x) at x, is less than minimum value of f(x) at x,. The greatest value
of f(x) is assumed at x,.

They are respectively the absolute maximum and the absolute minimum of
f(x).

From the figure the following features regarding maxima and minima of a
continuous function are apparent.

(i) that the function may have several maxima and minima
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O > X

X4 X X3 X4

(it) that the maximum value of the function at some point may be less than
the minimum value of it at another point.

(iii) the maximum and minimum values of the functioin occur alternately
i.e between any two consecutive maximum values there is a minimum
value and vice versa.

9.2 A Necessary Condition for Maximum and Minimum

Theorem: If f(x) be a maximum, or a minimum at x=c and if f/(¢c) exists,
then f'(c) = 0

Proof: By definition, f(x) is maximum at x=c provided we can find a positive
number 8§ such that

f(cth) — f(c) < 0 when evern —8<h<$ (h=0)

", —f—m—h}?—?& < 0 if h is positive and sufficiently small and

f(c+h)—f(c)

N > 0 if h is negative and numerically sufficiently small.

f(c+h)—f(c) -0
h .

Now if f(c) exists, the above two limits must be equal.

Hence, lim

f(C +h)— f(C) <0 and lim
hoo h - h—0"

Hence the only posiibility is that f(c) = 0

9.3 Observations

(i) f(c) =0, if it exists is a necessary but not a sufficient condition for
f(x) to have extreme value at x=c
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For example, if f(x) = x>, then at x=0 f(0) = 0
But f(x) > f(0o) when x>0 and f(x) < f(0) when x<0
Hence f(x) has no extreme value at x=0

(i) Even when f'(¢) does not exists, f(c) may be a maximum or a
minimum
For example, if f(x) = |x|, then clearly f(0) is a minimum value but
f(0) does not exists.

(ii) The extremes for which f(x) = 0 correspond to a point where the
tangent to the curve y=f(x) is parallel to x=axis

(iv) The point where f(x) = 0 is generally called a stationary point.

9.4 Conditions for Maxima and Minima

Let f(x) be a function which can be expanded in the neighbourhood of x=a,
by Taylor’s Theorem

At x=a, the value of f(x) is f(a)

Let us consider two values of x, viz a+h and a—h in the neighbourhood and
on either side of x=a, h being very small.

If there is a minimum at x=a, then from definition f(a) < f(a+h) and f(a) <
f(a-h)
i.e fla+h) — f(a) and f(a—h) — f(a) are both positive for minumum at x=a
If there is a maximum at x=a, then from definition f(a) > f(a+h).
i.e f(a+h) — f(a) and f(a—h) — f(a) are both negative for maximum at x=a
Now by Taylor’s Theorem
2 3

f(a+h) = f(a) + h f(a) + %fz(a) + %P(a) o

or f(ath) — f(a) = h f(a) + %fz(a) + %f’(a) +oe (1)

Similarly, f(a-h) = f(a) — h f(a) + %fz(a) - %P(a) oo
h? h’ ..
or f(a—h) - f(a) = -h f(a) + ;fz(a) + 3 f(a) +....... (ii)

Since h is very small we may neglet power of h higher than the first and
so from (i) and (ii) we get
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f(ath) — f(a) =h f(a) .......cc.... (iii)
and f(a-h) - fla) = - h fi(a) ......... (iv)
We have seen that for maximum or minimum, the sign of f(a+h) — f(a) and
f(a—h) — f(a) must be the same.
So from (iii) and (iv) we conclude that f(a+h) — f(a) and f(a-h) — f(a) have
the same sign if f(a) is zero (otherwise they will have different signs)

Hence the necessary condition that f(x) should have a maximum or a
minumum at x=a is f(a) = 0
Now if f(a) = 0 we have from (i) and (ii)

2

f(a+h) — f(a) = —f%(a) ...... )

2

and f(a-h) - f(a) = %F(a) ...... (vi)

neglectinig powers of h higher than the second since h is very small, we find that
f(a+h) — f(a) and f(a-h) — f(a) are both of the same sign.

Now two cases arise:

(i) When f*(a) is positive. In this case both f(a+h) — f(a) and f(a-h) - f(a)
are positive and hence there is a minimum at x=a

(i) When f(a) is negative. In this case both f(a+h) — f(a) and f(a—h) — f(a)
are negative and hence there is a maximum at x=a

Hence we conclude that:

(i) The function f(x) is maximum at x=a if f(a)=0 and f2(a)=f"(a)<0 and

(i) The function f(x) is minimum at x=a if f(a)=0 and f3(a) = f'(a)>0

9.5 Application to Problems

In solving a problem in which the maximum or a minimum value of a
quantity is needed, we should always be guided by the following important
principle.

Express the quantity of which the maximum of minumum value is required,
as a function of one unknown.

In some cases, it may be necessary to express the quantity in terms of two
or more unknowns and then by means of a given condition to express all these
unknowns interms of one of them.

In connection with problems concerning spheres, cones and cylinder the
following results would be needed
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1.  Sphere of radius r

4
Volume = —3—7rr3. Surface Area = 47r?

2. Circular Cylinder of height h and radius of base r
Volume = wr’h. Curved Surface Area = 27rh
Area of each plane face = nr?

3. Right circular cone of height h and radius of base r

)

Semi vertical angle = tan™'

Slant height = /2 L 12

1
Volume = 3 wr’h. Curved Surface Area = ©r /p? 4 2

Illustrative Examples

Example 1. For what values of x, the following expression is maximum or
minimum respectively: 2x* — 21x* + 36x — 20

Solution: Let f(x) = 2x* — 21x® + 36x — 20
. fi(x) = 6x? — 42x + 36, which exists for all values of x
Now for maximum or minimum, f(x) =0
e 6x?-42x+36=0
= xX*-T7x+6=0
= (x-1DEx-6)=0
= x=1loré
Again £2(x) = f'(x) = 12x — 42 = 6 (2x-7)
Now when x=1, f'(x) = -30 <0
When x=6, {(x) = 30>0
Hence f(x) is maximum at x=1 and minimum at x=6
The maximum value of f(x) = 2.1° — 21.12 + 36.1 - 20 = -3
The minimum value of f(x) = 2.6 — 21.6? + 36.6 — 20 = —128

Example 2: Show that x> — 3x? + 3x + 7 has neither a maximum nor a minimum
at x=1
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Solution: Let f(x) = x> - 3x* + 3x + 7
fi(x) =3x2 - 6x + 3
Px)=f'(x)=6x -6

For maximum or minimum, f'(x) = 0
e 3x*-6x+3=0

= x?-2x+1=0

= (x-12=0

= x=1

Now at x=1, f(x) = 6-6=0

Hence the given function has neither a maximum nor a minimum at x=1

1 ..
Example 3: Show that the maximum value of x + — is less than the minimum
X

value
. 1
Solution: Let f(x) = x + —
X

1
fx)=1- —
X

3

PX) = fi(x)==0+ ==

X X

Now for maxima or minima, f(x) = 0

1
=1-—=0 =x==I1
X

When x = -1, f/(x) = -2 <0
Whenx=1,x)=2>0

Hence f(x) is maximum at x=—1 amd minimum at x=1

1
The maximum value of f(x) = -1 + = =2

1
The minimum value of f(x) = 1 + ' 2

Hence the maxiumum value of f(x) is less than the minimum value
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1

Example 4: Show that x* is minimum for x = - (NEHU 2003)

Solution: Let f(x) = x*
= log f(x) = logx*
= log f(x) = xlogx
Differentiating both sides w.r.t x

d _d
& Uog f(x)} = - {xlogx}

L d
= F(x) dx f(x) = I+logx

= f(x) = f(x) (1+logx)

od d
Again . f(x) = . {f(x) (1+logx)}
= 10 = £(x) (1+logx) + f(x) —
= (x) = f(x) (I+logx)? + f(x).%
= f”tx) = f(x) [(1+logx)? + —)lz]

= f(x) = x* [(1+logx)* + %]

For maximum or minima f(x) = 0
= f(x) (1tlogx) = 0

= Il+logx=0 o f(x)=0
= logx =-1

= x=¢!l=-

Putting x = é in f'(x) we get
Ve

f'(x) = [‘e'] >0

. 1
Hence x* is minimum for x = S
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Example 5. Divide a number 15 into two parts such that the square of one
multiplied with the cube of the other is maximum.

Solution: Let x be one of the parts. Then 15—x is the other part
Let P = x? (15-x)°

dp
Then ol 2x (15—x)* — 3x? (15-x)?

d’p
and W 2(15-x)® — 6x (15-x)2— 6x (15-x)? + 6x* (15—x)

2

= e 2(15-x) [(15—x)*— 6% (15-x) + 3x?]
. .. dp
Now for maxima or minima . =0
ie  2x (15—x)* - 3x* (15—x)*=0
= x (15—x)? [30-5x] =0
= x=0,15=%x)P*=0,30-5x=0
= x=0,156
= x=6 (--x =0, 15 is not possible)

d’p
When x=6, o 2(15-6) [(15-6)*— 6.6 (15-6) + 3.67]
=2.9109*~-324+108] <0
Hence for P to be maximum, x=6
.. The two parts are 6 and 9.

Example 6. Show that the maximum rectangle with a given permeter is a square.

(NEHU 2016)
Solution: Let x and y be the length and breadth of the rectangle. Then
Perimeter P = 2(x+y) ..c......... (1)
and Area A = XY .covevennnee. (ii)

Hence Area A=x |7 —X
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S T
dx X T
d’A 5
Cdx?
Now for maxima or minima, = 0
e - -2x=0
P, P
= 5 = X = X= 2
Putti = i dA t
umgx—4 in e we ge
d*A
e =-2<0

P
Also when x = Z, from (i) we get

]
P=2|;+y
P_E,
_r P _P
RO R
p
R
Lx=y=7

Hence the rectangle is maximum, if length = breadth i.e it is a square

Example 7. Show that the right circular cylinder of given surface is of maximum
volume when to height is equal to the diameter of the base.  (NEHU 2013)

Solution: Let h be the height and r the radius of the base of a right circular
cylinder.
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Then surface area S = 2712 + 27rh .......... )

195

)

and volume V = wr?h .......... (ii)

By (i) and (ii) we get

S—2xr’ L
V= g2 [_Z_J _ Sr—2mr
T 2

dv 1 :

= - - — 6m O

& 3 (S — 671

d’v L 6 S

= = (- = _ 6m .
= I 5 ( Tr) r [.'S is a constant]
dv

For maxima or minima, —— =0
r

1
e > (S—6mr?) =0

S .
= S=6m=r= \jg——: ['.'r being positive]
Wh \/—s' d'v 3 S S <
= |2 3= =_2
enr oo we get a2 s >

. . S
Hence volume is maximum when r = o
™

Now from (i) S = 2nr? + 2xrh
= 72 = 2nrh

=r=2h

Thus volume of a right circular cylinder of given surface is maximum when

its height is equal to the diameter of the base

Example 8. Show that of all rectangles of given area, the square has the least
perimeter. (NEHU 2016)

Solution: Let x and y be the length and breadth of a rectangle then
Area A = Xy ..ooovne (1)
Perimeter P = 2(x+y) ......... (i1)
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A
By (i) and (ii) P = 2 X+;] -+ A is constant

dp

For maxima or minima, = 0

>

0= JA

—2 =1l=x=+
. X = JA (Area being positive)

d

P
When x = VA,

w7

Hence Penmeter is minimum when x = JA
Now from (i) A= JA y =y = JAa
LXx=y=4JA

Differential Calculus for Degree

Hence of all rectangles of given area, the square has the least perimeter

Example 9. Show that the semi vertical angle of the cone of maximum volume

and of given slant height is tan™' /2

Solution: Let h, r, [ and « be the height, radius of the base, slant height and semi
lcosa

vertical angle of the cone. Then from figure r = Isina and h =

1
Volume of the cone V = 3 wr?h
1 .
=V= 3 ~Psin’a cosa
dv

I*[2sina cosla — sin®a]

W | —

da
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1
=3 T’ sina [2¢o0s?a — sin’a]
d v _ - =l? 2cos? in’
an i” 3 Peosa [2cos?a — sin’a]
1 . . .
+ 3 7l sine [-4eosasina — 2sinacosa ]
sz_ l 13 2 3 2 6 12
= 23" [2cos’a — cosasin’a — 6sin*acosa]
1 .
=3 m1* [2cos*a — Tcosasin®a]
. . dv
For maximum or minimum, o 0

1
ie 3 71} sina [2cos?a — sinfa] = 0

= sina =0 or 2cos’a = sinfa

= o =0ortan’ac =2 = o« =tanl
= tan”' |3 (o =0 is absurd)

When o = tan™! 5

v .
-3 ml* [2cos’a.cosa — Tcosa.sin®a]
=3 w1} [sina.cosa — Tcosa.sino]
1 .
=3 71} [ — 6cosasin’a]
= 27 cosasin’a - tanla =2 = l+tan’a =3
= 27 L.-z— = sec’a =3 = cosa = 1
V33 V3

4xl? 0 - .
- =< = SIn‘a = 11—
33

W

RN
V3
.. Volume of the cone is maximum when o = tan™ /2
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Example 10. Show that the right circular cylinder of given volume which is open
at the top has minimum total surface are, provided its height is equal to the radius

of the base. (NEHU 2015)
Solution: Let he be the height and r the radius of the base of the cylinder. Then
VolumeV = nrlh ... ()
and Surface Area S = wr> + 2wrh .......... (i1) (".-open at the top)

.. By (i) and (i) we get

S=mrt+ 2V
T
ds 5 2V
e
dr r rl
d’ 4v
and T =21+ — (".V is constant)
dr r
: - ds
For maxima or minima, T 0

. 2V
e 2tr— — =0
r

V 3
= 7r=—F = V=71r
o

5

d-s 47 3
. When V =7}, — =27 + ——— = 67>0
dr r

.. Surface area of a cylinder is minimum when V = =r?
Now from (i) mr*= wr’h = r=h

Hence surface area of the cylinder is minimum if its height is equal to radium
of the base

Example 11. Show that x* log

1 1
—] has a local maximum at x =—= and its
X Je
. 1
maximum value is —— (NEHU 2004)

2e
1
Solution: Let f(x) = x? log ;]
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d
fe) = ¥ 10g ]

_1]
XL’

1
= 2x log; + x*x

1
=2x log— —x
X

, d 1
f2(x) = f(x) = . [2x log;—x]

1 1
=2 log; + 2X.X [ o

-1

1
=2 - -3
x log "
For maxima ot minima, f(x) = 0

1
l.e 2x log;— -x=0

1 1
=2 10g;=1 = log; =

When x = % fi(x) = f'(x) = -1 < 0

1
Hence f(x) is maximum when x = ﬁ

(Dl»--

Maximum value of f(x) = [T] (log\/_ ) =

199
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Example 12. Show that f(x) = 12 (logx + 1) + x* = 10x + 3 is maximum when
x=2 and minimum when x=3. (NEHU 2008)

Solution: f(x) = 12 (logx + 1) + x> — 10x + 3

1
f(x) = 12.— + 2x = 10

12
2(x) = f'(x) = — ‘;2— +2
For maximum or minimum, f(x) = 0
12
e — +2x-10=0
X

= 2x*-10x+12=0
= (x-2)(x-3)=0

L x=2,3
12
When x=2, f'(x) =2 — —4— =-1<0
12 2
When >§=3, f(x) =2 - 3 =3 >0

Hence f(x) is maximum when x=2 and minimum when x=3

1 X
Example 13. Show the maximum value of {;] is e (NEHU 2007)
1 X
Solution: Let f(x) = [;]

1
.. log f(x) = x log [;)
Differentiating both sides w.r.t x
44
£() ax T = g (xlog 2

1 1 -1 1
mf’(x) = log;+ X.X {XZ] = log —x——l
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= f(x) = f(x) [log %_1]
d 1
F(x) = 3 {f() [log —-1]}
1 1
= fx) =1 [log;—l] - f(X).x[—X—z]
1 1 1 .
= 009 =109 [log 1P = 607 = £ [(log 17 - 7]

X 08 ) - X
For maximum or minimum, f'(x) = 0

e  f(x) [10g%~1] =0

1
= log;—l =0 cf(x) = 0

@ |

1 1
= log—=1=>—=e=x=
X X
1
When x = o '(x) = (e)ye [O—e]=—e(e%) <0

Hence f(x) is maximum when x =

o | —

Maximum value of f(x) = (e)%

Example 14. Show that the height of the cylinder of maximum volume that can

be inscribed in a sphere of radius R is 2R Find the volume of the largest

3

cylinder inscribed in a sphere of radius R.

Solution: Let r be the radius of the base and h the height of the cylinder inscribed
Then volume V = wr’h ............ (i)
We have AC?=AB?+ BC?
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= Ry =(2r2+Hh

1
= =, @R (ii)

By (i) and (i) V = 345 (4R? - h?)

D C
h 2R
0
2r
A * B
ﬂ — E 4R2 hz + E.ll 2h
an - g RS (=2
Iy
= —[4R? - 3h?
F 4R = 31
d’v T 3
STER Z(_6h) = —Z‘”Kh
. .. dv
For maxima or minima, o 0

ie %(4112 —3h3) =0
= 4R*-3n2=0

= 4R2=3h2:>h=2—R
NE)

hen h 2R d*V 3 2R R <0
- = _ Zqg— =— <
When V3 dh? 2" \B EN
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Hence volume of the cylinder is maximum when h = NG

h
Maximum volume 34— (4R? - 1Y)

o T .Z_Ii 4R7 4R2
-3 BUR-3)
4mR?

33

Example 15. Show that of all rectangles inscribed in a given fixed circle, the
square has the maximum area.

Solution: Let ABCD be a rectangle inscribed in a circle of radius r and centre
at 0. Then

AB = 2r cosf and BC = 2r sinf

Where § = /BAC

Let A be the area of the rectangle ABCD. Then
A = ABXBC = 4r? cosf sinf = 2r? sin20

,de—rcos an 30 = — 8r’ sin26
. . dA D c
For maximum or minimum, e 0
2r
ie 4rfcos 260 =0 0
= c0s20 =0 A 8 B
s T
= 29—3:>6—4
When o= =, 28 L gegnT o ge <o
en 1 T sm2 — 8r .
Hence Area is maximum when § = E

Nowwhen6=’141AB=2rcos%=r\/§
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BC=2rsin%=r\/§

. AB=BC
Therefore ABCD is a square

Exercises

Find for which values of x, the following functions are maximum and
minimum.

(1) x> - 9x2 + 15%x — 3 (i) 4x3 ~ 15x* + 12x — 2

o xP=Tx+6 . xP4x41
() — =5 ™ T
(v) x* — 8x3 + 22x? - 24x + 5

Show that the following function possess neither a maximum nor a
minimum.

(1) x> =3x*+6x +3 (1) x* - 3x* +9x — |

. sin(x+a) - ax+b
) Gox+b V) &34

. . 1. o
(i)  Show that the maximum value of x + s less than its minimum value
. . (2x-D(x-8) .
(i) Show that the minimum value of (x—1)(x—4) is greater than its

maximum value

Show that x* — 6x% + 12x — 3 is neither a maximum nor a minimum when
x=2

Show that sinx (1+cox) is a maximum for x = %

Examine the maxima and minima of the following functions:
(1) sinx (ii) x® (iil) x* (iv) cosx (v) e*sinx

Show that /3 sinx + 3 cosx is a maximum for x = T

Show that sin’x cosx is a maximum when x = “3
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10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Show that

. - . X .

(i) the minimum value of Tozx 8€
og X

(ii) the minimum value of 4e** + e ig 12
(iii) x* + x sinx + 4cosx is maximum for x=0 and minimum for x = 7/
(iv) 4x — 8xlog? is a mimimum when x=1
If f(x) = |x|, show that f(0) is a minimum although f(0) does not exists
Find the point on the parabola 2y = x? which is nearest to the point (0, 3)

If 40 square feet of a sheet of metal are to be used in the construction of
an open tank with a square base, find the dimension so that the capacity is
the greatest possible.

The sum of the surfaces of a cube and a sphere is given. Show that when
the sum of their volumes is least, the diameter of the sphere is equal to the
edge of the cube.

Show that the height of a closed cylinder of the given volume and least
surface is equal to the diameter.

Show that the curved surface of a right circular cylinder of greatest curved
surface which can be inscribed in a sphere is one half of that sphere.

Find the volume of the greatest cylinder that can be inscribed in a cone of
height h and semi vertgical angle «.

Given the total surface of a right circular cone, show that when the volume

3

of the cone is maximum, then the semi vertical angle will be sin

Divide 80 into two parts such that the product of the cube of one and the
5th power of the other shall be as great as possible.

If the sum of the length of the hypotenuse and another side of a right-angle
triangle is given, show that the area of the triangle is a maximum when the

angle between them is %

A gardener having 120 ft. of fencing wishes to enclose a rectangular plot
of land and also to erect a fence across the land parallel to two sides. ‘When
is the maximum area he can enclose?

The intensity of light varies inversely as the square of the distance from the
source. If two lights are 150ft apart and one light is 8 times as strong as
the other, where should an object be placed between the lights to have the
least illumination?
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22. The force F exerted by a circular electric current of radius a on a magnet
whose axis coicides with the axis of the coil is given by

F o X<a2+xz>“5/£

wher x is the distance of the magnet from the centre of the circle. Show

that F is greatest when x =%

23. A window is in the form of a rectangle surmounted by a semi circle of the
total perimeter be 25ft.; find the dimensions so that the greatest possible
amount of light may be admitted.

24. A particle is moving in a straight line. Its distance x cm from a fixed point
0 at any time t seconds is given be the relation

x =t - 1083 + 24t + 36t + 12

When is it moving slowly?
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Indeterminate Forms

Introduction

X—a

) lim f(x)
In general lim ——> 2(%) lxiglg(x)

f
But if lim f(x)—0 and lim g(x)—0, then lim g%% reduces to the form

0 which is meaningless and is called an indeterminate form. But is does not mean

that its limit cannot be evaluated. In this chapter we shall discuss methods to
evaluate such cases.

10.1 The form % (L’ Hospital’s Theorem)

Let f(x) and g(x) be functions of x which can be expanded by Taylor’s
Theorem and also let f(a) = 0 = g(a). Then

; )
lim —— fx) = lim f—/@provided the latter limit exists.
x=a g(X)  x=a g'(x)

Proof: By Taylor’s Theorem we have



208 Differential Calculus for Degree

fla)+(x—a)f’ (a)+( ) fi(a) +....... +R,

x 2 g(X) - Krr-rg ( — )z
g+ (x—a)g @+

g @)+ ... +R,

Where R, =

and R, =

(x—a)

(x—a)’

P fa+ (x-a)g,} 0< g <1

f'" {a+ (x-a)g,} 0<g,<1

Since f(a) = 0 = g(a)

- f(x) o (x—a)f (a)+(x ) f2 @)+ .. +R,
lim lim 2!
X--a g(X) Xx—a ( )
(x—wg(ay+~~577g%m+- ....... +R,
f (X B a) f2
) . (a)+T @)+.... f'(a)
= 1\13}@ fim , (x—a) T g ()
g" (a) +T* g2 (a) B
o f(x) Cf'x)
lim = lim —
X-—a g(X) g (X)
Remark: If f(a) = f*(a) = f’(a) = ........... fi(a) =
and ga)=g¥a)=g*(a) = .occorernn. g i(a) =0

but f'(a) and g*(a) are not both zero. Then

iy L) _

(%)

s g(x)

m a
= gh(X)

The above proposition is true even when n— ocinstead of a

ie limf(x) =0= lim g(x)

a0 T

[putting x = y , t—0 as x— oc]
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w i e
“g(l) e

10.2. The form %

If lim f(x) = oc and lim g(x) = oc. Then

X-—a X

f £ oo
lim () _ lim ,,(X) , provided the limit exist
X-»a g(x) X—a g (X)

f(X) /yg(x) . 0

Proof: lim —— = lim 0 form.

Xx—a g(x) x—a %(X)

—g”(y .
= lm __ /e by L Hospital Rule

()
Viror

g { (%) }
TS

. (%)
= lIm—" = lim
X—a g(x) X—a

g (x) {f (X)}2

R R PO

|
.B'T:

Let )\ = lim fe) (i)
x-a g(x)

Then 3 cases arise

Case 1. If x=0

In the case dividing both sides of (A) by \* we get
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L E®
N £(x)
(%)
= I -
T AT g (x)
Hence Em}g—%—) = l\m} ;x; by (1)

Case 2. If x\=0
In this case adding 1 to both sides of (1) we get

Nt 1= gim Ay fO e
X-a g( ) X -a g(x)
= XNTtI1= limM by case 1
SR
f
e XN+1-= T + 1
g (x)
‘ X
= X = lim ——
g (%)
) () .
= lim =1 b
S R
Case 3. If \ = ¢
X
et g = tim £ = im £ by case
/Ex
f f’
= lim—— (x) i (%)

S g(x) g (x)

Hence in every case, If limf(x) = o = lim g(x), then
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10.3 The form 0xoc

. 0
Thus form can be changed either to o form or 2— form and then we can

proceed as above

Let limf(x) = 0 and lim g(x) = o¢. Then

x—a

lim f(x).g(x) = lim f(x) [% form]

xa 1/
/g(x)

or limf(x).g(x) = lim g(x) [ﬁ form]
X -a x- 1/ oc
/1(x)

10.4 The form oo —©

Let limf(x) = o¢ = limg(x), then

X—a

1 |

lim{f(x) - g(x)] = lim g_@_l_f(_ﬁ

f(x)g(x)
0
Which is of the form 0 and can be evaluated as in 10.1

10.5 The forms 0° o', 1=
A function of the form u’ when u and v are functions of x, can be written as

w = evlogu

Hence the function u* becomes indeterminate when the exponent of ¢ i.e
vlogu takes the form o© and this will be the case when

(i) v=0,u=0forlog0 =~

(i) v=0,u= 2 forlog ¢ = .
(i) v="o0,u=1 for log, =0

Now

(i) When v = 0, u = 0, the function assumes the form 0°

(ii) When v = 0, u = ¢, the function assumes the form >°

(iii) When v = o©, u = 1, the function assumes the form 1~
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Thus we see that the function which takes the forms 0°, >0%and 1*are
indeterminate.

10.6 Working Rules

(A)

(B)

©)

1. Evaluate }(111(1)

Solution:

0 .
If ) assumes the form —, when x=a, find the limiting value as ‘x’

g(x) 0’
approaches ‘a’ indefinitely take the derivative of the numerator divide
it by the derivative of the denominator and put x=a in the result.

0 . .
If % assummes the form n again, then the same rule is to be

f(a) ()
g@ o g'(a)
and so for similar cases. Several repetitions of the process are

sometimes necessary before the value of the function can be
ascertained.

applied to the function, so that its limit, as x-—a is

) o0
For finding the limit of a fraction assuming the form = for x=a we

. . 0
arrive at the same rule as for fractions that assume the form 0 for x=a.

The process may be repeated several times in succession if each new

0

. . .
fraction we get goes on assuming the form = o' o

In evaluating the limits of the functions which take the forms 0°, oc?,
1* we denote the function by y; take logarithms of both sides to the
base ‘e’ and find the limiting value of right side which takes the form
0, °© and find logy. Now equate y to ‘e’ raised to this limiting value
as power.

Illustrative Examples

sin x

sin x

. 0
lim — [ form]

X
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. COSX .
= lim A by L’Hospital’s Rule
1
2.  Evaluate lim [@—X]
x—0 X
. t 0
Solutien: lim ax [6 form]
. sec’ X , 1
= lm 1 by L’Hospital’s Rule
1
= Y =1
1
3. Evaluate lim ogx
x—=l X —
. . logx 0
Solution: lx1£r11 1 [0 form]

K
= lim £ by U'Hospital’s Rule

x—1 1

Lo
1
. log(l—x°
4. Evaluate lim _g(__)
=0 logcosx
. log{1-%’ 0
Solution: lim _g_(_—) — [~ form] v
*~0 Jogcosx 0
—2x
= lim BES'S

x—0  —sinXx

cOosX
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. 2x 0
= Ilm ———— —
X0 (l~xl)tanx [0 form]
2
= lim - - = 2 =2
x 0 (l~x')sec"x—2xtanx 1
o (T4x) =1
5. Evaluate lim K—x>—
X -0 X
) o (1+x) -1 0
Solution: lim Q—z— —  [—= form]
x 0 X O
n-1
= lim M_ =n
X ) 1
. lI—cosx
6. Evaluate lim ————
X0 X~
. l—cosx 0
Solution: lim ——— . [~ form]
x 0 X~ 0
. sinx 0
= lir N —
O e [0 form]
. CcosX , -
= lim 5 by L’Hospital’s Rule
1
2
. . X—tanx
7. Evaluate lim ———
x—0 X
. X —tan X 0
Solution: lim ———— _,  [— form]
x—0 X 0
1—sec’ x 0
= lim ———— =
m — 3 — [O form]

. —2sec’ xtanx 0
= llm ——————r—— _—
lim = - [O form]
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—2(sec* x + 2sec’ x tan” x)

1
3

8. Evaluate lxlfré

X

=

Solution: =

lim

X

xe* —log(1+

6

xe* —log(1+x)

2

x)

0
- [ 0 form]

1

xe' +e' ————

= lim

x—0

2x

. xe'+e' +
lim

0
L+x — [~ form

0 ]

e Jr(1+x)'2

X0

O+1+1+1
2

9. Evaluate 1XI}T[§

2
X2
X —X
. - e"+e -2
Solution: lim —
x—0 X
ex_ev,‘(
2x

lim

x—0

lim

x—0

ex _ esin b3

10. Evaluate lin}’ -
x~0 X —s§in X

X sinx

. . e"—e
Soluion: lim -
x=0 X —sIinx

2

3
2

e +e -2

0
0 form

—

[ ]

0
— [ 0 form]

[% form]



216 Differential Calculus for Degree

S x

e* —cosxe 0
x 0 l1—cosx - [0 orm]
X 2 _sinx . sin X
. e —cos e “+Ssinxe 0
= lir - — [~ form]
x-:0 sinx 0
- lim e —cos’ xe™ +3sinx cosx e +cosxe™ +cos xsinxe™*
T a0 cosX
_1=140+140
1
) X
11. Evaluate lim{~———
«1 |logx logx
. I | X
Solution: l1im logx logx
i I-x 0
=1 logx [6 form]
= lim =L = 4
x—1 l/
X
. Xcosx—logx(1+x
12. Evaluate lmg zg ( )
x - X
. xcosx—logx(l+x 0
Solution: lim ’g ( ) — [= form]
x—0 X- 0
cosx—xsinx—l+ 0
= lim - X -
xl~>0 zx - [0 form]
_ —sinx—sinx—xcosx+(1+x)” 1
= lim P
X0 2 2
. a*—1—xloga
13. Evaluate lim ————=—

X

. F—1-xl 0
Solution: lim a————zi% — [ form]
x= X
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14. Evaluate 1xim

Selution:

15. Evaluate lim

Solution:

m @ loga —loga
X0 2x

I
—_
=

0
[ 0 form]

X 2 2
lim 2 (loga)” _ (loga)
x=0 2 2

li

logsin 2x
-0 logsinx

logsin2x

—
_

o
x0  logsinx [oo form]

2cos 2x

sin 2x

x—0

——COs X
sinx

. 2cot2x
= lim

oG
[— form]
x—=0  cotxX C

2tanx

= lim

0
x~0 tan2x [0 form]

T ke 2sin2 7% Y ospital’s kule

tanx

w3 tan3x

. tan x oG f
im ——— — form
% tan3x - [oc ]

sec’ x

n

20
lim — [; form]

% 3sec’ 3x

2
3 0
fim = 2%, [6 form]

il

% 3cos’x

—6c0s3x sin 3x

il

lim ;
=T —~6cosX sinx

217
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. sin 6x 0f in2x = 2si
= m} Sin 2x [0 orm] " sin2x = 2sinx cosx]
. 6cosbx
"% 2cos2x
log (1+x)

16. Evaluate ‘hj{{ .

log(1+ x)

x
" [; form]

Solution: lim

t
lim X

X 1

lim —— =g
=< l4x

TX

log cos [—2)]

17. Evaluate lim ———=
=1 log(l—x)

X
log cos ﬁ]
. . 2 20
Solution: lim —————= — [— form]
=1 log(1—x) oC
1 T . X
p— [—551n7]
cos—
= lim 2
x—1 . 1
1-x
tan . T
= lim 22 [ form]
x—1 1 oC
1-x
E(l—x)
= lim 2 — [} form]
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log|x -
18. Evaluate lim ——<—£—)
X% tan x

Solution: lim
=7

tan x
b
X“K G
= li /2 _, [ form]
=% SeC” X o
. cos’ x 0
= lim [ = form]
x—7 T 0
X /é
] —2¢08X sinx
= lm —— =
xa% 1

19. Evaluate lim log tan2x

Solution: lim Jog  tan2x

log, tan 2x

x5
— form
*=% log, tanx [DC orm]

2sec” 2x -«
= lim fanZx — [~ form]
x—0 9 G
sec? x
tan x
. 2sec’2xtanx
-0 fap2xsec” X
. 2sec’2x . tanx i
= lim 5 lim — (i)

X
=0 sec x x—0 tan 2x

- log =

1

a

Se

b
3

lo
0g

219
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tan x

= 2y lim

“0 tan2x [y form]

= 9y lim =&
2% 2sec” 2x

Il

1
2x— =1}
2

20. Evaluate lim log_  (sin 2x)

Solution: Same as Ex. 19
21. Evaluate !m} x" e™ where ne IN

. . .ox" e
Solution: lim x" e™ = lim — — [;— form]
X—X : 1]

X X— e

1]
g

22. Evaluate liry})sinx logx

Solution: limsinx logx — (0x>¢ form)

. oC
= lim 198X [— form]
x—0 l o¢
/'8in X
1
= lim — X [ —— cosecx
=0 _cosecx cotx Smx
. sin x tan x 0
= lim —~ —————— — [— form]
X—0 X 0

. —sinxsec’ x + tan X cos X
= lim =0
=0 1
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23. Evaluate lin} (1-sinx) tanx
x=

Solution: lirr} (1-sinx) tanx — (0xo>c form)

. 1—sinx 0
= lim — [— form]
-7 CcotX 0
—CcosX

i\

lim ———5— = lim cosx sin’x = 0
«=T4 —COSEC'X  x—3

b

24, Evaluate lim secg— logx
X~ X

Solution: lin} sec—z—w— logx — (0x20 form)
X= X

_ . logx 0
= 13{3 - [0 form]
cos —
2x
1
2
= lim P Aﬂ = —
U Dgin— T
2 2x

25. Evaluate lenl 2%sin

g
2X

Ea;(—) — (0x2>c form)

Selution: ,}L“l 2% sin

snf3)
im % —

= [5

I

form]

= lim @ 2
(2

.

= lim a $iNY [putting y = —aj when x— 00, y— oc]
y—0 y 2
_axl = a [-.-ummzl]

y—0 y
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26. Evaluate lim (a% —l)x

Solution: lim (a'/Q —1>x — (0% form)

y
a’x —1 0
= ] 7 — -
Jim ¥ [O form]

al/'; logax[‘ 1,]
S S, 2}

= lim a loga = a” loga = loga

X

27. Evaluate lim (secx — tanx)

Solution: lim (secx — tanx) — (0Xoc form)

3

‘ 1 sin x
= lim -

. |COSX COSX

| —sinx [0 f 1

= lim —— — [~ form

x—T;  COSX 0

. —COS X
= lim, -

X —Simnx

= lim cotx = 0

X

. |
28. Evaluate: lm(l\ — — cotx
X = X

. 1
Solution: lim — — cotx — (oc—o¢)
x=0 X

1 cosx

X sinx

Differential Calculus for Degree
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SInX — X cos X 0
—————-1 — [= form]
=0 xsinx | 0

COSX —COSX + X sinx

= lim ;
-0 Sin X + X Cos X
] Xsinx 0

= lim ———————— — [= form]
x=0 SN X + X COS X 0

) sin X + X cos X 0
=lim -———————— = — =90
x-0 2COSX —XSINX 2

29. Evaluate lim [secx—

x—T4

i—sinx

Solution: lim [secx-

x-72

-———] — (20— form)
l—sinx

1 1
= lim [ - -
=7 (cosx l—sinx

. 1 1
= llm/ _—
=% lcosx 1-—sinx
_sinx — 0
= lim 1-sinx —cosx ?OSX — [— form]
=% cosx(l—sinx) 0

sin X — cos X

=1 - -
‘lj& —sinx (1—sinx)+cosx{l—cosx)

sin X — cos X

= lim - — 3
=% —SINX—+SIM” X +C0SX—COoS™ X

1
= —— = X
—1+1
1
30. Evaluate lim |—F/————
x-1 |x"—1 x-—1 *
2 1

x2-1 x-—1

Solution: lirr} l — (oc—oc form)
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2—(x+1)
- llm 2
x--1 X —1
. 1—x 1
= lim — = —
-lox =1 2

31. Evaluate lim [—l,——cotzx]
X 'S

Solution: ling [;Acotlx) — (o0—2¢ form)
X - X..

. 1 cos’x
= lim |———
-0 (X osinT X
sin® x — x” cos” x 0
= lim -~ —— © [+ form]
X 0 2 2 0
X“sin"x
! . 2 2 .
. 2sinX cos X —2Xcos” X —2X" cos Xsin x 0
= lim — o — [ form]
0 2xsin” X+ X~ 2sin X cos X 0
. 2008 2x—2008" X—2X.2008 Xsin X —4x cos xsinx —x” 2008 2x 0
= lim e - i - [= form]
X 2xsin’ x +2x.2sin Xcos X +2xsin2x —x° 2008 2X 0
= lim —4sin 2x + 4cosxsinx — 2sin 2x — 2x2cos 2x — 2sin x — 2x2c0s 2x —4x cos 2x ~ 2x° 2sinx
- xl,,o 451N X COS X -+ 28in 2X + 2x2 €08 2X ~ 2sin 2X -~ 2X 2 008 2X + 4X c0s 2X — 4x” sin 2x
. —8sin2x — 12x cos 2x + 2sin 2x + 4x” sin x 0
= lim — + + — [ form]}
0 65in2x +12x cos2x — x2¢0s 2X + 4x” sin 2x 0

= lim —16c0s2x —12c0s 2x -+ 24x sin 2x +4 cos 2x -~ 8x sin 2x —8x” cos 2x
X0 12 cos 2x +12cos 2x — 24x sin 2x —8x sin 2x —8x” cos 2x

-16—-12+4 —24

= = ::_1

12412 24

32. Evaluate lim {l~-—1;—log(1+x)}
ek ox°

Solution: lim {l_élog(1+x)} — (oc—oc form)
X— x x..

v
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—log(l 0
=l X—Biﬂ} — [ = form]
X~ @ b & 0
1_ﬁ}
= 1 x{ 2
= 1x1d0 ™ [0 form]
1 -2
=i XL
x—0 2 2

33. Evaluate lim {
X—0 e

Solution: lir['(l)

e* -1 x

x—e* +1 0
m ————— — form
X0 X <ex_1) - [0 ]

—_—

_ef 0
= lim B el — [6 form]

x=0 <e* — 1>+ xe"

=lm W T ¥
-0 et e Fxe"

34, Evaluate Iin}) XX
Solution: 1iir(x) x* — [0° form]

Let y = lim x*Then

X —

logy = lim x logx — [0x2 form]

x—0

. log x o’s
= logy= lxlg(l) ——‘yx — [9C form)
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4

3s.

Solution: lim

Differential Calculus for Degree

log y = lim /x = lim (=x)
x -0 _1/’ X

logy=20

y=¢" =]

lim x* = |

x -0

Evaluate the following limit using L’ Hospital’s rule

log tan 7x

. . T
(1) ‘lim [x 5

[ 7
X———_
X7, 2

secx (ii) lim
(i) x=0 logtan2x

(NEHU 2009)

secx — [0x2c form]

x =T 0
= lim 2 [~ form]
x-%4  COSX 0

1
lim - =]
=75 —sinx

il

.o ;. logtan7 ’
(i) tim BNTX e
¢ logtan2x
1 2
——— Tsec” 7x
_ l‘in?) tanl7x
v 2sec’ 2x
tan 2x
7, tan2x sec’ 7x
= —lim

2570 tan7x sec’ 2x

tan 2x i sec? 7x

20 tan7x 0 sec’ 2x

7 tan 2x

x 1
2 x=0 tan7x

tan 2x 0
[ 7 form]

= l lim
2 X tan 7x
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|
}
X

72 | sec? 2x
277 o sec’ 7x
=1
. 1 i
36. Evaluate lim |-—5—~— [NEHU 2013]
x0 | X sm- X

1 1
x?  sinx

Solution: lif?) — (2¢c—-2¢ form)

22 _ 2 0
m sm X—-X [5 form]

x*sin? x

2sinx cos X — 2x 0 .
= i : ; —
o0 |2x7 sin xcos x + 2xsin’ x L 0 orm]
- lim 2cos2x —2
x—~0 | 2x% cos2x + 2xsin 2x + 2sin’ x + 2x 2sin X cos X

= Iim 2cos2x —2

0
— [= form]
=0 12x2 cos2x +4xsin 2x + 2sin’ x

0

—45sin 2x

- lxlng —4x7sin 2x + 4x cos 2x + 4sin 2x + 8x cos 2x + 4sin x cOS X

- 1 —4sin2x 0 P
B xllr(l) —4x7 sin2x +4x cos 2x +4sin 2x +8xcos 2x + 2sin 2x [O orm]

) —8cos2x
= lim . P} )

x—0 —8x8Iin2x —8x°cos2x +4cos2x—8xsin2x

+8c0s2x +8cos2x —16xsin2x + 4cos2x
—8

T 44848+4 .

-8 _

!
24 3
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37. Use L’Hospital’s rule to evaluate

tannx —n tan x
_— (NEHU 2008, 2005)

m . R
x -0 nsin X —sinnx

: . . tannx —ntanx 0
Selution: lim ————— — [—= form]
x -0 nsinX —Ssinnx 0

I’lSGC2 nx — IISCC2 X

il
_B..

0
[= form]
=0  NCOSX —NCOoSNX 0

n2secnxsecnx tanx.n —n2sec x sec x tan x

X -0 —nsinx-n-sinnx

2n” sec’? nx tannx — 2nsec® X tan x

2 . .
x -0 n-smnmnx —nsmnx

y 2n’ (Znsecl nx tan” nx +nsec’ nx)~2n<25<:c2 X tan” x +sec* x)
im
X 0

il

I‘l3 €oSnNxX —ncosx

2n* (n)—2n(1)

n3~n

2n(n®—1)
T on@i-1

38. Evaluate lim e (NEHU 2014)
Solution: lir_’m] X[/;—l - [1™ form]

Lety = lim x -

. 1 0
.. logy = lxn}} — logx — [O form]

1/

. /
lim £X
x—1 1

lim —=1
x—1 X
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-_y:el:e

. . L
i.e lim x/x—l =e
X—1

X : __1
39. Evaluate lim e tsmnx—l

i T (NEHU 2007)

* inx —1 0
Solution: lim — 10X~ +sinx — [= form]
=0 log(l1+x) 0

. log (xz)
40. Use L’Hospital’s rule to evaluate lim

— NEHU 2006
=0 Jog (cot2 x) ( )

2
Solution: lim log(x )

0
=0 Jog (cotzx) - [; form]

2x
2
= lim X
x—0 2
57— 2cotx (vcosec x)
cot™ x
i 2cotx
= lim

—
x—0 —XCOSec X

IZcosy~
= lim -— Sin x

=0 xyA 2
sin® x

. 2sin X cos X
= lim - ———
x 0 X
sin 2x 0 .
= !(lil’()) - [-6 form] .
. 2c¢082x
= lim — =-2

x—0 1
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41. Using L’Hospital’s rule evaluate
(i) M (1ogx )i (ii) lim sinx.logx? (NEHU 2010)

Solution: (i) lim (logx)lu]:)gx — [1* form]

Lety = lim (10gx)1:ﬁ;g;

. 0
.. logy = l‘mg I~ logx log (logx) — [6 form)
,71.,,,, 1<
_ lim logx1 X
x
| 1
- e logx =-1
Cy—ei= L
Ly=s¢e ' = e
T e 1
1.¢ ‘liT: (logx)lflogx = g

(if) lim sinx.logx® — [0x20 form]

log x* 2
= lim —22 ., [— form]
x =0 COSECX o
L:Zx
= lim X

x—0  —cosecxcotx

X0 X~ COSecxX cot X
. sin® x 0
=2 llH(l] - = [6 form]

X" COSX
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= 2lim 251nxco§x [~ form]
*=® 2xcosx —x°sinx 0
) sin 2x
=-2lim -———————
x—0 2X COSX — X° 8in X
P 2cos2x
ST 2cosx —2xsinx — 2xsinx — x? cos x
a2,
X 20-0-0
o log(l+x .
42. Prove that h,.“ﬁ ——g(T—l = 1. Use this result to show that
~ log(1+8x) 8
lxlir(x) d_—log(l+7x) =z (NEHU 2000)
log(1+x
Solution: lim logd+x) — [+ form]
x-+0 X 0
x—0 1+Xx
1
log(1+8
 log(1+8x) ﬁgfg—x)ﬂ
Now lim log(1+7x) ~ lim log(1+7x)
Tx ’
log (1+ 8x)
8 .. 8x
= — lim —>2——
7% Tog(1+7%)
Tx

8 1
=7x7 (from above)
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43. Evaluate lim (cosx)/s
Solution: lim (cosx)/x — [1™ form]

Lety = Eir% (cos x)%&

logcos x 0
= logy = lim —5— - [6 form]
(—sinx)
= [im COSX
X -0 2X
. —tan x 0
= 1‘1;;(1) < [0 form]
- —sec’x _ 1
B xlm() 2 - 2
y=ce I
= lim (cosx)/]/-;z =
x-=0

44. Evaluate lin} (cOsX)®™

b

Solution: lim (cosx)*™ — [0°form]

R

Lety= l'nz/\, (cosx)eos
= logy= liq} cosx log (cosx) — [0Oxoc form]

. log(cos x) e
=logy= th?/z eox — [OC form]

(—sinx)
lim COSX
=%  secxtanx

I

) sin X

Im —
= tan x

Il
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= lim — cosx =0
X T

2
Ly=¢e =1

= lim (cosx)<*= ]

el

45. Evaluate lxiqz) (sinx)ta=
Solution: lim (sinx)®™* —  [0° form]
Lety= lif}) (sinx)wn~

o logy = lig% tanx log (sin x) — [0xo0 form]

| Ny log (sin x) [go form]
= logy = lim ——— — form
gy = % cotx oC
1
———COS X
= lim sin X
=0 _cosec’ X
COSX
= lim sinx_
X0 l
sinx

= lim (- sinx cosx) = 0

x—0
=y=¢e’=1
hﬁ% (Sinx)tanx: 1
46. Evaluate lim (tanx)~
=72
Solution: lir{} (tanx)** — [oc® form]

x=%)

Let y = lim (tanx)®
=%

= logy = lir_r} cosx log (tanx) — [0xoc form)

x=%h

logtan x
= lim ————
~t4  SecX

>x
[;C- form]
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1 2
—- S€C” X
. tan x

% SEC X tan x

_ secx e
= lim 3 [— form]
x4 tan® x oC
Ve
. COS X
= lim =3
x—w; sin V R
cOoS™ X
] COs X 0
=lim —5-=—-=0
=34 SIn” X 1
sy=¢e =1
:ling (tanx )= |
47. Evaluate lim (cosx)™ "
Solution: lir}?) (cosx)wrx — [1* form]

Lety = lim (cosx)cm:x

= logy = lim cot’x log (cosx) — [0xoc form]

i log (cosx) 0
= lim g(i, — [~ form]
X0 tan” x 0
L (—sinx)
COs X

= lim -
-0 2tanx sec” X

i 1 1
=lim - 5 =- <
x—0 2sec” X 2
N
Ly=e?
= lim (cosx)wn: e’
X==0

48. Evaluate lim/ (sinx)™™

Solution: lim (sinx)*™ — [1* form]

%/
haval
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lim tan log (sinx) — [0x2¢ form]

0
[ 0 form]

Lety = lim (sinx)®™
=7
= logy =
x~';'/2
. logsin x
= lim —
x5 COtX
1
———COSX
_ sin x
= lim 3
x—74  —COSec X
cos ;/,
= lim /Slnx
=V
/sin” X
= lim (- sinx cosx) = 0
=71
cy=¢l=

= lim (sinx)™™= 1
=%

Exercises

1. Evaluate thefollowing limits (Ex. 1 to 3):

N Xl"l _ n
(i) lim
X2 x-—g
x —sin"' x

i) lim ,
(ii1) x—0  sin’x

lim e’ +sinx—1
) log (1+x)

2
(vii) lim —98%

x=0 log (cot2 x)

tan 5x

2. i) li
(1) l_n}

tan x

(1i1) lir_r} sec5x cos 7x

X7

(v) lim sinx logx?

. . er __1

(i) lxlr}% log (14 x)

) . xXT=2xP4+2x—4
(iv) lm ——eo——

-2 x?—5x+6

- lim sinlog (1+x)
(Vi) o log (1+sinx)

L . ex — sInx
(vii) lim ———
=0 x —sinx

(i) 1353 x log sin’x

2

X +3x -
2

(iv) lim

=% | —5x

(vi) limlog . (tan2 2x)
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10.

1.

Differential Calculus for Degree

T 1
i 1 XSinx —— ijij) hm j——cotx
(vii) Klir% secx 3 (viir) {x ]
l‘... e
() lim (log x )i-tegx (i) lim x*
— g 0
1
1 2sinx M h 1=x
(iii) lim x (iv) m x

Evaluate the following limits.

(i) lim xcosx —log (1 +x)

x -0

(i1) lin} {X—g] secx

—
=

11 tan x tan ' x — x°
i) lim |———log(l+x iv) lim ———M—M—
ity (1) i iy
. logtan7x . X—sinXcosx
v) l‘lvrr(} log tan 2x (vi) £1£lg x:

(vil) lim sinx®=*
%

Evaluate lim

X2

1 1
log(x—1) x-2

X 1

Evaluate l‘iil}

x—1 log x

Evaluate {im (cot2 x)sm

—0
, 1 1
Evaluate lim |— ——
=01 x°  sin” X
. e —1 [3sinx —sin3x
Show that lim ——
x=0 x"s§inX | COS X — Cc0OS 3X
log ., (cosx)
Show that lim -—g——(-l— =4
- Hog_ . (cos 5 X)

. tannx—ntanx
Evaluate lim ——m ———

=0 nsin X —sinnx



Tangents and Normals

Introduction

dy

o At the point P of the curve

In the previous chapter we have explained that

. . . .od
y = f(x) represents geometrically the gradient at the point P i.e. &y represents the

trigonometrical tangent of the angle of inclination which the tangent at P makes
with the positive direction of x-axis.

In otherwords the derivative at any point on a curve is the slope of the
tangent at the point (X, y) on the curve.

. d
ie Ey = tan v = slope of the tangent

The following should be carefully noted:

In a curve y = f(x), if at a particular point (x, y)

. d C

(i) ay =1, then the slope of the tangent at that point is 1, i.e. the tangent
at that point of the curve makes an angle of 45° with the positive
direction of x-axis.

.d o
(i1) &y = 0, then the tangent to the curve at that point makes an angle of
0° with the positive direction of x axis i.e. the tangent to the curve at

that point is parallel to x-axis.
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.. d . .
(i) &y = negative, then the tangent to the curve at that point makes an

obtuse angle with the positive direction of x-axis.

. d .
(iv) &y =, then the tangent to the curve at that point makes an angle of

90° with the positive direction of x-axis i.e. the tangent to the curve
at that point is perpendicular to x-axis

In Coordinate Geometry, the coordinates of the fixed point is generally
represented by x and y. Thus the equation of the straight line passing through the
point (x,, y,) and making an angle v with the positive direction of x-axis is given
by
y -y, = m (x-x,) where m = tany

In the application of Differential Calculus to the theory of plane curves, the
symbols X and Y are used to denote the current coordinates in the equations of
the tangents and normal to a curve. The symbols x and y are used as usual for
the current coordinates in the equation of the curve.

11.1 Equation of Tangent at any point (x, y) of the curve y = f(x)
Let P (x, y) be any point on the curve y = f(x)

The equation of any straight line passing throught the point P(x, y) is Y~y
=m (X-X)

YA

P(x.y)

b
O » X

Where m = tany, ¢ being the angle of inclination of this line with the
positive direction of x-axis.

If this line is to be a tangent to the curve y = f(x) at the point P(x,y) then

dy
tany = a



Tangents and Normals
Hence the equation of the tangent at the point P(x, y) is
- Y
Y-y= i (X—x)

11.2 Equation of the tangent at any point on the curve f(x, y) =0
If the equation of the curve is of the form f(x, y) = 0, then

of
& y _
dx - _8f/ . f(X, Y) =0
/Oy
of of
—dx +—dy=0
ax X+8x Y
Equation of the tangent at the point (X, y) is
of,
Y-y =~ /f?x (X - x)
ot/
/By
ot ot o1
= (X=x) c‘?x+(Y_Y) 3y:0 a—y‘—fx
of
— + _ = - =f
or X-x)f +(Y-y) fy 0 Ix .

11.3 Parametric Form

If the equation of the curve is of the form
x = f(t) y = o(t), then

dx dy
—=f(t) —=0o(t
" () a t)

dy /
dy  Jdt ot

dx g T ()

Hence the equation of the tangent is

o' (1)
Y-o)= T X-10)
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11.4 Definition

A normal to the curve is a straight line perpendicular to the tengent at the
point of contact.

11.5 Equation of the Normal at any point (x, y) of the curve y = f(x)
The equation of the tangent to the curve y = f(x) at (x, y) is

. dy
Its gradient = ax

Any line throught (x, y) is given by
Y-y=m(X-X)...... (i1)

YA

Rx.y)

P
O » X

If the line (2) is normal to the curve, then it is perpendicular to the tangent (1)

e m-—=-1

.. From (2), the equation of the normal to the curve y = f(x) at the point
(x,y) is

dx
Y—y=—d—y(X“x)

1
or Y—y——d% X-x)
X
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11.6 Cartesian Sub-tangent, Sub-normal, Lengths of Tangents and Normals

Let P(x, y) be any point on the curve y = f(x).

YA

Let the tangent PT and the normal PN to the curve at P meet X axis at M
and G respectively. Then MN is called the subtangent, NG is called the sub-normal
and the lengths of tangent intercepted between the point of contact and the x-axis
i.e PM is called the length of the tangent. Similarly the length of the normal
intercepted between the point of contact and the x-axis i.e PG is called the length
of the normal. i.e

. y y dx
(i) Subtangent = MN =y coty = s = s Y
tan v %y y

&
(i) Sub-normal = NG =y tany =Y. -(%

(i) Length of tangent = PM =y cosec) =y f1+cot’ v

\/1+tan21‘u

tan

1+[dy/dx)z

dy
dx

(iv) Length of Normal = PG =y secyy =y /I +tan’v *

dy :
Y {dXJ
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Illustrative Examples

Example 1. Find the equation of the tangent at any point of the parabola y2 =
4ax

Solution: Given curve is y? = 4ax

differentiating both sides w.r.t x

. dy 22
l.edx—y

Equation of the tangent is

dy
Y-y=5, =%

2a
e Y-y="7"X-x)
y
= Yy-y =2aX - 2ax
= Yy - 4ax = 2aX — 2ax
= Yy=2aX + 2ax
e Yy =2a (X +x)
Example 2. Find the equation of the tangent at any point (X, y) of the ellipe

Solution: In this case f(x, y) = N

?i_?_x of 2y

"9x  a’idy b

.". Equation of the tangent at any point (X, y) is

X ﬁ+Y ?—f——O
(X% o+ (Y =y) 50 =
2x 2

e (X-%) 5 +(Y-y)ir =0
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5 B >+ =
@ P &b
Xx Yy XXy
2 T2 :1 e 2 + B :1
a- b? Toa b-

Example 3. Find the equation of the tangent at the point ‘t’ on the curve given
by x = a cos’t, y = a sin’t

Solution: Here x = a cos’t, y = a sin’

dx

— = - 3a cos’t sint
dt

Y .
——= 3a sin’t cost

dt

d . .
dy th _ 3asin’tcost _  sint
dx  dx/ —3acos’ tsint cost

/dt
. . dy
Equation of the tangent is Y — y = ™ (X =x)

sint

= Y-asintt=- — (X — a cos't)

cost
= Y cost — a sin’t cost = — X sint + a cos’t sint
= X sint + Y cost = a sint cost + a sin’t + cost
= a sint cost (cos’t + sin’t)
ie X sint + Y cost = a sint cost

or X sect+ Y cosect=a

Example 4. Find the equation of the tangent of (x, y) to the curve E; +-ZT~1

m m

X
Solution: Here f(x, y) = a—m+—y——1 =0

bm
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of  mx™' of my"

Cax et ’éy—_ b™

Equation of the tangent at (x, y) is

Y §£+ X ﬁ—0
(_y)f (_X)aX_

Ay
m-1 m-1
e (Y-y) o+ (X-x) =——=0
e ( Y) Tgm "
m—1 ym--l Xm ym
+ = — +m
= mX " mY o" m " m o
Xxm—l me—l
i. + =1
e " b
xm m
Example 5. If p = x cos® + y sin touches the curve ;“—+b_“‘:1 , then prove
that p%“’“) = (acos a)%“*") +(bsin a)%ﬂ-")
. . X"y
Solution: Here Given curve a—m-f—B—m—zl
' ﬁ B mxmfl g ~ mym—l
“Hx a™ Py b"
Equation of the tangent at (x, y) is
X o + (Y o _ 0
( - X) 9x ( - Y) 8}’ -
. meq mym—l
e X=-x)—F (Y -y — =0
a b
Xxm—l me—l ) )
= o + . 1. (1) [as in previous example]

If p = x cosa + y sin® touches the given curve

then these two equations are identical
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COS & sin o p
y™' sina

X7 _cosa o4 =

am p b p

x| acosa y asino

- = and |- =

a p b p

{x]mv] -t [acosa]gj [ y]"H];rl [bsina mor

= - = and || =

a p b p
[i]m _ [acosa |m-p [Z]m _ [bsina |@-»

a p b p

acosx m+ bsina |m-D _ [i]m+[_}i]m

P P a b
[acosu (m~1) {bsina}m
+ =1
p p
= pr%mvl) — (a Cosa)'%mq) —I—(bsina)r%m’“
Example 6. If p = x cosa + y sino touch the curve
X n—1 n_r}l
[— + [%] =1, then prove that p" = (acos@)" + (b sina )"
a

Solution: Same as above

X
Example 7. Prove that all points on the curve y> = 4a {x + a sin;} at which

the tangent is parallel to the x-axis be on a parabola.

X
Solution: Given curve isy> =4a {x + a sm;}
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dy 1 X
2ya = 4a{l+a.g cos ;}

dy X
= Y = 2a{l+cosz}

Since the tangent is parallel to the x-axis

&le
I
=)

X
= 2a{1+cos;‘}=0
X
= l+cos;=0
X
= cos —=-1
a
= cos* —=1
a
L X L X
= sin° —=1-cos* —
a a
= sin3;=1—1=0

X
= sin—=20

a
Hence from (1) we get y? = 4ax which is a qarabola. Hence the proof.

X -y .
Example 8. Prove that N +% =1 touches the curve y = be * at the point where

the curve crosses the axis of y.

X/

Solution: Given curve is y=be ™ ... nH
4y _ by
dx  a ¢
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At the point where the curve crosses the y-axis, x=0

Y _ b

T dx a

.". Equation of the tangent at this point (0, y,) is

b

y-y, == 7 x=0

= ay-ay =-bx
Y Y X

= 5 b : (dividing by ab)
X Y _ % .
_+_—_—__

= b p (1)

Siince this point (0, y,) lies on the curve (i)

_'_y]=be°=b:>%=l

X
.. from (i) ;+%: I is the required tangent to the given curve (i)

X X, . .
Hence ;+%= 1 touches the curve y = be % at the point where it croses

y-axis

Example 9. If the line Ix + my = 1 touches the curve (ax)" + (by)" =1 show that

[_1— Vaci [m]%q
m

Solution: Let the line Ix + my = 1 touches the curve (ax)" + (by)' = 1 at (x,, y).

=1
b
Then

Ix, +my, =1.... (1)
and (ax)"+ (by)" =1 ........ (i1)
Now given curve is (ax)" + (by)" = 1

Y
a".n x"! g a® x"!
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dy
= bn nynvl d—x =_na" xn-\
dy B na"x""l B anxn—l
= dX - - nbnyn—l - bnyn,l
dy an xlnfl
at (x,, ¥)s x by

.. Equation of the tangent at (x,, y,) is
a"x,"
y—x=——§;ﬁ?@—&)
> by ly-blyr=-—anxMx-at
= A xMxHbyty=atx by
= a‘x"'x+by"y=1.... (iii) by (i)

Since this line is a tangent to the given curve (ax)" + (by)" = 1, it must be
identical with the given line Ix + my = 1

a'n xln—l _ bn yxn—] _ 1
1 m
= l = an—l anl and E = bn—\ yn—l
. a b
l _ n-1 —-nl] n-1
= 2l = (ax)"' and i (by)
l /l/r/lfl m %171
= |- = ax and [-—J = by
a b
l l/r;—l %‘l
= N = (ax)" and ——] = (by)"
1 l/r;al ynfl
- 5] =@reyr-t
a b
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Example 10. If the line xcos +y sin@ = p touches the ellipse :: +

show that (acos®)? + (bsina)? = p?

(%)

Solution: Suppose the line xcos + ysin«x = p touches the ellipse X_:+ AR
a

at the point (x,, y,,)

Then x, cos +y sinx =p ... (1)
X 2 2
and L iE =l (i)
2 y2
Now Given curve is f(x, y) = ;7+b-2 -1=0
of 2x of 2y

o Al and @" b
.. Equation of the tangent at (x, y,) is
of of
(X_Xl) -8_)( +(y_y1) 5 =0

2x 2y
= (x-x) pe +(y—y1)b—z =0

a a’ b b’
2 2
XX, Yy, X y
=0
T e Ty 2w
XX Yy,
+ 2oy
= a’ I (i11)

2

Since this line (iii) is a tangent to the given ellipse —

N v
22 +% =1, it must be

indentical with the line xcosa + y sina = p

AR
A SA |

cosa  sina p
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coso X, sina Yy
= P = 'a—z an p bz
acoso X, bsina _ y,
= =— and =
P a p b
[acosu]2 X, [bsina : vy’
= = — and ==
p a p b
[bcosu}2 +{bsinu]2 B x,Zer,2
p p - az bz
(acosa)  (bsina)’ .
= pz + pz = 1 by (11)

= (acos@)’ + (bsin®)? = p?

Example 11. If the line xcosa + ysina = p touches the ellipse % i

prove that 16cos* + 9sin’c = p?

Solution: Same as above

Example 12. Prove that in the curve y = be"\/*‘, then sub-tangent is constant and

sub normal is A

Solution: The given curve is y = be’\

Cdy b oy
‘w3 ¢
gi_a _x/
‘. dy—g'e/a
dx a
Sub-tangent = y’&— = beh. be%

= a = constant

dy
Sub-normal =y d—* be/ - e/a

wet Py
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Example 13. Show that in any curve

sub — normal [ .

length of normal

sub tangent length of tangent

.
I
_ Lengthof normal & dy
Solution: Lengthof tangent AT dx
1+
Ty,
z//dx
lengthof normal | _ A
" llengthof tangent|  ldx) =~ (A)
dy ,
Sub normal y= dv )2
Again ———— = & _ | (B)
84N Sub tangent y dx dx | e
dy
By (A) and (B) we get
Subnormal - _ | length of normal |
Sub tangent length of tangent

Example 14. Find the lengths of the subtangent, subnormal, tangent and normal
to the curve x = a(¢ + sing), y = a(1 — cosp), at the point ¢

Solution: Given curve is x = a(g + sing), y = a(l — cosg)

dx dy .
de =2 (1 +cosyp) ; 10 = a(sing)

dy d}’ée ) asin® B 2sin%cos%
dx  dx/ ~ a(l+cos®) ~  2cos’ @
) a8 %

dy 9
& tan /2

d
Subtangent = yd—z = a(l — cosg) cot%
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cosy
=a?2 sinzy2 ﬁ

a?2 sin% cos%

asin ¢

I

I

dy _

Subnormal =y = = a(l — cosp) tan%

a2sin?% tan 9
2 2

020 0
2a sin? ) tan A

el

Length of tangent = —————F——

Y
29/

a(l~cosf),/1+tan’ ¥
- tan%
in2 0 0
a2sin //zsec/z

- tan %

2asin2% cos%
cos% * sin%

=2a sin%
d 2
Length of normal = y’/1+[d)}:]

=a (1-cosg) Jl—Hanz%
= a.2sin2% sec% =2a sin%tan%
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Example 15. Find the lengths of the sub tangent, sub normal, tangent and
normal to the curve

X = a(cost + t sint) y = a (sint — t cost) at the point .

Soulution: Same as above

11.7 Angle of Intersection of Curves

If two curves intersect each other at P, then the angle of intersection of the
curves is defined as the angle between the tangents to the curves at P.

Let 1, and 1, be the angles which the tangents to the curves at P make with

X-axis

YA}

—» X

0

‘ (d_YJ [_
1and tanv, = |4 there ix

dy dy

] and {5;]2 mean the value

dy
Let tan, = |5~

d
of Eii at P to the curves 1 and 2 making angle «, and v, respectively with x-

axis
If ¢ is the required angle, then from the figure
0 =1 ~b,=2«T, PT,

tan 1y, —tanp,
= tang =tan (v—v,) = T .

o) La)

o]

1+tan, tanvp,

tang =
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[l Lar)

BRI
dx ) \dx ),

p = tan™!

If the equation of the curve is f(x, y) = 0 and ¢(x, y) = 0 then the slopes
of the tangents at any point to these curves are respectivelty

f
X and — O
fy o,
fx &
fy o,
tang fx o
fy o,
i 8= tan~! foo, ~ 6,0,
1.€ =tan' ., L .
fx (j)x +fy¢)y

If these two curves touch then 8=0 and tan8=0. Hence the condition that

the two curves touch each other is f o, ~ f,0, =0

Again two curves are said to cut orthogonally, if the angle between the
. . . L T
tangents at their common point of intersection is 7 ie 9=5 and tanf=cxc
Hence the condition that the two curves cut each other orthogonally is f ¢ +
fo,=0

If the equation of the curves by y = f(x) and y = ¢(x), then slopes of the
tangents at any point to these curves are respectively f(x) and ¢ (x)

o~
BT 00 (0

Hence if the curves touch each other =0 and tan9=0 and

o X)) = o' (x)
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If the curves cut each other orthogonally 6 = ; and tané = x and

s )00 (x) = -1

Illustrative Example
Example 1. Find the angle of intersection of the curves 2y* = x* and y* = 32x
Solution: Let the equation of the curves be
fix,y)=2y*—x'=0and ¢ (x,y)=y*—32x =0
Then f = — 3x%, fy =4y, o = - 32, b, = 2y

If 6 is the angle between the curves then

f o, ~f o, (—3x2>(2y)—4y(—32)

tang = o, +f,0, — (=3x)(=32)+(4y) (2y)

—6xy+128y ,
= tanb = m ............. (1)
For the point of intersection of these curves we have
| 2y? = x’ and y? = 32x
= 232x)=x*=64x=x* = x(64 x?) =0 = x=0, £8
y'=32x = y?=0,£256 = y=0, =16
at (0, 0), tans=0 = 8=0°

—6.8°.16+128.16 2048 — 6144
at (8, 16) tano = =

96.8% +8.16° 6144 + 2048
2048
8192 4

1
= 6= tan' (_Z)
Example 2. Show that the curves x> — 3x* + 2 = 0 and 3x%y - y* = 2 cut
orthogonally.
Solution: Let the equation of the curves be
fx,y)=x*-3x*+2=0and ¢(x,y) =3xy -y -2=0
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Then f = 3x* — 3y?, fy = — 6xy
$ = 6xy, rj)y = 3x?- 3y?
Now f o +fd = (3x%2 - 3y?) 6xy + (-6xy) (3%* — 3y?)
=0
Hence the curves cut orthogonally
Example 3. Show that the curves ax? + by? = 1 and a'x? + b'y? = 1 intersect

th 1l 'fl“—l——i—L
orthogonally if ——+="7=17

Solution: Let the equation of the curves be
fix,y) =ax’ +by* -1 =0 and o(x,y) = a'x*+bly?-1=0
Then f = 2ax, fy = 2by, ¢ = 2a'x, b, = 2b'x
If the curves cut each other orthogonally, then
f o + fy o, = 0
ie 2ax2a'x +2by+bly’=0

= aa'x*+bby’=0 ... e}
Also ax? + by’ = l and a'x? + b'y? =1
= (a-a)x>+ (b-bYy' =0 ......... (2) (by subtracting)

Comparing (1) and (2) we get

a—a'  b—b
aa’  bb'
L S S
= a2 a b b
rr 11
= 4 b a' b

Example 4. Show that the curves y? = 2x and 2xy = k cut at right angles if k’=8
Solution: Let the~equation of the curves be

fx,y)=y*-2x=0and ¢(x,y)=2xy—-k=0

We have y2 = 2x i.e. y = f(x) = V2x

k
and 2xy = k l.e. y = ¢(x) = M
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V2 —k
- - vy = —
o x) dx and ¢'(x) P
If the curves cut at right angles then
f(x) o'(x) = -1
B
or ) T
4x*Jx
k= —F7— ... 1
or \/5 ( )
The point of intersection of these two curves are
2 %
Yokoy=khox=d

&’ kS A
.o form (1) k = Tﬁﬁ = -

11.8 Differential Coefficient of the length of an are of y = f(x) or x = f(y)

Let S denote the actual distance of any point P(x, y) from some fixed point
A of the curve y = f(x). Let Q(x +&x, y +8y) be any other point near P.

Let the are AQ =S +6s

YA
So the are PQ = &s afx+bx,y+by)
Now from the figure by
(chord PQ)? = PR? + QR? ALY o
ox
chord PQ] [QRJ2
= || =1+
PR PR U -
o - N » X

2

chord PQ ArcPQ] _1 {Q_R]Z

ArcPQ = PR

chord PQ |’ ( Arc PQ]2 _
= | ArcPQ PR

Now As Q—P along the curve, Arc PQ—Chord PQ and hence

Chord PQ.
im ——— —
e-F  ArcPQ
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Hence in the limiting position as Q— P along the curve PR—0 i.e 8x—0 and

therefore
. \2 6 2

lim [E’—S] _ lim 1+[—y] ]
P 6X 2 —0 6X
[E o[ -

Le Ix dx | (1)
ds dy
_— = 1+ s

or [dx] .......... (i1)

. d o . Lo K
Since j—;= H—E 3—§ we get on multiplying both sides of (ii) by E)j as
ds | (ax)
dy = dy) (111)

. _ QR
Again from APQR, sin QPR = PQ
o QR ArcPQ
i.e sin QPR = —ArcPQ' PQ

as Q=P along the curve, the secant QP becomes the tangent at P and
Z/QPR v where v is the angle which the tangent at P makes with x-axis and

hence in the limiting position Arc PQ—0 and ;—QPQ —1

‘ by dy :
siny = },mf» B T ds e (iv)
iy cose = tim & O
Simtilarly cosw = lim e = )
dy
AT
and tanv = dx (vi)
ds

. d d .
Since tany = —d)}: and cotv = d—x, we have from (i1) and (iii)
Y
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ds [+tan” ¢ =sec | ...... (vii)
dx

d 3
and d—S:\/H-cot‘ YW=COSECL ........... (viil)
Yy

dX : dy ! 1 1 b Tt
— |+ = = ——+ T = cos*y +osinfu = 1
ds ds sec v cosecTu

11.9 Angle between Radius Vector and Tangent

Let P(r, 9) be a given point on the curve r = f{g) and Q(r + or, 9 + 06)
be a point on the curve near P

Qrfer, +: 0)

Let QP be the secant through Q and P. PN is drawn perpendicular to OQ.
Then /PON = 69
PN = rsind6 and ON =1 cosd @

Let ¢ be the angle made by the tangent PT at P with the radius vector OP
ie Z/OPT = ¢

From right angled APQN

PN rsin 66

PN
tan PQN = aﬁ = OQ—-ON ~ r+or—rcosdd

rsindd

= tan PQN = r(l_—c6m
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rsin 66

r.2sin’ §9 +&r
2

rsin 66 1

60 sm6/
8%

(Dividing numberator and denominator by §9)

1

Now as Q—P along the curve, 66 — 0 and the secant PQ becomes tangent
at P and /PQN— 2OPT ie /PQN— ¢

sin 0
r -
o6

sind 8/ :
! 69[ /2

L o

Hence tan¢ = lim

5

r de ..
= tan¢ = E g e (ii)
do
2
sin 80 sin %

N-)~>0

/2
[ lim % and | 6% are each equal to 1.]
If S denotes the length of the are AP measured from a fixed point A on the
curve and S + &8s be the length of the are AQ so that arc PQ = 8s

. _IE rsindd 99 arcPQ
Then Sin PQN = PQ =~ & arcPQ PQ

P
Now as Q—P, then §0 —0, 6s—0 and ar;QQ —1 and ZPQN— ¢

o T e as e (i)

. QN 0Q-ON (r+8r)—rcostb
Again Cos PQN = PQ PQ PQ
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r(l —cos80) +or
PQ

2.2sin? 6% +6r
PQ

sin 6(y ’

A

Now as Q— P then as before we get

1.e cos PQN =

69 6S 61‘ b_s
PQ " “PQ

i.e Cos PQN = — rge

or dr

Cos¢ = lim BT e (iii)

Remark: From AOPT, /PTX = /POT + /LOPT
Lv=0+0¢

11.10 Derivative of arc length (Polar form)
In the figure of art. 11.8 we have
PQ? = PN? + QN? = (rsin8 0)? + (r+6r-rcosd §)?
= PQ’=r%in?00+ {r(1-cosd8) + 6r}2
= ?sin®6 0+ {2.r sin? %04) + or}2

Dividing both sides by §6? we get

PQ) ,(sin80) s1n6/ 6r :
—| = + —r69 —
o0 &6 / 69
2
Eg 6_52_1-2 sin 6 2_|_ lrﬁ@ sm69£ _{_[QJZ
= l&s 88) | 0 2 %0 8
PQ

In the limiting position Q—P, §8 — O and = 1

: ; 2 sin®
tim [ 2] = limrz[w] +lim |~ rs6 /
86 80—0 8 -0 2 /
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= (%] =71+ [%]2. ............ (i)
1.e -2—; = \r +[%(r;] .............. (i1)

do
Multiplying both sides of (ii) by o Ve get

ds oy’

ds _ 9

i -I-[r dr] ........... (i1n)

Cor: Multiplying (i), (ii) and (iii) respectively by d6?, d6, dr we get
ds? = dr? + r* d6°

e ds= ,/m{%] L do

11.12 Subtangent and sub normal (Polar form)

Let NOT be drawn perpendicular to the radius vector OP, through the pole
O, meeting the tangent and normal to the curve at T and N respectively. Then
OT is called polar sub tangent for the point P and ON is called the polar subnormal
for the point P. '

/4

N
//)

Let ¢ be the angle between the radius vector OP and the tangent PT and
let OP=r
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Now Polar Subtangent = OT = OP tan¢ (form APON)

L e B
=rr [,1and>—rdr]

dr
%
T dr
Polar Subnormal = F o
olar Subnormal =r cotdp = —— = 5 =
tan ¢ rge do
r

11.12. Length of Perpendicular from Pole on the tangent

Let p be the length of the perpendicular OT from the pole O to the tangent
PT at the point P of the curve, the length of the radius vector OP being .

Let ¢ be the angle between the radius vector and the tangent PT.
Now p = OT = OP sind =r sin¢

p
r o
© P T
pr = g (Ireote) =5 I
.
pr 7 = lag) (1)
S BT TR
utting u = - O ®
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Note: The relation between p and r for a given curve is called to pedal
equation where p is the length of the perpendicular from the pole on the tangent
to the curve at any point of it and r is the radius vector of this point.

11.13 To find the pedal equation from the Cartesian equation
If p is the length of the tangent from the origin (0, 0) to the tangent at (x,

y)
Yoy- ¥ix
i.e Y=g (X -x)
Xilz Y + & 0 Th
e i (y—-x ax )= en
y-x &
p= ——=%_ from Coordinate Geometry ......(1)
1+
dx
Alsor=x2+y ... (i) where r is the radius vector of the point (x, y)

and Cartesian equation of the curve is f(x, y) = 0 .....(iii)

Then by elliminating x from (i), (ii) and (iii) we get a relation between p and
r which is the require pedal equation of the curve
11.14 To find the pedal equation from polar equations

Let f(r, 9) = 0 be the polar equation of the curve

Then since f(r,) =0 ............ (1)
tand = T (i1)
p=rsind ......... i)\
11, 1(dr)
or ? s + lag) (iv)

On elliminating g and ¢ from (1), (ii), (iii), (iv)

We get a relation between p and r which is the required pedal equation.
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INustrative Examples

ds

Example 1. Calculate = for the parabola y* = 4ax.

Solution: Here v? = 4ax

2 2
g 1+[iy-] _ e
y

dx dx :

.(_ii_\/1+4a2 _\/1+3 . 2_4
= dx = dax = x Sy T aax

E o jaTtx

dx X

d
Example 2. In the Cycloid x = a(l—cosg), y = a(g+sing) prove that d_)s( = zx—a

dx
Solution: Here x = a(l-cosg) = —; = a sing

do
. dy
y = a(g+sing) = o a(l+cosg)
d 2 0
S dy %9 _ a(1+cosh) _ 2cos A =coty
©dx d%e asin® 25in%cos9/2 2
dS _ dy2 _ 29 _ )
Now - ,/1+[&] = Jl1+cot A —cosecé
ds 1 1 1
=

dx sin% - \/2sinz% - \/l—cose

5 2
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ds 1
= @ — = -+ x = a(l-cosg)

dx %

=

e
“dx Vx

Example 3. For the ellipse x = acost, y = bsint, prove that

d !
S _ a(l—e2 cos® t)/z
dt

. dx .

Solution: Here x = a cos = Ti?: — a sint

= b sint g"b t
y =bsint = - =Dbcos

ds dx) (dy) — . .
= (—“] +[_y] = \/a‘sin‘H—b‘coszt

dt dt dt
dS 5 ) S 3 > ) s ,
= a = \/a’ sin“t+b " (1—e”)cos™ t [-b? = al(1-e?)]
ds
= . dat \/;2 (sin’ t 4 cos’ t)—a’e’ cos’ t

ds

= a avl—elcos’t

ds ds X
Example 4. Calculate g d-y for the curve y = a log sec and prove that x
d’x 1. (3}&]
= av. Further prove that P L N

X
Solution: Equation of the curve is 'y = a log sec

dy 1 X . x 1
T =a sec— tan— —
* X

dx secA a aa
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ds 2 , X X
d_y = \/1+{j_y] = \/1+c0t“; = cosec ... (111)

X

, X
Also from (1) tanv = tan;

Again from (i1) - = Lo- cos

d*x .
‘. —5 = -—sin
ds’

. ds
Example 5. Find —;

de
Solution: (i) r = ae"™
Ca ae
.= @ cot

X
S€C—
a

| >
[o%
b

for the curves

Heotn

(i) r=ae

a

fcota

= cot™x (ae

(i) r" = a” cosn§

Bcom) =1 cott

267
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ds) drY’
lem] =t Yl 2 + 12 cot?a = r? (1 + cot’ax)
= r? cosec’®
ds
. — =TI cosect
de

(i) " = a™ cosn g

Taking logarithm of both sides we get

n logr = n loga + log cosng ['.-loga™ = m loga, logab=loga + logb]

Differentiating both sides we get

ndr  nsinnd
r d@  cosn®
a _
= B = —rtan ng
SRR By (o
ince tand)—rdr = '\ Ttannd =—cotng
i
tang = tan [5+n9 = ¢ = %—i»ne

do . .
Now r & sing = Sln[%+n9]

@ _
g~ Cos ng
_(ﬁ _ cosnf
ds r
ds _ ¢ _
B " coemd - T secn g
dS ‘ ! -1 L. _ i i
= @ (cosn@)A (cosnf) . Cose—[a] ]
ds Vo (=)
= @@ (cosn())A = a (cosnb)
ds (1-n)
® @ (cosnb) 4
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Example 6. Show that in the curve r = a¢™""
(i) polar sub tangent = r tanc

(i) polar sub normal = r cotx

fcotar

Solution: Here r = ac¢

dr Heot Beota
W -2 cotae™™™® = cota(ac )
dr )
2 _ o
= 49 "rco
dr
polar subnormal = w ! cotx
. do 1 1
Again —= = — tan®

dr rcota ot
do 1
.. polar subtangent = rza? =r? (; tana) = rtan®
Example 7. In the Cardiode r = a(1 — cosg), prove that the polar subtangent is
2asin’ %
COS%

Solution: Here r = a(1-coss)

dar

o a sing

@_ 1

dr ~ asin®

2 ngrz 1 _ a’(1-cos8)
dr asinf asinf

g 2(2sin’ %)2 4asin* 9/
2 — = —
= T dr 2sin%cos% B Zsin%cos%
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49 2asin’ %
r2 [N
dr cos%

d6 2asin’®
Hence polar sub tangent = 1. —— = ,_//2
dr cose/2
Example 8. Find the pedal equation ofthe parabola y* = 4ax with respect to its
vertex.

Solution: Here the curve is y* = 4ax ........ (1)
dy
2y ax 4a
dy _ 28
= dx y

The equation of the tangent to the curve (i) at (x, y) 18

Y . X

_yﬁdX( _X)
2a

or Y—y=‘;(X~x)

or Yy-y=2aX - 2ax
or Yy - dax=2aX - 2ax - y* = dax
or 2aX-Yy+2ax=0 ... (i)

If p is the length of the perpendicular to the tangent (ii) from the origin (0,
0) then

2ax 2ax
p= = = ;
Jeay +(-y) ety
______23x Xva ‘e
or p= \/Eg+4ax = \/E; ....... (ii1)
Alsorr=x*+y*=x>+4ax .......... (iv)

from (iii) we get p* (a + x) = ax? (by squaring both sides)

or ax!-px-ap*=0
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17, T
or x= o [p‘+\/p4+4a‘p']

putting the value of x in (iv) we get

1 2 B 2 1 B PO
2= ey lp‘ +4p’ +4a'p'} +4a.§; [p“ +4/p +4a'p"}

or 42’ =p*+ (pt+4a’p) +2p7 p +4a’p’
+ 8a2p2 + 8a2 'p-l +4a2pl
= da’r’ - 2p* - 12a%p’ = [p' +4a’p’ (82’ + 2p?)

or (4a’? - 2p* - 12a%p?)? = (8a® + 2p*)* (p* + 4a’p’)
which is the required pedal equation.
Example 9. Find the pedal equation of the circle x* + y* = 2ax
Solution: The circle is x> + y* = 2ax ........ (1)

Differentiating both sides w.r.t x

g &
x +2y= dx—Za

The equation of the tangent to the circle (i) at (x, y) is
Y-y = 9y X
-y = dx ( - X)

a—Xx

y

or Y-y= (X -x)

or (x—a)X+yX=-ax+x+y

or (x—-a)X+tyY-ax=0.... (i) . xHy? = 2ax

It p is the length of the perpendicular on the tangent (ii) from the origin (0,
0) then

ax ax

P™ Jx=af vy ~ V¥ e 2axty
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ax ax
p= \/x2+y2~2ax+az - Ja?

or

Also r? = x> + y? = 2ax from (i)

., r2 = 2ap is the required pedal equation.

Exercises

Find the equation of the tangent at the point (x, y) of the following curves:
(i) x* + y* = 3axy = 0 (i) (x* + y°)* = a* (x* + y?)

2
3

% o
(iif) [2 +%] =0 (iv) x% +y5 =¥

Find the equation of the tangent at the point ‘¢’ on each of the following
curves:

(i) x=acos2s; y=2,rasing

(i) x =acoss; y=>b sing

(i) x = a cose; y = a sing

Find the equation of the tangent to the curve

(i) x = at’; y = at® at any point t

(i) x = at?; y = 2at at any point t

Find the normal to the curves \/xy = a+x which makes equal intercepts an
co-ordinate axes

Find at what points to the curve y = (x—3)? (x-2) the tangent is parallel to
the x-axis.

Find where the tangent is parallel to x-axis for the curves

3 3

() L =xy (i) y = X - 3 - 9x + 15

Find where the tangent is parallel to y-axis for the curves

(i) y* = x*(a-x) (i) y = (x-3)* (x-2)
Find the equation of the tangent and that of the normal at any point of the
ellipse a’y? + b?x? = a’b?

X X y
Prove that ;Jr‘% =1 touches the curve ;+10g[g] =0
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10.

11.

14.

15.

16.

17.

18.

19,

20.

. X
Prove that all points on the curve y? = 4a{x + a sin o |1 at which the
tangent is parallel to the x-axis lic on a parabola.
. X n“\ 1y y '1’{11 B]
If p=xcosa +ysin touch the curve |— +[E] =1. Prove that
a

p" = (acos)" + (bsin )"

X X
Prove that the line N +% =1 touches the curve y = be " at the point where

the curve crosses the y-axis.

If the line Ix+my = | touches the curve (ax)" + (by)" = 1, the prove that

[1]%41) m Hn-t

b

a

2 2

X
If the line xcos™ + y sina = p touches the ellipse 7 + Zl =1, show that

p? = (acosa)? + (b sino)?

Find the length of the sub tangent sub normal lengths of tangent and normal
to the following curves

(i) x=a (o+sine); y = a(l—cose) at the point o
(i) x = a (cost+tsint); y = a(sint—tcost) at the point t

Prove that the sub tangent at any point on the curve x™y™ = a™™" varies as
the abscissa of the point.

Prove that in the curve y = be”* the sub tangent is constant and sub normal
. 2
is yA
) subnormal | length of normal |
Show that in any curve =
sub tangent |length of tangent

Find the angle of intersection of the following curves

(i) xy = a? and x? + y? = 2a? (ii) 2y* = x’ and y* = 32x

(iit) x2 = 4y and y(x+4) = 8 (ii) x*— y? = 2a’ and x> + y? = 4a?

Show that the curve x> — 3xy? + 2 = 0 and 3x*y — y* = 2 cut orthogonally
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21. Find d%e for the following curves:
(i) r? = a*cos2¢ (i) r = a (1+cosh)

22. Show that for the curve r = e, the polar sub tangent is equal to the sub-
normal

23. Prove that for the curve re=, the polar sun tangent is constant.
24. Prove that for the curve r = ag, the polar subnormal is constant.

25. For the Cordiode r = a(1-cos¢) prove that
. | . 5
i o= 5 g (ii) 2ap®> = 1’
., 0 0
(iii) polar sub tangent = 2asm‘5 tan —

2

26. Find the pedal equation of the following curves:

Beota

(i)r=ae (ii) 2 cos2e = a? (iii) > = a’cos2e

]
(iv) —=ecosH
r

27. Show that the portion of the tangent at any point on the curve X=a cos’s;
y=a sin’g intercepted between the axes is of constant length.

28. Show that the pedal equation of
Xy 2
: : R AR | : iaa2b/ = 2 i 22
(i) the ellipse e +b‘ with regard to the centre is a A a2 +b?-r
(ii) the parabola y? = 4a(x+a) is p* = ar

. $4 A [ 2
(iii) the astroid x”* +y/3 —ah Qs+ 3p*=a?



Curvature

Introduction

The terms flatness or sharpness are often used to describe the nature of
bending of the curve at a particular point. In this chapter we give the mathematical
expression of curvature of the curve at a particular point which give a definite
numerical measure of bending which the curve undergoes at the point.

We shall assume that whenever dirivatives occur in our problems they do
exists at the points under consideration.
12.1 Definintions
(A) Angle of Contingency

Let P and Q be two neighbouring points on a curve and the tangentS PT
and QT at these two points make angles ¥ and v+t respectively with a fixed

YA
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line the x-axis. Let s be the length of the arc AP measured from the fined point
A and let AQ be s+bs such that PQ =8s.

Here /PTX = v, Z/QT'X = ¥+, hence
LTPT = (b+d0) — b = 8

Thus 8¢ measures the change in the inclination of the tangent line as the

point of contanct P moves along the curve to describe PQ = 6s. The angle &1
is called the angle of contingency of the arc PQ which is the difference of the
angles which the tangents at the extremites of the arc make with a fixed straight
line.

(B) Average Curvature

&) _ angleof contingency
os length of arc PQ
the average bending of the arc PQ

(C) Curvature

The fraction is called the average curvature or

Curvature at any point P of the curve is called the limiting value if it exists
of the average curvature as the point Q approaches P along the curve.

le of conti
Thus Curvature at P = lim M2 OTTe Y
length of arc PQ

Q—-P

_ lim 20_d¥

=0 & ds
(D) Radius of Curvature

The reciprocal of the curvature at any point P is called the radius of
curvature and is denoted by the Greek letter p

ds
Radius of Curvature p = —

d
If the length PC = p measured from P along the positive direction of the
normal, the point C is called the centre of curvature at P and the circle with centre
C and radius CP = p is called circle of curvature at P. Any chord of this circle
through the point of contact is called a chord of curvature.
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»X
© T

12.2 Formula for Radius of Curvature
(A) Radius of Curvature of the curve y = f(x)

dy
We have tan = —

dx
Differentiating both sides w.r.t x, we get
dy  d’y
20— — =
secd dx dx?
dy ds dy
2 — 2 =27
or  sec™y ds dx  dx®
2 l Ny = .(-1_21 '.'cosu:—x]
or sec ) secy = Ix’ ds
sec® U <1+tan2v>%
o PTrey Ty
dx? dx?
e
dx - _ ﬂ
or p= d’y ’ am)_dx
dx?
3
(1+5)* Ly &y
or p-= T where y, = ax Ay, = o3

2

Cor: Curvature = — =—5 cos’¥
p dx
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(B) Radius of Curvature of the Curve f(x, y) =

fi =0 . fx+1f =0 Yy __L
x,y)=0 . fx y =0or = =- %

.
where £, f represents the partial differential coefficients of f(x, y) w.rt x and
y respectively

dy_d) £
A dx| f,
d’y 1 dy| dy
or dXz - (f )2 {fy [f\‘( +fxy ] fx [fx» + Xy dX”
y

dy fx
Replacing E— by — — we get

dy _ Lo [f“( ) - E 1, (f,)}

dx® (fy)z v
5 3» 2 %
) [H[*%‘H
e !
o (0 Tr ) 6,08 +5, 67
e (6]

or P £ (6) —26 88, +1, (£ )

X Xy Xy

(C) Radius of Curvature of the Curve x = {(t), y = o(t)

o'y

Since — = (1) = o
dy_dfy)_[dy]d
and dx* dx(x’) ldt x')dx
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(D)

()

dly xy"—yx" 1 x'y'—yx
o T W W
A N
h_’_[ﬂ] 1+[‘}i‘,]
{ dx X
p= &y = X’}’”—y/%ﬁ
dx? x"
3
(X/2+y/2)/2
or p= x’y”—y/x”

Formula for Pedal Equation

The angles g, ¢, v are connected by the relation

L= g+d e (1) YA
Differentiating (i) w.r.t s we get
P

d

db_do do

ds ds ds o

1_do do dr
' p ds  dr ds 0 v

0 » X

de . d
or l:lsmo—kcosod—o [—:rsmoand——r:coso
p T dr |ds ds

. do
s1nq>+rcoso—é—

or

p r r
1 14 . 1 dp )
~—=—.—{rsin = - — Cp=Trsmo
g p T dr( ?) r dr P
ﬂ
p=r dp

Formula for Polar Equations

1_L+qu .
We know that P’ ey ) IR (1)
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Differfentiating (i) w.r.t r we get

2dp_2_ _‘L[g)luir_zdr 9
do

pPdr 1’ r* de? “dodr
1 dp 1 2[dr]2 1 d’r
or =5 E| | T gt
dr r r’{do r* do
. 119341+3[g]2_id_2r
prdr rt rflde) 1’ d¢
Ldp _ 31+3[$]2 1dx
= Ta PF ) P
1 1dp 1 1 2(dr) 1 dr .
=P SR il IR
= p rdr 1 2 (dr Yt * r"’[de] rode’ y @)
?W[de]]
2~}-2[(~j£] —r~d—2£
1 1 ) de’
p [i]%r2+[$]2%' T
r do
: dry’  d’r
242 —r—-
Lol de] "4
B %
p 2+[$]2 2
dé
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(F) Polar Tangental Formula

To find the radius of curvature of the curve for which the relation between
p and ¥ is given
ds dr

dr
We know that —=¢050 and p = —=r—
ds dv dp

oy d0_ dp d&r ﬁ_d_pcow[rﬂ]

oW d drds dv  dr dp
or iiR: TCOSY wiereennnn. (1)
duw

Also p =1 sin¢ ........ (i1)
Squaring and adding (i) and (i1) we get

p*+

Differentiating (iii) w.r.t p we get

2 bl
dp &p db_, &

2p +2 —. —_—=
Po o a ap  dp
+£i_22——-r.d_r
dzp . dr

Hlustrative Examples

Example 1. Find the radius of curvature at the point (x, y) on the parabola y* =
4ax

Solution: The curve is y? = 4ax ......... (i)
dy
2y % 4a
dy 2a
L ¥ _=
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L dy_ mey_ umn
and T yidx oy y
. d’y  4a’
(S dxz yz
3 3
207 2 2
dx y
Ty T e
dx? v
3 3
(yZ +4a2)2 (4ax+4az)2
é = =
4a* 4a’
[ (xra) _ 2 )
4a)2 (x+a)? 5
or = = ——=(x+a)
P 43’ \/g

Example 2. Find the radius of curvature at (x, y) on the curve a’y=x’-a’

Solution: The given curve is a’y = x> — a’

dy
2 2 a2
= a dx 3x
g}i 3 3x?
= i a’
dy _6x
dx? a’
3 3
3 -
dy)' 3x* ‘
14| ERELS
+dx a’ J
P= ¢y T e
dx? a’
3
_(a4+9x4)2
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Example 3. Find the radius of curvature at the point (x, y) on the curve

X

. I
Solution; The curve is X +y* =a

%

%

=a
)
Differentiating both sides w.r.t x we get

Exv%_*_gyi%_d_}i:()

3 3 dx
_L !
dy x| 3 E
or —=—|—| =—|=
dx y X

Differentiating again w.r.t X we get

Sl

dy 7 37 dx 3
dx? x%
1
2 Ay [,] _HH
or dy_ 1 X
x? 3 <

2
d2 _l (x/3+y4)
T N7
» ¥ /
dy L_a% Ky =
or  4x? 3 x%y%
24 e
-l e
dx X
p= d’y - 1 a%
dx’ 3 gk
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1 X%H%}/z

PR & SR EEp g
= p=3 a% - X7y
2
= p=3 3 .x%y%=3a%x%y%
%

Example 4. Show that the radius of curvature at (acos’6, asin’9) on the curve
x%+y% = a%is 3a sinfcos@
Solution: Using the above result and putting

X =acos’d,y=asin’d we get

p= 3a% a% cose.a% sinf = 3a sinfcosh
Example 5. Find the radius of curvature on the curve xy = ¢? at the point (%, y)

2

Solution: The curve is xy =c?ory = <
X
dy ¢ d’y 2c?
xR
2]2 4)2
&y ¢ 3
{1+[ ] ] [1-‘:— 4] (x“+c4)2 X3
= &y T2 T 22X
dx? X

(x“+x2y2)%.x3 _ (x2+y2)%

2¢%x’ 2¢?

or p=

X
Example 6. Find the radius of curvature at (%, y) of the curve y= ¢ log sec [‘g]

Solution: The curve is y = ¢ log sec [i]
c

dy 1 [x] [x]l

L —c————sec|—[tan|=|—

dx [x] c clc
sec | —

c
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dy X
——=tan|—
2
. C C
2 % 3
[H-[g—i] ] {H—tan2 [%]}2
P dz—i’ 1 sec’ [i]
dx c c

2 2 ab?
Example 7. Prove that for the ellipse x_2+%2_:1 p =_pz_, p being the
a
perpendicular from the centre on the tangent at (x, y)

2 2
Solution: Equation of the tangent at (x, y) to the ellipse 2-2—4—%7 =1 is

Xx Yy
—2+by2=1
a

If p is the perpendicular from the centre (0, 0) on this tangent then p =

2.2

S A —— (i)
b*'x* +a
b T

2

i)

2 2
Given ellipse is %+;’—2=1 ory’ = o7 @ —x?)

) ﬂ _ 2xb?
Y ax a’
dy b x

= a: 2y
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dzy b2 y+xg—z
dxzz_;z_ y?
b? | xb?
7.2 7+
a ya
2 212
d2y b2 x2b2 _+_aZy2 _b_ a b
= z - .2 3.2 T a? vt
dx a y'a y
o 3
dy} b'x? |2
1+[&] [H_a“yz
P="¢ T (1
5

a4y2 +b4xz]% azya (b4x2 +a4y2)%

= = =
p a6y3b4 a4
_ a’b? ab? ..
> Pty W
(b4x2+a2y2)%

Example 8. Find the radius of curvature of the curve y = e* at the point where
it crosses the y axis

Solution: Given curve is y = e* ........... (i)
dy d’y
w i =
) 3
2
1+ :
dx {1+e2" 2 -
1Y dty = o (ii)
dx?

The given curve (ii) crosses y axis when x = 0
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.y =11i.e it crosses y axis at (0, 1)

3
1+’ }2 3
-, at (0, 1), p={e—0} =21 =22

Example 9. In the Cycloidx = a(g + song), y = a(1 — cosg) prove that

p =4a cos (%)

Solution: The given Cycloid is

dx

o a(l + cosg) = 2acosz%

X =a(g + sing) =

d
y=a(l - cosp) = LA asing = 2asin%cos%

dé
dy in 0 9
9}’_ _ o _ 2as1n/zcosé _ tany
d 20 2
dx xd() 2acos A

1+[g]2 3

e ] (1+ tan? 85 ) _. sec’ 8/
b= % - Elz;SCC4% - Sec4%
p =4a cos%

Example 10. Find the radius of curvature at the point ‘t’ on the curve x = a cost,
y = b sint
Solution: The given curve is x = a cost, y = b sint

dx

X' = — =-asint ’=d—y=bcost
dt YT &
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d*x d? .
x'= —5 =—acost,y = Etzl = — b sint

)A

x'y" —y'x” absin’® t +abcos® t

(x'2 + y'z)% B (a2 sin’ t+b’ cos’ t

)A

<a2 sin’ t+ b’ cos’ t

b= ab

Example 11. Find the radius of curvature at (p, r) on the curve p*> = ar
Solution: The curve is p*> = ar

Differentiating w.r.t r we get

b &

Plar 727 ar ~ 2p

dr_2p

dp a

- S i I
P=T"dp %% 7 2 a’

Example 12. Find the radius of curvature at the point (p, r) on the following
curves

(i) r = 2ap’ @p*@@+a)=r
Solution: (i) Given curve is r* = 2ap?

Differentiating w.r.t p we get

dr  4ap
3rr —=4a — =
! dp P= dp 3r?
dr . 4ap 4ap 42 [P
P=T._ =1 735 = 4o
dp 3r 3r 3r\ 2a
2 |2r
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(ii) Given curve is p> (2 + a®) =r*........ @)

Differentiating w.r.t r we get

=

d d
2mp?+1? 2p E§+ az.ZpEp = 4

dj
(r? +a») 2p Ep= 4r® - 2rp?

dp  4r’—2rp> 20 —1p’

dr 2p(r2 +a2) B p(r2 +a2)‘

dr _ p(+a’) p(r* +a)
dp 2r’ —mp?

p=r 2w —p

r ' +a ) i
P=9rya| , o | Putting the value of p from (i)
2r" —
r* +a’
r? r’ +a’
p= Jriga? |2t +2r%a’ -1t
r* +a’

2

= [ +a2)\/r2 +a?

p= 2r2a2+r“ (

B (r2 +a2)%
T o224
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Example 13. Find the radius of curvature at any point (r, §) on the cardiode r
= a(l+cosg)

Solution: Curve is r = a(l+cosg)

2

T
%z—asine' : w=—acos9
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3
(a2 (14cos 9)2 +a?sin’ 9)/2

= p=
a’(1 +cos(3)2 +2a’ sin’ §+a’ (14 cosB)cos b
a’ {1+ cos? 6+ 2cosH +sin’ 9}%
= P= a2[1—|—cos26+2cose+2sin29+cose+cosze]
a(2+2cose)%
= P= 3cos®+ 2(cos’ §+sin’ B) +1
2a\2 (1+cos9)% 2a4/2 y
= p= = (14 cos8)™

3(1+cos6) 3

> p= 2aIJ—29 _Cos/

Example 14. Find the radius of curvature at any point (r,9) on the cardiode r =
a(l — cosg)

Solution: Similar as example 13.

ro . do
Example 15. For any curvature prove that Ezsm ¢[1 +£] were p is the radius

. do
of curvature and tan¢ =r —

dr
Solution: We know that

V=0+ .ceeevrrenns )]
Differentiating both sides of (i) w.r.t 9, we get

dy do

e

do 4o

. d . d . .

= mnd)EZE = smd)[l + fg] Multiplying both sides by sin¢

= (B sind)[l d¢]
T35 e do

do
‘sinp=r ag]
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dy . déo
= r—-—ds—smd>[l+—de]

T i d pm S
= p-sm¢[l+de] P a

12.3 Curvature at the Origin
(i) Substitution Method

We know that the value of radius of curvature at any point (x, y) is

2

N SR . . d’y
p= By e (i) provided e 0

.. Substituting x = 0, y = 0 in the value of p obtained the radius of curvature
at the origin can be found.

(ii) Expansion Method

When the equation of the curve can be expanded in power of x, then we
can write

2

- 9
y=px+ 1 Frene

Then we find that the curve passes through the origin and

d*y . .
——2] and comparing with
x=0,y=0

dy
=[=-= and q=
P [dx ]x=0,y= d dx

2
y = £(0) + x £1(0) + 52_' £(0) .........
we get form (i) above

Z)A

p (at the origin) =

(iif) Newtonian Method . _

If the curve passes through origin and the tangent at the origin is x-axis,

d . .
then we have x=0, y=0 and ay = 0 at the origin.
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.". The expansion of y by Maclaurn’s Theorem reduces to

y=0+0x+ %x2+ ........

Dividing each term by x* we get
Q= -5

Taking limit as x—0 we have

Since p (at the origin) = [

and p=0 at the origin, we get from (ii) above

(e
p:q:xlgé 2y

Similarly if the curve passes through the origin and the tangent at the origin
is y-axis then by interchanging x and y in the last result we get

2
L (it should be noted here that as x—0, y— 0 also]

= lim
P 2x

y—0

12.4 Curvature at the Pole
We know x = rcose and y = rsins

At the pole (if initial line is tangent to the curve at the pole

tim |
xlll(g 2y

©
I

. |rtcos’
lim

80

1

2rsin@

lim —r—-.—_g)—-.oos2 9]
8-0|20 sinf

It
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li T
or p = liml>

[ 90 i—-—» 1 andcos® 6 — l]
sinf

12.5Chord of Curvature through the origin (pole)

YA

(SR

Let PD be any chord of a circle of curvature at P and which passes through
the origin O.

PT is the tangent at P and PQ is the normal at P of length 2.
DQ is joined and since angle in a semi circle is %, ZQDP = %

Let ZQPT = ¢ and since angle between the lines is equal to the angle
between their penpendicular on the lines, hence /PQD = ¢

PD |
Now from APQD, we have E= sing
= PD = PQ sin¢
i.e chord PD = 2p sin¢ ....... (i)
(i) Cartesian Form
If the equation of the curve be y = f(x) then we have
%
ﬂ 2
1+ 2]
p = _dzy‘—_ =

dx?

(1 + Y12 )%

Y2
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- d
Where tany = d—z =Yy, ¥,%0

int 1 1 tan
c.osiny = = =
cosecy  fl+cotty  l+tan’

Y

i.e. siny =
Ji+y?

1

‘., COS =
v \J1+Y12

Also x = rcose and y = rsine and r = fx?> +y?

Now we know that ¢ = 6+ = & =1 — 0

. sin = sin (p—0) = siny cose — cosy sine

. . _ M X 1 y
i.e siny = L= ~
\/1+YI2 r V1+YI2 r

Xy, —y

- ryl+y’

Hence chord PD = 2 psin¢

2(1+Y12)% Xy =¥
Y2 .r\/1+y,2

2(xy, —y)(1+y/")
AL LA T A A
YV +y )

(ii) Polar Form
If the equation of the curve be r = f(§)

dr

We h ind =1 = here ds = 24—[ ]2 = Jrr+r1’
e have sing =r gs Where ds = (o) = '+
(I'Z-H'lz)%

Then p =

425 —rr,
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(rz +r12)%

H hord PD = 2p sin¢ =2 .
ence chor p sind R — \/r2+r12

2r (r? +r12)
T e R (B)
425" ~r1r,
(iii) Pedal Form
If the equation of the curve be p = f(r)
dr r

dp o dr_r
then I f(r)and p =r o 70

Hence chord PD = 2 psiné —— .2 o p=rsing
r

i
[

Remarks

(a) If the chord is parallel to x-axis, then angle ¢ between chord and the
tangent is equal to ¢

.". Chord = 2psin¢ = 2 psin
(b) If the chord is parallel to y-axis, then the angle ¢ between chord and

the tangent is equal to g—mb

. Chord = 2 psino = 2 psin [g—w] = 2pcosd
12.6 Centre of Curvature

YA
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Let P(x, y) and Q (x+8x, y+8y) be two neighbouring points on the curve.
Let C be the limiting position of N, the point of intersection of the normals at P
and Q to the curve when Q—P

Let C (o, ) be the centre of curvature.

The equation of the normal at P is

(Y =9) 6) + K =%) =0 coroe... (i) where 6(x) =

The equation of the normal at Q is

{Y = (Y + 8y)} o(x+bx) + {X - (x + 8x)} =0 ........... (ii)
Subtracting (i) from (ii) we get

Y -9) {6(x) + 8x) — ¢(x)} — d(x + 8x) by - 6x =0 ...... (iii)

Now as Q—P along the curve, 6x—0, N—-Cie y—0

Lo d _dy
ST dx{(b(X)} "

&x
Form (ii) we have
R APVAN. S
(B-y) ZF—ot05 ~1=0
dy2
(2
or f(=y+ &

As C (o, 3) lies on the normal at P
., from (i) we get

(B—Y)% +(a=x)=0
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Note: From above we can write down the equation of the circle of curvature
as

x-a)yY+(y-p)=p3
The locus of the centre of curvature is called its evolute.

Illustrative Examples

Example 1. Find the radius of curvature at the origin of the curve y = x* — 4x3
- 18x?

Solution: The given curve is y = x* — 4x3 — 18x2...... @)

Differentiating both sides w.r.t x we get

Y e 2
ix =4x3 — 12x2 - 36x
'y
and o 12x% - 24x — 36
d d?
At the origin (0, 0) 5% =0, KZ =_136
n%
1+[EX) 3
_ ) .._{ &) ] atof
.. P (at the origin) = &y RY;
de

1
=36 (numercially)

Example 2. Obtain the radii of curvature of the curve a(y? — x?) = x at the origin

Solution: The given curve is a(y? — x?) = x3

X 2
or y2 = ;“FX

b
or y= #x 1+§ = :l:xH-—)E
a a

1 x . .
or y= X 1+E.—+ ..... [by Binomial theorem]

-
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2

] 1 x
X e ] which is of the form y = px + %—4—

1 1
p=1,q=;orp=—1 andq=—;
3
(1+pz)é

Now p (at the origin) = .

= y =2a2
a

1
and p (at the origin) = ( Vi 2a\2
-4

Required values of p are = 2av2

Example 3. Find the radius of curvature at the origin for the curve x* + y* — 2x?
+6y=20

Solution: The curve passes through (0, 0) and the tangent there at is y = 0
(which is obtained by equating the lowest degree term in the equation to zero)

2

2y

p (at the origin) = lim [

Now the given curve is x* +y* —2x? + 6y =0

Dividing each term by 2y we get

2 2
x| ety aX a0
2y 2 2y

taking limits as x—0 and y—0 we get
: 0+0-2p+3=0orp=3%

Example 4. Use Newtonian method to find the radius of curvature at the origin
for the Cycloid
x=a(p +sing),y=a{(l —cosg)

Solution: Curve is x =a (9 +sing), y =a (1 — cosg)



Curvature 299

%:a(l-i-cose); %: asin®

dy d%e asin hzsin%cos% an
——= = = 8 = tan
dx dxde a(l+cos8) 20052/2 2

At the origin whenx =0, y = 0 hence § =0

d
&y = 0 at the origin

Hence x-axis is the tangent at the origin
o . l' Xz
.. P (at the origin) = 0 2y

. a*(8+sin 9)2
= lim ——
60 2a(1—cosf)

0
.. as x—0, y—0, g —0 and this limit is of the form —

0
Hence p (at the origin) = lim Ew 0
80 |2 sin0 0

a(0+sin)(—sin6)+(1+ cos9)2

_ lm
cos 0

60

=4a
Example 5. Show that the chord of curvature through the pole of the curve r
= ae™® is 2r
Solution: The given curve is r = ae™°® ...... @)

Differentiating both sides w.r.t g we get

dr - .
—=mae™ =mr from (i)

do
tang = r=d—e=——r—=—1—
dr mr m
. 1 1 tan ¢ 1
sing =

cosec¢=\/1+cotze:\/l+tan2<b - Ji+m?
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Fromp=r -si‘ncb we have the pedal equation of the curve as
T
p= m
dp_ 1

' 14+ m?
p=r %:n}l—l—mz

Chord of curvature = 2p siné

1
S
=2r

Example 6. Find the chord of curvature through the pole of the cardiode r = a(1
+ cosg) :

Solution: The given curve is r = a(l + cosg)
Differentiating w.r.t § we get

— = —asinb
ds
A8 r _ al+cosh)
S tang =r dr  asinf asinf

2cos’ 9
— 2 _ )
or tand = — = - cot
¢ 25in%cos% A

3+9)

= tan

© 0 .
.. 9=—+— ...... 11
A (ii)

Also from p = r sin¢, then pedal equation of the given curve is p=1 sin
0 =I'COS%

T
_.+..
[2 2

2 — 20, .= 2 = 2£ :
or 2p r22cosA r? (1+cosg) r.afrom @)

r3
a

or 2ap? =r3
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Differentiating w.r.t r we get

d
4ap Ep =32 ... (iii)
_ 4  4ap
p=r o e from (iii)
_ fap
3r

.. Chord of curvature = 2psin ¢

T2 2
_ 8 O
3r 2
82 0 ) [
= — COS ~ rcos — P =TcosS—
3r 2 2
= 8_ac052 9 '.'ZCoszng-cosO
3 2 2

= ga (1+cos9):—§-r

Example 7. In the curve y = a log sec [2 , prove that the chord of curvature

parallel to y-axis is of constant length.
Solution: The curve is y = a log sec [i—] ......... )
Differentiating w.r.t x we get

dy L i]l
ala

o el

X

s€C

] tan

a




302 : Differential Calculus for Degree

ant = X — 5]
any ax an .
=X
ory = .
P
2 3
ll et
a
Also p = ) =
d—); —secz(i]
dx a la)

- B

sec?| X a
a

Chord of curvature parallel to y axis = 2p cosy

asefs) o [ ol

= 2a, a constant

Example 8. Find the coordinates of the centre of curvature for the point (x, y)
on the parabola y? = 4ax

dy 2a 2a a
Soution: Here —=—= =,/-
u dx y dax X
dy_ 1A A
x> 2
dy :
1 —_-
+[dx] d
a=x d’y _d;
Ldx?
=
X X
= x—
1

ora=x+2(x+a)=3x+2a
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d
o]
=y+ =y+
B Yy ﬂ y _layz *%
dx’

or 3 =y- 247/ x%(x+a) =22/ x% 2474 X (x+a)
oy = dax

Hence the required centre of curvature is given by

a=3x +2a; B=2a” x - 2a% xA(x-+a)

Exercises
1. Find the radius of curvature at any point (x, y) for the following curves —
2
@) e/ —sec[ ] (ii) xy = ¢? (iii) ——+F—1
(iv) y = x> -2x2 + 7x at the origin
(v) y = xe™ at the maximum point

2. Find the radius of curvature at the indicated point for each of the following
curves —

(i) x =acosd,y =b sing at ¢
(ii) x =a secod, y =b tan¢ at ¢
(iii) x = a (cost + t sint) y = a (sint — t cost) at t
(ivyx=a(g +sing);y=a (1 —cosg) at g=0
3. Find the radius of curvature at any point (s, ¥) on the following curves:
(i) s = 4a siny (ii) s = 8a sinzg (ii1) s = ¢ tan\y
(iv) s = ¢ log secy
4. Find the radius of curvature at any point (r, ) for the following curves
()r=a secz% (ii) r* = a cos3 ¢ (iii) * cos2 = a?
(ivyitr=a(g +sing)at g =0

5.  Find the radius of curvature at the origin of the following curves
H2x*-xy+y’-y=0(@{)3x>+xy+y*’-4x=0
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10.
11.

12.
13.

14.

15.

16.

Differential Calculus for Degree

(i) X2 + 6y2 + 2x —y = 0 (iv) y = x* - 4x® — 18x?
Wxt+yr= 6a x +y) (vi) ¥ = x2 (a + x)/(a—x)

(vil) y2 — 2xy — 3x? - 4x3 - x%y?* =0

Find the radius of curvature at any point on the curves

(i) p = a(l + sinw) (i) p = a cosect (iii) p? + a2 cos2P = 0
Find the chord of curvature through the pole of the curves:

feota

(i) r=a%cos 2¢ (ii) r? cos 2§ = a2 (iii) r=ae
Prove that the radius of curvature at the vertex of the parabola is equal to
its latus rectum.
Show that the chord of curvature through the pole for the curve p = f(r)
21f(r)
] !
()

In the cycloid x = a(g+sing); y = a(l-cosg) prove that p=43005%

In the curve r* = a® cosng, show that the radius of curvature varies
inversely as the (n—1)th power of the radius vector

Find the curvature of y = x logx at the minimum value of y

Show that in the curve y — 3xy — 4x? + x3 + x'y + y® =0, the radii of
curvature at the origin are S;Jﬁ and 542

Find the center of curvature of the following curves at the point (x, y)

X2 2

(i) * = day (ii) x+y% =a% (iii) Zp+7=1

(iv) x = at?, y = 2at (v) x = a(9-sing); y = a(l-cosp)

Find the centre of curvature of the following curves at the points indicated
(i) xy = x*> + 4 at (2, 4) (ii) y = sin*x at (0, 0)
(i)y=x>+2x>+x+1at(0, 1)

(iv) x=¢2 cosit, y=eXsin2tatt=0

Show that in any curve,

2 A d*x d’y
ol falf o - -
o el | T e e
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17. Show that in the cycloid s? = 8ay

p =4a,f1—%a

18. Find the radius of curvature of the curve x*> + 4xy — 2y? = 10 at the point
21
19. Find the radius of curvature of the curve

x =a(cosg + gsing), y = a(sing — gcosg) at x = g= %
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Asymtotes

Introduction

We know that there are certain curves which are limited in extent, for
example circle, ellipse etc where as there are curves like parabola or hyperbola
which extend to infinity. In the latter case, the tanget drawn at any point of the
curve, if its point of contact moves further and further from the origin, then three
cases may arise i.e (i) the tangent may go on moving away from the origin or
(ii) the distance of the tangent from the origin may keep oscillating i.e sometimes
increasing and sometimes decreasing or (iii) the tangent may tend to a definite
straight line, at a definite distance from the origin, which we called the asymtote.

13.1 Definition

A straight line at a finite distance from the origin to which the tangent to a
curve tends, as the point of contact tends to infinity is called an asymtote to the
curve. In otherwords, a straight line which touch the curve at infinity but is
situated at a finite distance from the origin is called an aymtote to the curve.

13.2 Working Rule to Obtain the Equations of the Oblique Asymtotes
of a given curve

If the straight line y =mx + ¢ ........ (i)
is to be an asymptote to the curve f(x, y) = 0 ....(i1)

then f(x, y) = 0 being a rational, algebraic function of nth degree in x and
y, the coefficients of two of the highest powers of x in the equation obtained by
substituting (i) in (ii) must be seperately zero.
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13.3 Shorter Method to Obtain Equations of the Oblique Asymtotes to
a given cruve

If the given equation of the curve is of nth degree, then by putting x=1 and
y=m in the highest degree terms, thus getting ¢ (m).

Equate ¢>n(m) to zero and solve for m
Now putting x = 1 and y = m in the (n~1)th degree terms in the given

equation, thus getting ¢,_, (m)

Also we know ¢ = — @,y (M)

&, (m)

From this we can obtain the value of c such as ¢, c,, ¢, ....c_ corresponding

y=mx+c,y=mx+c,etc
13.4 Non-existence of Asymptotes

If one or more values of m obtained from ¢ (m) are such that they make
¢, (m) = 0 whereas ¢, , (m) = 0 then from
c=- by () we get ¢ = +oc OF —o0

¢, (m)

and this corresponds to the case where the tangent goes farther and farther from
the origin as n— o

13.5 Two parallel Asymptotes

If any value of m say m found from ¢ (m) = 0 makes ¢, (m)=0 and
$,_, (m —1) = 0 [which happens only if ¢, (m) = 0 has repeated roots], then the
equation C¢ (m) + ¢, (m) = 0 reduces to the identity c¢.0+0 = 0

To determine c in such cases we have the equation

Hence corresponding to this value m, of m we shall have two values of C
from (i) i.e we shall get a pair of parallel asymptotes

Hence the rule for finding two parallel asymptotes is:

Substituting y = mx + ¢ in the given equation of the curve and equate to zero
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the coefficient of highest powers of x i.e ¢ (m) = 0. If any value of m is obtained
from ¢ (m)=0 makes the coefficient of x*! identically zero, then the corresponding

values of ¢ are determined from the equation obtained by putting the coefficient
of x+! equal to zero.

The method can be generalised in case of more than three parallel
asymptotes.
13.6 Three or more Parallel Asymptotes

In the above if we find the ¢ (m)=0 has three equal roots, then there are three
parallel asymptotes. In such case C cannot be obtained from equation (i) but is
obtained from the cubic equation

c c /
—37¢f.// (m)+ —274),._1 (m)+Co,_,(m)+¢,_;(m)=0

Hence the rule for finding three parallel asymtotes is:

Substituting y = mx + ¢ in the given equationof the curve and equate to zero,
the coefficient of highest powers of x i.e. ¢ (m)=0 . If three values obtained from
¢,(m)=0 be equal, then there are three parallel asymptotes. Also if such value of
¢, (m)=0 will make the coefficient of x*' and x™2 zero, then the corresponding
values of the determined from the equation obtained by the coefficient of x*! equal
to zero.

The method can be generalised in case more than three parallel asymptotes.

13.7 Asymptotes Parallel to the axes
(a) Asymptotes Parallel to x-axis

Asymptote or asymptotes parallel to x-axis can be obtained by equating the
coefficient of the highest power of X to zero, provided that the coefficient of the
highest power of x is not constant.

(b) Asymptotes Parallel to y-axis

Asmptote or asymptotes parallel to y-axis can be obtained by equating the
coefficient of the highest power of y to zero, provided that the coefficient ofthe
highest power of y is not constant.

13.8 Asymptotes to Polar Curves

For finding the asymptotes to polar curves, the method is as follows

. . 1
(i) Put the equation of the curve in the form -r-=f(e)
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(i) Find the roots of the equation f(g) = 0

(iii) The asymptote corresponding to a root o of the equation f{g) =0 is
given by

. 1
rsin {g—a) = m)—

IHustrative Examples

Example 1. Find the asymptotes of the curve x* + 3x%y — 4y’ —x +y + 3 =0
(NEHU 2016)

Solution: Lety =mx + ¢ ....... (i) be an asymptotes of the given curve
Substituting y = mx + ¢ in the equation of the given curve we get
X*+3xX(mx+tc)-4(mx+c)3-—x+mx+c)+3=0
or X+ 3mx?+ 3¢x? - 4m’x® — 4¢3
- 12m*x% - 2mxc? —x+mx+c+3=0
or x*(1+3m - 4m? + x%}(3¢c — 12m?%)
+x(-2me? -1 +m)+ (c+3-4c}) =0 ...... (ii)
Equating the coefficients of highest power of x in (ii) to zero we get
1+3m-4m’=90
or 1+4m-m-4m’=0
or (I-m)+4m (1 -m?) =20
or 1-m+4m(-m){d+m)=0
of (1-m)(1+4m(1-m))=0
or (1-m)(l -l:2m)2=0

or m=1 1 1
> 27 2

Equating the coefficient of highest power of x to zero in (ii) we get
3C-12m?* C=0
or C@3-12m?) =0 ........(iii)

When m = —% we have C(0) = 0. Where from C cannot be determined.

Again equating the coefficient of x in (ii) to zero we get
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-12mC*-1+m=20

3 1
2 . = -
or 6C > 0 when m >

1 1
3 2 - = :i:__
ie C 7 or C 5

When m = 1 we have from (iii) C(-9) =0 = C =20
.. The corresponding asymptotes are

1 1

= = _— :t__

y=xandy X +3

ie y=xand x +2y=+1

Example 2. Find the asymptotes of the following curve x* + 2x%y — xy* — 2y’ +
xy-y?-1=0

Solution: Given Curve is

X+ 28y —xy? -2yt xy -y -1 =0 ...(34)

Let y = mx + ¢ be an asymptote to (i). Then putting y = mx+c in (i) we
get

X3+ 2x2 (mx + ¢) —x (mx +¢)? = 2(mx + ¢)* + x (mx + 1)
—(mx+cy-1=0
or X3+ 2mx3+ 2cx? — m*x® — ¢ — 2mex? - 2m’x’
— 2¢? — 6m*x?%¢ — 6mxc? + mx? + cx
—m*x?-c¢?-2mex-1=90
or x*(1+2m-m?-2m?® + x? (2¢ — 2mc — 6m’c + m — m?)
+ x (~ ¢ — 6mc? — 3mc)
+(c? = 2¢3-1) = 0 .....(ii)

Equating the coefficients of x> and x* to zero we get

From (iii)) (1 - m?) +2m (1 - m?») =0
1
= (l—mz)(1+2m)=0=>m=1,—1,—§

from (iv) we have
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2c (1-m-3m?)=m?-m

m?>—m

or T S —m—3m)

1-1
Whenm=1,c=m=0

1+1
When m = -1, ¢ = A+1-3)

Substituting these values of m and ¢ in y = mex + ¢ one by one we get the
required asymptotes respectively as

y=x;y=—x—1;y=—%x+%
ie y=x;x+ty+1=0iex+2y-1=0
Example 3. Find the asymptotes of x* + y* — 3axy = 0
Solution: Let y =mx + ¢ ....... (i) be an asymptotes to the given curve x° + y?
—3axy =0 ....... (iii)
Putting x = 1 and y = m in the highest degree terms of (ii) we get ¢, (m)

=1+mdor ¢/ (m)=3m?..... (iii)
Equating ¢ (m) =0 we getm* +1 =0
iem=-1

Again putting x=1 and y=m in the second degree terms in (ii) we get

1 _ 9, (m) _ 3am _a
Also e ="/ m)

" 3am® m

Whenm = -1,¢c=-a

Hence the required asymptote from (i) is
y=-X—a

or x+y+ta=0
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Example 4. Find the asymptotes of 2x* + 3x%y — 3xy? — 2y* + 3x? - 3y’ + y —
3=90

Solution: The given curve can be written as
(2x* + 3x%y - 3xy? - 2y) + (3x* - 3y) + (y - 3) = 0 ...(iD)
Let y = mx + ¢ .....(ii)) be an asymptote to the given curve
Putting x=1 and y=m in the highest degree terms of (i)
We get ¢, (m) =2 + 3m - 3m® - 2m?
¢, (m) =3 — 6m - 6m?* ......... (iii)
Equating ¢,(m) to zero, we get
2+3m-3m’-2m*=0
or 2+2m+m-m?-2m?-2m*=0
or 2(1 -m?+2m(l - m?) + m(1-m) = 0
or (1-m)2(1 +m)+2m(l+m)+m]=0
or (1-m)(2m?>+5m+2)=0
or 1-m)Cm+1)(m+2)=0

1
or m=1, —5,—2

Again putting x=1 and y=m in the next highest degree terms i.e the second
degree terms of (i) we have

6., (m)=3-3m ... (iv)

$pu(m)  3-3m’

Also € = ¢,(m) ~ 3—6m—6m?

by (iii) and (iv)
3(m*=1)
T 3(1-2m-2m?)
Wherem=1,¢c=0

3[%-1] 7

1
When m = — ] 3 5
3 1+1—5 2

1 —
2 °"

3(4-1)
Whenm=-2,¢c= _—3(l+4—8) =-1
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The required asymptotes from (ii) are respectively
= D N S
y=X,Y 5 X 2andy 2x ~ 1

or y=Xx,Xx+2y+1=0and2x+y+1=90

Example 5. Find all asymptotes of the curve

43 -3y’ -y + 2x2 - xy-y2 - 1=0 (NEHU 2014)
Solutien: Let y = mx + ¢ .........(1) be an asymptote to the given curve

Putting y = mx + ¢ in the equation of the given curve we get

4x3 - 3x (mx + ¢)? — (mx + ¢)® + 2x? — x(mx + ¢) — (mx + ¢)? —-1=0

" oor 4x3 — 3m?x3 — 3¢?x — 6mcex? - m*x® — ¢ — 3m2cx? - 3meXx

+ 2x%2 - mx? - ¢x -~ m*x? — 2mex — ¢ ~1=0
or x} (4 - 3m?~ m®) + x? (-6mc — 3m* + 2 —m - m?)

+ x (=3¢ — 3mc? — ¢ — 2mc) + (—¢* — ¢2 —1) = 0 ....(ii)
Equating the coefficients of x> and x? to zero we get
4-3m’-m*=0and -6mc-3m*c+2-m-m?=0
Now 4 -3m’-m’=0=(1-m)(m+2>*=0
" = m=1,-2,-2
Also —-6mc —3m*c +2 —m - m?= 0
= c(bm+3m?) =2 -m-m?

_2-m-m’
= c= o 3ml (iii)
When m=1, from (i) we have ¢ = ——— =
en m=1, from (iii) we have ¢ = 613
When m=—2. from (iii) we have ¢ = ~+2—t = 0 tetermi
en m=2, from (iil) we have ¢ = 12 o™ eterminate

Hence equating to zero the coefficient of x from (i) we get
3¢2-3me? - ¢ - 2mc =0

= 3c2+3c=0asm=1

Whenm=-2weget3c(c+1)=0=c=0,-1

The required asymptotes from (i) are respectively

SLY=SXy=-2x-1,y=-2x

ley=x,y+2x+1=0,y+2x=0

313
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Example 6. Find the asymptotes of the curve

' x2y2 — a2 — a2y3 =0
Solution: Equating the highest power of x i.e x* to zero we have y* — a*> = 0 or
y = +a is the asymptotes parallel to x-axis

Since the coefficient of the highest power of y is a constant, so there is no
asymptpte parallel to y-axis

Example 7. Find all asymptotes to the curve

. Y (X -a) =x
Solution: Equating the coefficient of the highest power of x i.e x? to zero we get
y? =0 i.e y = 0 i.e x axis itself is the asymptote to the given curve

Similarly equating the coefficient of the highest power of y i.e y* to zero we
get x> — a? = 0 i.e x = ta as the asymptotes parallel to y-axis of the curve
.. The required asymptotes are y=0 and x=+a

Example 8. Find all asymptotes to the curve

3 3
a> b
=1

Yy
Solution: The given curve can be written as
aly? — bx® = x3y

Equating the coefficients of highest powers of x and y i.e x*> and y* in the
above equation to zero we gety* + b>=0and x* -2’ = 0

ie (y+b)(y?!-by+b)=0and (x-a) (x> +ax +2a’) =0

Hence y3 + b = 0 gives one real asymptote y+b=0 and x* — a* = 0 gives one
real asymptote x=a and two each imaginary asymptotes

Since the curve being of six degree, there cannot be more than six
asymptotes of which four are imaginary and two real asymptotes

= b parallel to x-axis and
x = a parallel to y-axis
Example 9. Find the asymptote to the curve rg= @

Solution: The equation of the curve can be written as

lzlﬁ(ﬂ%=%
(a3 r

r

1
L= 0 O=T
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1
Equating f(p) to zero we get 0 P 0 = 6=0= 3 (say)

ro
£'®)
.". The required asymptote is rsin (§-o) = f’;B):a
. rver= %
Example 10. Find the asymptote of the curve r = (1= cost)

Solution: The equation of the curve can be written as

! :l(l—cose)
r a

£(6) = %]

1 1
Here f(g) = ;(l—cose) and f(g) = ;sine

equating f(g) to zero we get 1 — cos® = 0 or cos0=1 or §=2kx, KEZ = O
(say)

f'(a)z—l-sin 2k =0
a

or

) =00 which being not finite
Q

There is no asmptote to the given curve.

Exercise
1. Find the asymptotes of the following curves
@ xy-xy’+xy+y*+x-y=0
(i) xy-xy-xy*+x+y+1=0
() X*-2y +xy(2x-y) +y(x—-y)+1=0
(v) 3x* +2x%y — Txy? + 2y° ~ ldxy + Ty? + 4x + 5y = 0
V) X (x-yy-a (x+y)=0
(vi) xy2 - a*x?-ay’' =0 v
(vii) X} - 2xy + xy? —xy+ x2+ 2 =0 (NEHU 2013)
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(vil) y* - x2-2x -2y -3=0 (NEHU 2007)
(ix) X%y +xy*+xy+y*+3x=0 (NEHU 2003)

®) xy=x+x+y

(xi) y'-6xy*+ 11X}y —6x*+x+y=0

(i) y -y + Y2+ X2 —4=0 (NEHU 2004)
(xiii) 2%7 — X2y — 2xy? + y? — 4x2 + 8xy —4x + 1=0  (NEHU 2008)
V)X (x-y)P-a? x+y)=0

(xv) ¥* - 6xy* + 11x%y - 6x* + y? - x>+ 2x -3y -1 =0

(xvi)y? (x*—a%) =x

Find the asymptotes of the curve x? (x*+y>-2xy)-2x>-2y*=0 which are
parallel to the line x=y

Show that the asymptotes of the curve

V- xy?+ 8x}y —4x® -3y + Oxy - 6x2 + 2y —2x =larey =1,y = 2x
+1landy=2x+2

Find the asymptotes of the following curves

(i) r =a (cosg + secq) (ii) r" sin ng = a° (n>1)

(iii) rcos g = 2asing (iv) r = a cosec§ + b

(v) r = asecy + btang

Obtain the asymptotes of the curve 2x(y — 3)> — 3y (x — 1)*> = 0 and hence
show that these asymptotes form a triangle and find the measure of its area
Show that the asymptotes of x2y? — a? (x2 + y?) — a* (x +y) + a* = 0 form
a square two of whose angular points lie on the curve.
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Concavity, Convexity,
Points of Inflexion

Introduction

In mathematics, we can have concave shape and convex shapes as well
as concave and convex functions. In this lesson, through definition and
example, we will leam what it means to be concave or convex and what these
shapes and functions look like.

14.1 Definition
Concavity and Convexity

Let P be a point on the curve y = f(x) and PT be the tanget to the curve
at P.

Y* YA

y=(x) T
% y=f(x)
3

Fig. 1 Fig. 2
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Then the curve at P is said to be concave or convex with respect to a A (not
lying on PT), according as a small portion of the curve in the immediate
neighbourhood of P (on both sides of it) lies entirely on the same side of PT or
an opposite side of PT with respect to A.

Note: A curve at the point P on it is is convex or concave with respect to
a given line according as it is convex or concave with respect to the foot of the
perpendicular from P on the line.

14.2 Point of Inflexion

If the curve crosses the tangent at P then we say that P is a point of
inflexion on the curve. At this point clearly the curve, on one side of P, is convex
and on the otherside it is concave with respect to any point A (not lying on the

tangent line).
Y
b

y=f(x)

0 > X

14.3 Test of Concavity or Convexity (with respect to x-axis)

Let P(x, y) be any point on the curve y = f(x), and Q (x+h, f(x+h)) be any
neighbouring point of P (h, k being small positive or negative). Let PT be the
tangent at P and let QM meets PT at R.

YA /y=f(x) YA
Q T
P R/
\
- y=f(x)
- » X -
© N M > X °

Fig. 1
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Equation of the tangent PT is
Y-y=fxX-x)
Since NM =x + h S RM=Y=y+hf(x)

2
Also QM = f(x + h) = f(x) + hf'(x) + ?2—,9 (x + gh) 0<g<l1

2

QM - RM = %f?(x+ h) cove. @)

Assuming f2(x) to be continuous at P and f2(x) = 0 hence f? (x+gh) has
the same sign as f2(x) when |h| is sufficiently small.

.. from (i) QM — RM has the same signs as that of f2(x) for |hj being
sufficiently small.

d . " .
or E;}; at P is positive, for Q on either

Hence from (i) QM > RM if f3(x)

side of P in its neighbourhood, and so the curve in the neighbourhood of P (an
either side of it) is entirely above the tangent. Hence the curve at P is convex with
respect to x-axis (fig 1)

2

d .
Again from (i) QM < RM if £(x) |or =7 at P is negative, for Q on either
g dx

side of P in its neighbourhood, and so the curve in the neighbourhood of P (an
either side of it) is entirely below the tangent. Hence the curve at P is concave
with respect to x-axis (fig 2)

Hence the criterion for convexity or concavity of a curve at a point with
respect to x-axis are

2
i) Ify KZ> 0 at P, the curve at P is convex w.r.t x-axis

d’ . .
() fy ﬁ< 0 at P, the curve at P is concave w.r.t x-axis

by
Note: At the point where the tangent is parallel to the y-axis, pgt infinite.
At such point, instead of investigating with respect to x-axis, we investigate.
Convexity or concavity of the curve with respect to y-axis and the Criterion will

be similar to above as follows:
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The curve at P is convex or concave with respect to y-axis according as

2

d
x—Z>Oor<0atP
dy

14.4 Condition for Point of Inflexion

Let f2(x) = 0 at P and f2(x)=0 in the above investigation
h’ h?
Then QM = f(x+h) = f(x) + hf'(x) + Ffl x) + 5 B(x + gh) 0<g<l

YA

;
/
cl

O » X

N M

3
- QM—RM = %fﬂ(x+ oh) o P(x) =0
As in previous discussion. ff(x + gh) i.e QM-RM has the same sign as that

3 . .
of —}317 3(x) for |h| sufficiently small (which has opposite signs for positive and

negative values of h whatever be the sign of £(x) at P)

Thus, near P the curve is above the tangent on one side of P and below on
the other side as in figure. Hence P is a point of inflexion.

Thus the condition that P is a point of inflexion on the curve y = f(x) is that
2 3

d
KZ=0and ax—};::OatP

d
Note: At the point where the tangent is parallel to y axis, ay is infinte at P

and the condition that P is a point of inflexion is that

2 3

d d
ﬁ- =0 and d—x¥;¢0atP
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Illustrative Examples

Examples 1. Examine convexity or concavity with respect to x-axis and determine
its point of inflexion if any for the curve y = f(x) = sinx

Selution: Given curve y = sinx

LYy &y
- gx " cosxand 5 = sinx
2y .
Hence y o = — sinx which is negative for all value of x except those for

which sinx =0 iex = k=%, kEZ

Thus the curve is concave to the x-axis at every point excepting at points
where it crosses x-axis

2 3

y y
at x = s, el =0 and E=—cosx:¢0

Hence these points are the points of inflexion.

Example 2. Show that the curve y> = 8x? is concave to the foot of the ordinate
everywhere except at the origin. (NEHU 2013)

%

Solution: The given curve is y* = 8x%or y=2x

dy 4 -y dzy 4 -4
R A -2 - _
S T3¢ end 4 9
2
y -—d}; = 2x%{—ix_%] = —§x_3— __8
dx 9 9x%

Thus excepting at the origin x% being positive for all values of x, we see
2

d’y
that y dx2 <0.
Hence the curve is concave everywhere to the foot of the ordinate except

at the origin.

Example 3. Show that the curve y = logx is everywhere cqnvex upwards but
the curve y = xlogx is everywhere concave upwards

Solution: for the curve y = logx we have
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dy 1 d’y 1

L=~ ad 73 =-

dx X dx X
which always remains negative at all points.

Hence the curve y=logx is convex upwards (or concave downwards) at all
points.

For the curve y = xlogx we have
dy dy 1
— — + = —
i =1 + logx and X
which is always positive for positive values of x (note that x cannot be
negative)
Hence the curve y = xlogx is everywhere concave upwards

Example 4. Find the points of inflexion if any, for the curve x = (logy)’

(NEHU 2017)
Solution: The curve is x = (logy)’
3(logy)’ d’x 31
. g:ﬂl)_ and —22(— , Ogy(2—logy)
dy y dy

3 3
Also 9_’52 6(logy)y —18(logy) +6
dy’ y’

2

X
Now if g =0 Then 3lo 208 (2 logy)=0
y

i.e logy =0 or 2 = logy
iey=l ory=¢?
d*x
‘. ’&;}7 =0aty=1andaty=e?

3
where d—fz 0
dy

Henceify=1x=0andify=¢*, x =8
-, The points of inflexion are (0, 1) and (8, €?)
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Exercises

1. Show thaty = x* is concave upwards at the origin and y = e* is everywhere
concave upwards.

2. Prove that (a-2, — %/.) is a point of inflexion of the curve y=(x-a)e**

3. Find the point of inflexion if any of the curve y=3+6(x)

2 . . 1
4. Show that the curve y = ¢™ has inflexions at x =+—

V2

Find the points of inflexion if any on the curve c%y = (x-a)’

Show that the curve (y—a)® = a3 — 2a?x + ax® where a>0 is always concave
the x-axis

7.  Show that the points of inflexion of the curve y? = (x-a)? (x-b) lie on the
line 3x + a=4b
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Partial Differentiation

Introduction

When a funetion depends on more than one variable, we can use the partial
derivative to determine how that function changes with respect to one variable
at a time. In this lesson we use examples to define partial derivatives and to explain
the rules for evaluating them.

15.1 Definition

Let u be a symbol which has a definite value for every pair of values x and
y. Then u is called a function of two independent variables x and y and is written
asu = f(x, y)
15.2 Partial Differential Coefficients

The partial differential coefficient of f(x, y) with respect to x is defined as

. - e . . of
61}_1'{}) f(_x&zz_f(x,_y) provided this limit exists and is written as % Of f or Df.

Thus the partial differential coefficient of f(x, y) with respect x is the
ordinary differential coefficient of f(x, y) when y is regarded as a constant.

Similarly, the partial differential coefficient of f(x, y) with respect to y is

defined as alyln}’ feoy+ 8;') —fxy) provided thus limit exists and is written as ?
- Y y

orf orD f
Yy Y
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Thus, the partial differential coefficient of f(x, y) with respect to y is the
ordinary differential coefficient of f(x, y) when x is regarded as a constant.

We can further differentiate f and £ partially with respect to x and y
: of
Then partjal differential coefficient of % with respect to x and y are

8f

respectlvely and or f and £,

o*f

Ox0y
- L L . of |

Similarly, the partial differential coefficient of % with respect to x and y

2f 2

f
Byox and 5;2— or fyx and fyy.

are respectively

Thus the usual notations for the second order partial derivatives of u = f(x,
y) are as follows

. 0 (ou). 6%
O 5l e 5 o
o 0 (ou) . 87
(ll) g[@] 1.© ﬁ or fyy

... O [oul 5%
(iii) x g ie 8x_8y or f

) 9 (Ou] 0%
@iv) g ax ] i€ M orf
) &u _ d'm _
In all ordinatry cases Ay 6y—~6y6x ie fxy =1,
15.3 Remarks

. Ou_ 9
B 5= 5000 9 = £ )

— Hm f(x + 6)(, Y) _ f(X, y)
x—0 8x

provided this limit exists

ou 9
(i) dy oy %y =1xy)
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= {}ym}) fx, Y+6g') f:¥) provided this limit exists
- y

= o

)
(iii) Ft it e b o (B ¥) = £y

f, (x+8x,y)-f,(x,y)

= lim = provided this limit exists
. 0 _ 9 [au]
iv) — =—|— f X, y) = f X,
- lim & (oy+8y)—1, (v y) provided this limit exists
by—0 6y
&u 0 [Ou 0
(V) axay _6_7( 5}7] - 9x {(fy(X, Y)} - fxy(x, Y)
o f(x+8x,y)—f (X,
= lim ! glx) , (x.3) provided this limit exists
. 8*u 8 ou
(vi) ayox By ) ay (E& )} =1 )
f, +96
= lim (xy ;2 ( .Y) provided this limit exists

15.4 Total Differential Coefficient

If u = f(x, y) where x and y are functions of a third variable ‘t’ connected

by the relation x = ¢(t) and y = (t), then %% is called the total differential

coefficient of u.

d . .
We can find the value of —c—ilti by substituting the values of x and y in terms of

t in the value of u and then finding the simple derivative of u with respect to t.

d
15.5 To find d—l: without actually substituting the values of x and y inu =

f(x, y)
Let t be changed to t+§t and let the corresponding changes in u, x, y be 8u,
6x and §y respectively. Therefore, we have
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u=1f(x, y)
and u + su = f(x + 8x, y + §y)
su=f(x+ 8x,y+ §y) —u
=f(x + 8x, y + 8y) - f(x, y)
or u= {f(x+8x,y+ 8y -1f(x,y+ 8y)}
+ {f(x, y + 8y) - f(x, y)}

su { (x +8x, y+6y xy+6y}
- - +
&t
[ (x, Y+6y ]
Su [ (x +6x, y+6y xy+6y} 8x
or g - %t

{f(x,yﬁy)— (x, y)] by

dy ot

Proceeding to the limit as §t— 0 consequently §x—0 and §y— 0 also. Hence
we have

du {f(x-l—éx,y—i—éy)— (x, y+6y)} im X 8%
dt 8x—0 ox

+ lim {f(x,y+6y)— (x, Y)} im &)
by —0 6y

f(x+8x,y+08)—f(x,y+dy)
ox

Now lim =f (x,y+ 6y)

)
= 5% [y + &)

. ] 0
and Elyll_{}) af(x,y-kﬁy) = &f(x, y)
Hence we shall assume that

f(x+8x,y+0dy)—f(x,y+38y)

8x—0 &x

I3
- 8% (X’Y)_'ax
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Hence from (i) we have
du_0f dx  Of dy
dt oxdt Jy dt

dx dy
__+ —_—
Ya T a
In particular if u is a function of x, y and y is a function of x, then by putting
t=x in (ii) we have
du_Ou u dy
&t Ox By dt e (iii)
Thus in general if u= f(x , x,, X,,...x ) and X, X,, X,,...X are all functions
of t, then similarly
du_oudn  Ouwdy o dud,
dt ox, dt  Ox, dt ox, dt

or

15.6 Important Case

If f(x, y) = ¢, a constant, then from (ii) above we have

o ot dy_
Ox Oy dx
of,
or %z_af/ax provided%vto
Yoy
or ?_y_=—fx_,f=:0
Ox £ 7

Yy

15.7 Change of Variables

If u = f(x, y) where u = ¢(t, t,), y = ¥(t,, t,) then as in 15.5 above we
have

If the values of t, and t, can be easily obtained in terms of x, y say t, = F,
(x, y) and t, = F(x, y) then
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15.8 Homegeneous Functions

The expression axx" + a x™'y + a x*?y? + ....+a y" in x and y of degree n
is called a homogeneous function of x and y of degree n.

fix,y) =ax" +ax™'y + ax*2y’ + ... +a y"

2 n
8, +a, [z]+a2 [Z] ot [z}
X X X

]
X
Hence every homogeneous function of x and y of degree n can be written
]
X

15.9 Euler’s Terorem on Homogeneous Functions

=X
n

=x“¢

as x" ¢

Statements: If f(x, y) is a homogeneous function of x and y of degree n,
then

xﬁ+ o _ nf
ox ' 9y

Proof: Since f(x, y) is a homogeneous function in x and y of degree n

_ y

then, fx, y) = x' o [2]

X

ﬁ_ n-1 [Z]+n’
ax_nx d)X Xd)

of
X 7 =nx"¢

Ox

9 et [%] .......... )

QE_,,/Y
and By_xd)x

y % = yx*! ¢’[§] .......... (i)

Adding (i) and (ii) we get
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or ot
X +y 6y~nx ¢

2w [ e

of o _ . [1]
or X o yay—nxd>x

o of
or X 5% +y By~ nf(x, y) = nf Proved

Cor: If u is a homogeneous function of x and y of degree n, then

2
2 28 4 oy O +y 00 _ = n(n-1)u (NEHU 2004)

* o 88y ay*

Proof: Since u is a homogeneous function of x and y of degree n then by
15.9 above

Differentiating (i) partially with respect to x we have

L TR T S
Ox 8 By Ox (ii)

Differentiating (i) partially with respect to y we have

« d™u + Bu, d'u_ du
ayox  ox  Joy oy
Multiplying (ii) by x and (iii) by y and adding we get

» 0% o™ 20" Su  bu Ou Ou
6x2+2xy6x8y 6y]+[ 6x+y8y =njXy +y8y]
2 2 2

or 8———{—2 y(9u +y28_L21 = n(nu) — nu by (i)

X ox Ox0y Oy

o0*u 8% 0*u
x? o +2xy 8x6y +y° 5}/—2— = n(n—1)u Proved

or



Partial Differentiation 331
IHustrative Examples

of of
Example 1. Find — and — when

ox " oy

(@) f = sin"’ [l (i) £ = xv (iii) f=ye
X

(iv) f = x tany + y tanx

Solution: (i) Given f =sin™' [X]

X
ofF 1 [_L]_ y
x X xyx> —y’

(ii) Given f = x¥ = logf =y logx ....... (1)
Differentiating (i) partially w.r.t x we get

1of y

fox x

of _ .y y

— =f= =gy L = 41
or o n x.X x*ly

Again differentiating (i) paratially w.r.t y we get

1 0f
— =11 or — = flogx
foy ~—OB*% gy T TOB
of "
or 7 = x"logx
ay g

s

(iii) Given f=ye

A AL _H
ox — Y° [Y] °
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of - -y[ X ] -3
— =ye V——|+e
dy y?
of AP
or g = € % ;""1
o _ [X+Y] 2
ey Ty
(iv)  Given f = x tany + y tanx
of
% - l.tany + y sec’x = tany + y sec’x
of
x xsecly + ltanx = xsec?y + tanx
. of of . .
Example 2. Find Ix and a for the following functions
(i) tan™ % (i) log (x* + y?)
Solution: (i) Let f = tan™'|—
o _ 1 [_ y ]_ Y
% - 1+[X]2 xz x2+y2
X
and of = 11 x
Oy 1+ X]z x_xz-|~y2
X
(ii) Let f = log(x? + y?)
ﬁ _ 1 % = 2x
ax—x2+y2.x—x2+y2
o _ 1 o 2y
% ‘—x2+y2 Ly = x2+y2
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2z 0z
5% By "‘*8},6)( when

Example 3. Verify that

() z = log {Q‘Z*L—YZ)J (ii) z = log tan Z]
- Xy X

9z 1 xy2x—(x2+y2).y
9x - x2+y2 xzyz
Xy
9z xy w-oy oy -y) x-y
T & X4y Xy x4y | x4y
i[iz.] 0| Xy
gy \ox) — Oy [x(xX* +y*)
1 +y' )29 - (¥ - v*) 2y
X (X2+y2)2
_ Oz _ 1|-2xy-2y’ —2yx’ +2y’
6y8x X (X2+y2)2
oo Lz _lloty | e
6y(9x X (xz + y2 )2 (x2 + y2 )2 ........

Again from (i) % =

xy(2y)— (x2 +y° )x]

x2 +y2 x2y2
Xy
or O __xy |2xy'—x-yx
ay x2+y2 nyZ
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xy xy’—x’

x2 +y2 x2y2
2 —x?
Ty +yh)
o) _ofror
8x \9x)  Ox |y(x*+vH)

(3 4y )20 - (y* —x?).2x
Yy (x2+y2>2
0’z _ 1 |Z2%°—2y’x-2xy’ +2x’
or Ox By Ty (x2+y2)2
1 —4xy2 4Xy
B y (x2+y2>2 - (x2+y2)2 .......... (iii)

By (ii) and (iii) we have

Oz 0z
Oxdy  Oydx
.. . _ y
(i) Given z = log tan[~] ......... (i)
X
- etil-3
% tan[z] )l x?
X
2
X sin{X]cos[X]
X X
Oz 2y 2y
or ?3‘; = — —_‘-—y—yz — —2
x*2sin —Jcos —] x%sin _y]
X X b'e
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.9 [&] _9)__ 2
" Oy 9y oy xzsin[ﬂ]
X
o[22
_ i X )X
- 2
X sin’ [ZX]
X
2y
of &z o 1 gy cos[x] 1
ox e - ‘
% X sin[ﬁ] X sm[ﬂ] sin {QJ
X X X
== cosec[z—y] 2y cot[ﬂ] cos ec[zz]
X X X X X
= ——3cosec[—z—y— X 2ycot[2—y
X X
oz
Again from (i) — = sec’ [X]l
d tan[l x) x
X
sin X]cosfz] X
\x
0z 2 1
or -— = "
dy Zsin[l cos X] X
X X
_ 2
xsin [EJ
X

335.
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- —2|sin ﬂ]—i—x.cos{zz][—z—g]
_ X X X
X2 sm2 [z‘}"‘]
X
2y
'z 2 1 2y COS[ X ]
or =— = S 3
Oxdy X lsin [l] sin® [—yJ
X X
=— —7|cosec [Z_y] Y cot [—y]cosec[—y]
X X X X X
‘ 0’z 2 2y Y oo [ 2Y
or 5% dy = —)—(-z—cosec[Y] 1——x— cot [T]
0’z 2 2 2
or oy "~ X cosec [Ty] X —2y cot [Ty]‘ ...... (iii)
By (ii) and (ii) we have
9’z 0’z
Oy0x 0Ox0y

Example 4. If u = log (x* + y? + Z* — 3xyz), show that
o ou_ 3
Ox Oy 0z x+y+z
Solution: Given u = log (x* + y* + 2 — 3xyz)

3x* —3yz
X +y' +2° —-3xyz -

3y* —3xz
X’ +y +2° —3xyz

3z% —3xy
X’ +y +2° —3xyz

¥l 2l g®
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Gu Gu Ou  3(x’ —yz+y —ZX +7° —Xy)
F—t
% dy 0Oz X +y +2° —3xyz
3(x* +y’ +2* —xy— yz—2x)
C x+y+) T +y 422 —xy—yz—2x)
du Bu du 3

_ + - —

" ox 8y 0z xty+z
Example 5. If u = log(x? + y? + z2); show that

du 9% 0*u

Yoyoz oz0x " oxdy (NEHU 2014)
Solution: Given u = log(x? + y? + z2)
Ou 2x
ox  xX*+y 47
du_ 2y
oy x'+y +2’
Su 2z
0z x*+y' +2°
8’u _Q[Qg] 0 2z
Oydz = 0Oy\0z) = Oy(x*+y'+7°
-2, 0-1C»
(X +y*+2°)
- 4yz
(X2 +y° +zz)
62u 2

x6y62=—(xz—+y2+7)2 ..... (i)

Fu 2 @] 9 2

0z0x — 9z\0x) 0Oz (x*+y' +7
0-1.022)

(x2+y2+zz)2

=2x
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or d*u o 4xz
0z 0x (xz +y +zz)
u 4xyz
Fyy v —(xz Yy +22)2 ....... (ii)
o0*u 0 |Ou o 2y
oxdy  Ox|\0y) ox \xX*+y +7°
4xy
=_ (x2—+y2_+z—2)2 (as above)

0*u 4xyz
z = TG e
(9X(9y (XZ +y2+22)2

By (i), (ii) and (iil) we get

8*u 8*u d*u
X =y =7z
Jyoz 0zdx  Ox0y

Example 6. If u = f[z show that x@+ygu—=0
X ox 8y

® <
=

Solution: Given u = f [

Also Ou_ f’[i
X
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Example 7. If y = sin! v + tan™! [y show that
Ou
—dty—=90
X ax y 8y

Sy -x Xy

Ou X o xy .
x&—\/yz_xz Xty ...(ii)

) _ Ou 1 X 1
Again from (i) T el y t—=

6u

\/y_? 2 +y ......... (iii)
Adding (ii) and (iii) we get

Ou x Ly X X
Ox Oy —\/yz_xz x4y Jyz_xz X’ +y?

_1
Example 8. If V = (x2 +y° +zz) % show that .

2 2 2
8V+8V+3V

=0
ox*  oy* 0z’
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Solution: Given V = (x2 +y +7 )‘_%

ov. 1/, 2, 2y h!
'(*9;- = ——E(X +y +z ) (2X)
—X _3
= 7 = —x(x2+y2+zz) %

gZ\z, = (¢ +y +2 )ﬁ% —X[—%](xz +y +zz)_%_l 2x
X

%

2+3x2(x2+y2+zz)_%

= —(x2 +y? +zz)

Illy from (i) we get

Z;Y =_ (x2+y2+zz)_%+3y2(x2+y2+zz)_%
2
ZZY =— (xz +y’ +zz)_% +3z27 (x2 +y’ +zz)_%

";;‘2’ +%%+?92TY = 3(x"+y +z2)_% +H{x 4y +z2)'% (3> +3y* +32°)

=-3 (X2 +y? +zz)_% +3(x2 +y’ +22)_%

=0

)_% show that

Example 9. If V = (X2 +y' +2°

_1
Solution: Given V = (X2 +y? +zz) %

A\ _Y_
Lo =y 2

- _ X(X2+y2+22)*%
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ov

- XE;(—:_ xz(x2+yz+zz)‘%

Similarty 8_V = 2yt
Yy Y (x*+y +22)

Z ov — —Zz(xz—{-yz—i—zz)_%'

"o oy e = Ry ) ey

_ (xz _I_yz +zz)‘% (Xz + yz + Zz)

=_ <X2+y2+22)—% =_V

Example 10. Verify Euler’s Theorem for the function f(x, y) = ax? + 2hxy + by?
Solution: Here f(x, y) = ax? + 2hxy + by?

2
= x2 b[z] +2h[l]+a
X X

ef)

X

Hence f(x, y) is a homogeneous function of degree 2 in x and y. Hence we
are to prove that

of o}
ZrySoyr

Xax yay

Now f = ax? + 2hxy + by?

X gax +2m X 2axt +2h
o - 2ax y =X 5 =2ax Xy

oL o+ 2 2~ dhxy + 2by’
gy = 2hx+2by =y 5o = 2hxy + 2by

ﬁ#— g—Z 2 + 4hxy + 2by?

X 5 T Yoy = 2ax | Xy y
= 2(ax? + 2hxy + by?)
= 2f

which verfies Euler’s Theorem.
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Jx—

Example 11. If u = sin” Jy , show by Euler’s Theorem that
Ve +4y
Qu_ vy Ry Py
ox  x 8y ox Yoy
Solution: Given Sinu = Px-y
Vx+4y

«/2[1—\/%1
\Fl-ﬂ/%]

or Sinu =
X

. y
or Sinu = x° ¢ [;

Hence Sinu is a homogeneous function of x and y of degree 0.

.. By Euler’s theorém,

X 9 Sinu+y 5 Sinu =0.Sinu
Ix dy

or x—a—Sinu@-l-y—Q—Sinu@:O

Tl ox Cdu dy

ou Ju
) x Cosu — +yCosu— =0
or ax y

dy

or x@—i—y@:O

ox " oy

— cinel X+y
Exmple 12. If u = sin NrEN]

Su Su 1
, show that x——+y—==t
show that x y 5 anu

x|1+

)

=[]

Solution: Given Sinu = ini’/;

Jx
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|
|

14|

> <

or Sinu = x

M

14|

or Sinu = x/? o [l]
X

Hence Sinu is a homogeneous function in x and y of degree %

By Euler’s Theorem we have

xi Sinu + yiSinu =lSinu
0x dy 2

or Xé% Sinu%+y-{§%$inu%:é—$inu

or X Cosu@ +y Cosu@ zlSinu
Ox gy 2

1
or xgu--i-y@i:ztanu

Ox dy

3

P+
Example 13. If u = tan™! %] , prove that

x@—i- @—sinZU i
ox " By (NEHU 2007)
3 y 3
X’ +y * 1+(/X)
Solution: Given tanu = ] =
x=y x|1-17 )
X
Yy
— 2 A -
or tanu = X* ¢ x]

Hence tanu is a homogeneous function in x and y of degree 2
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.". By Euler’s Theorem

X 9 tanu-+y —Q—tanu =2tanu
0x 3y

ie xitanugu——kyitanu %—-Qtanu

ou ox Su
or xseczu@—kyseczu@:hanu
Ix Oy

o x8u+y8u 2 tanu
T _— —_—
ox ~ Oy sec’u

or x@+ @_zsinu
Ix yc’?y cosu

cos’u = 2sinucosu

or x-gu—x—i—y%:sinZu
Example 14. If u = cos™ ‘/;i yy , show that
x@-l—y@———1~ cotu=20
ox " Oy

Solution: Same as Example 13.
Example 15, If V = logr and r? = x? + y2 + 2z, then prove that
o’V o'V 8V 1

ox* + oy’ * 87 1

Solution: Since V = log r and 12 = x? + y? + 22,

V= log(x2 +y? +zz)%

—;,(x2 +vy +z2)‘% (2x) N

ov

ox (x2+y2+zz)% T Xty 4z

2

'V (x2 +y? —l—zz).l— x(2x)  x 42722 —x?

ax? (x2+y2+zz)2 (x2+y2+zz)2
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2

x’+7' —y? o'V

x> +z* —7*

Similarly W = (x2 Ty +ZZ)2 and

AN A Y X +zi 422

07 (x*+y*+2)

1

Ty T T

62V+32V o*v 1
ox* 8y 87’ 2

3

3
Example 16. If V = log }24—_)'2’ show that
X +y

9x Y By
. . x+y’
Solution: Given V = log ——=
X" +y

X
of eY = X +y =
X2+y2 , y 2
X 1+(4)
y
v — =
or e'=x¢ [x]

x4y ) s

345

(NEHU 2015)

Hence e is a homogeneous function in x and y of degree 1

.". By Euler’s Theorem
8 7] v

x—e' +y—e' =le
dy

ox

0 WOV, O OV _,

or e Yav© By

or B ¢ 6y_
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. o
Example 17. Applying Euler’s Theorem to the function u(x, y) = tan™! M ,
%
show that
X%ergu_yzsmzu (NEHU 2016)
A
Solution; Given u = tan! X 2y
%
e
) x% n y% X211+ 4
ortan u = — =

y
=x2 =
ortan u=x*¢ [x]

Hence tanu is a homogeneous function of degree 2 in x and y

.". By Euler’s Theorem

0 o
Xx—tanu+y —tanu =2tanu
ox dy

or xitanugu——k itanu@—2tanu
ou ok Tau By

or xseczugg+yseczu%=2tanu
X .

ou Su 2tanu
or XK=ty —="—-
ox Jy sec’u

or x?g-i-y@:sinZu
oy

Ox
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Exercises
1. Find f and f, in the following functions;

@) sm“[ ] (ii) xtany + ytanx
X

(i) \/xlTy (iv) ax® + 2hxy + by?

8*u 8*u B*u y . .
2. Find o oy W and dyax I the following
(i) x cosy + y cosx (ii) log (x*y + xy?)
Ou S
3. If sin|Y| + tan' | Y] = u (x, ), show that x—+y —=0
X X .y Ox dy
_ 1 &u v
4, Ifu—‘/)(Z—JF—T_7,x2+y2+z2 =0, then show that 01+azz~°
0tu 6%
5. Show that —+—=0 if
ox? o oy*
(i) u = log (x* + y?) (ii) u = tan! { A
X
(iii) u = e* (xcosy — y siny)
E) 82 3
6. Ifu=log(x’ + y* - 3xyz), show that 5z ay m

dn  Ohu _, 8*u
8ydz > 0z0x  _oxdy

7. Ifu=log(x?+y?+ 72, prove that X

3,3 8*u 8*u ,0%u
8. Ifu=tan"5i;showthatX 82+2y + -

Xty 8}’

= (1-4sinu) sin2u
2 2
\'%
9. IfV =zsin" ] thenshowthat 8V gyz—FgY:O
X

10. V= (x?+y +22) 7%, show that .

: 'V 9’V oV
@ x%—i—y%-l—zaa\;_ V(i) Gt gy T o =0
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11.

12.

13.

14.

15.

16.

17.

18.

Differential Calculus for Degree

Verify Euler’s Therorem for the following functions

X—y
Dy = ax? 2y g = —
(i) u = ax® + 2hxy + by? (i) v Xty
2 2
(iii) u = sin (iv) u = 2 log X]
X
Su ou 1
If u = sin!|—XFY_|, prove that X ——+y—=—tanu
)t ox oy 2

X—y Su  Ou
= -1 —— — =
If u = cos [x y] , prove that x —+y-—=0

- +y Ou, 6 Ou 1
If u = cos™ |— , prove that X —+y—+—cotu=0
[&+ﬁ] ’ x oy T2
If u is a homogeneous function of degree n, show that

0™ 0*u du 5%u 5% Su
) X —+ =n-1)— (ii - g n=-DN=
(D) * 52 yaxay ( )6x (i) x 3%y +y8y2 (n—1) By

8%u 0*u ,0%

and hence deduce that x* ——+2xy =n(n—1)u

% oxoy ) oy
If V = f(u), u being a homogeneous function of degree n in x and y, show

that x &—}—ya—V:nu&
ox " Oy Ou
Ifu=x¢ % + %], show that
& <2y 2= xo[Y)
@~ Doy Ll vy S0

If u is a homogeneous function of x and y of dimensions n the prove that -

[x —6—+yi]u2 =n(n—-1)u where

ox oy
2
i} 0 , 0*u o ,0%
—_ —| = —_—t2 4y —
[X 6x+y8y] XV oaxay Y by
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19.

20.

21.

22.

23,

24.

25.

26.

Ifu=log

y2

= cos|~ fu Ou_
Ifu= cos[x] show that x 8x+y(~)y_0
If u= X’ prove that O _ O
‘ X prove tha xy  Bydx
Yy o'u B
If u = log tan x] , prove that Bx0y  Oyox
&u 9
If u = xlogy, prove that oxdy  Dyon
y Ou bBu
= -1 + — —_— = 0
If u= cos y cot [ ] show that x e -|~yay
82
Ifu= tan‘l « | find the value of ——+ oy
If v =logr and r> = x> + y + 22, prove that —- 82V oV OV
8 a2 ay 8 a2

1

r

-

2 x@.F Q.u.zl
show by Euler’s Theorem that o Y By

349
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