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Preface

The present book has been written taking into account the Syllabus of the North Eastern
Hill University for the first year students, and subsequently with the introduction of the
semester system, for the students of the first semester. Indeed, there is quite a number
of books that which are already available on the topics covered, but it is a humble beginning
on my part to try and present the subject matter in a simple, concise manner and taking
into account the fact that, the average student needs to have a thorough understanding
of the basic principles and concepts before he/she can really have an interest for the subject
matter. Although the topics have been covered in most of the syllabi of different boards
of Higher Secondary Education, however, particular care have been taken to make the
treatment clear and comprehensible to the slightest detail, keeping in mind the fact that
the average student may not have been able to grasp the subject matter completely and
thoroughly by simply learning about it in the earlier class because of time constrain and
‘many other factors. The mathematical treatment involved in the different sections is,
therefore, given in detail and in a way to make the reading easy to understand and follow.
In fact, any sincere student will find that the book is a ready material for the University
exams and he/she can readily answer any questions set from the various topics presented
in the book. The book has been written in such a format, that answers to various questions
that may be posed are a ready reference in the sections covered.

Also, keeping in mind, the fact that, a mere knowledge of theory will not fully help the
students in solving numerical problems, solved examples are given at the end of the
chapters for the students to understand how to go about solving the various types of
problems that may be set from the different sections. A number of unsolved numerical

and sample questions are also given so that the students can practice and also refer to,
respectively.

Although a humble attempt has been made to present the subject matter in a simple and
concise manner by keeping in mind the average students, however, no originality is
claimed, or indeed can be claimed in a work which is of a specific course of this nature,
as the theories and approach to the topics cannot be presented in a completely different
format, different from the others. In fact, there is simply no other way.

My thanks are also due to the publishers of this volume who have taken interest and for
the meticulous care taken for the publication of this volume in this wonderful form. I also
thank the Principal, Shillong College, who has greatly encouraged and expressed
his confidence in me to bring out this volume. I am also particularly thankful to
Dr. S. Khongwir who has greatly helped me and without whose help this volume might
not have been possible. Also, I thank my friends, my colleagues in the department for
their relentless support and encouragement. Last but not the least I thank my students,
whose sincerity has motivated me in writing this book.

I dedicate this book to my parents and I thank God Almighty for his guidance throughout
and ever.

Any suggestions toward the improvement of the book will be gratefully accepted.

A. Dkhar
Author
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Hydrostatics — Surface Tension

1.1. HYDROSTATICS

Hydrostatics is a branch of Physics which deals with the mechanics of fluids in
equilibrium. So it is of central importance for us, before we proceed further, to understand
exactly, what is a ‘fluid’?

Unlike the case of solids in which the strain set up under the application of a shearing
(tangential) stress lasts so long as the applied stress is not removed, a fluid is a substance
which cannot permanently or indefinitely withstand or oppose a shearing stress. In fact,
a fluid constantly and continuously yield to the applied stress, although, the yield may be
rapid in some cases and slow in some other cases. In the former case, the fluid is said to
be mobile (e.g. water, alcohol etc.) and in the latter case, viscous (e.g. honey, glycerin
etc.). Fluids are broadly divided into two classes, viz. Liquids & Gases.

A liquid is a fluid which occupies a definite volume which cannot be altered, however
great the force applied to compress it, and has no shape of its own. It generally takes up
the volume of the container or vessel in which it is poured. When a liquid is poured from
one vessel to another of a different shape, its volume does not change but it takes up the
shape of the different vessels in which it is poured. In other words, a liquid is a fluid
which is quite incompressible and has a free surface of its own. Examples of liquid are
water, alcohol, oils, honey, glycerin etc. (Strictly speaking, however, all liquids do get
compressed a little when subjected to very high deforming forces of the order of few hundred
atmospheres. e.g. when water is subjected to a pressure of about 200 atmosphere, it
undergoes a reduction of only one by hundredth part of its original volume).

A gas, on the other hand, is a fluid which has neither a shape nor a free surface of its
own. It can be easily compressed i.e. its volume can be easily altered, when subjected to
pressure, and not only that, but if the pressure on the gas is gradually decreased, it can
also be made to expand indefinitely, occupying all the space made available to it. Thus
the gas occupies the entire volume of the vessel in which it is kept, and whole of the gas
will escape if there be the tiniest opening in the vessel.

Here, we shall discuss only the case of liquids.

1.2. THRUST AND FLUID PRESSURE

One of the fundamental properties of a liquid in equilibrium is that it exerts a force on
any surface or on all bodies in contact with it, and this force acts perpendicular to the
surface and is spread over the entire area of the surface in contact. The bottom or the
walls of the vessel containing the liquid may be considered as such a surface. The total
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force exerted by a liquid column on the whole of the area in contact with it is called thrust.
A liquid at rest always exerts a thrust normally to the surface in contact with it. If it
were not-so, the reaction of the bounding surface of the container on the liquid opposite
to the thrust would have a component parallel to the bounding surface which would cause
the liquid to flow, since a liquid cannot withstand a tangential shear. It follows, therefore,
that since the liquid is at rest, the thrust due to it must be perpendicular to the bounding
surface at every point. Further, since every layer of a liquid at rest is in equilibrium, this
means that the downward thrust on it, due to the liquid column above must be balanced
by an equal upward thrust due to the liquid column below it. In other words, at any
particular level of the liquid at rest, the downward thrust due to the liquid column above
it is exactly balanced by the upward thrust on it.
If this force is uniformly distributed over the area i.e., its value is the same on each small
area element of the surface, then its value per unit area is called pressure due to the
liquid at rest or hydrostatic pressure. Thus, if a force F due to the liquid is acting
uniformly on an area A in contact with it, then pressure
_F

=73
Thus, thrust = pressure X area
However, the force and hence the pressure may not be uniform. In such a case, the average
pressure acting over the given surface is, 5F

To define the pressure at a specific point, consider a small area element 8A containing

8F
that point. In such a case, the small force 5F acting over this area gives the pressure — 54"
When 84 is vanishingly small, the pressure at the point is,

p=1Iim QF—
549 0A

The SI unit of pressure is pascal (Pa), where 1Pa = 1N/m?. Its dimensional formula is
[MLT2).

1.3.  VARIATION OF HYDROSTATIC PRESSURE WITH DEPTH IN
A LIQUID AT REST UNDER GRAVITY

Consider a liquid of density p which is in equilibrium of rest in a vessel
containing it. Let R and Q be two points inside the liquid at a vertical
distance h, and consider an imaginary cylindrical column of the liquid
with axis RQ, cross-sectional area A and length or height h, such that
points R and Q lie on the flat faces of the cylinder (Fig.1.1).

The mass of the liquid inside the imaginary cylinder is,

M = volume of liquid x density = Ah p

? Fluid Mechanics (B.Sc Ist Year)



Let P, and P, be the hydrostatic pressure of the liquid at points R
liquid cylinder is under the action of the following vertical forc :I/
(i) Force F, = P A, acting vertically downwards on the top f; CE f the c?ﬂgn\ﬂe?(

(({()e f \'he cylinder.

(iif) Weight Mg = Ah p g, of the liquid cylinder acting vertically\lq
the acceleration due to gravity at the place.

(i) Force F,= P,A, acting vertically upwards on the bottom

As the liquid is in equilibrium, therefore, the liquid cylinder must a
equilibrium. Hence, the net force on it must be zero,

te,F +Mg—-F, =0

or PA+Ahpg-PA=0

or P,— P, =hg _ (1.1)
Hence in a liquid at rest under gravity, the pressure difference between any two pbints
varies as the vertical distance between them.
We consider the following cases:

(a) If the points R and Q lie at the same level inside the liquid, then h = 0.
Therefore, from eq. (1.1), P, = P, at all points.

This shows that the hydrostatic pressure is the same at all pomts inside the liquid
lying at the same horizontal level.

(b) If point R is shifted to the top of the liquid surface, which is exposed to the
atmosphere, then P, = P, = atmospheric pressure. Then the total pressure at point
Q at depth h inside the liquid is,

P-P =hpg or P=P +hpg ) 1.2)
This shows that P is greater than P_ by an amount h p g. This excess pressure at
depth h below the liquid surface is called the gauge pressure at depth h or at the
point Q.

(¢) If the acceleration due to gravity is zero i.e. g = 0, then from eq. (1.2), P = P.
This shows that there will be no difference in the hydrostatic pressure at all points
inside the liquid, irrespective of the height from the free surface of the liquid, and
the pressure is simply equal to the atmospheric pressure. Thus the pressure exerted

by a liquid at various points inside it is due to the effect of gravity. In other words,
it is due to the weight of the liquid above the layer or point under consideration.

(d) If P = Pressure due to the liquid column of height h at the point Q, then
P,-P =P=hpg
This shows that the pressure exerted by a liquid column of height h is independent of the

area of cross-section of the column, but depends only upon the height of the liquid column
and the density of the liquid.
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1.4. HYDROSTATIC PARADOX

From the previous case (d), it follows that, for a given liquid, so long as the vertical height
of the column of a liquid remains the same, the pressure exerted by it remains the same,
irrespective of its actual mass or weight. The pressure inside a liquid remains the same
at all points on the same horizontal level in it.

To understand the hydrostatic paradox, consider five different vessels of different shapes
as shown in fig.1.2, all having equal bases and containing water up to the same vertical

height A.

B
hi 14

N e |

Fig: 1.2

In case of vessel A, the thrust on the base of the vessel is due to the entire weight of the
cylindrical column of height 4. In vessel B, the upward component of the normal reaction
due to the left side of the vessel supports the weight of the water in between the left side
and the dotted line A’. While the downward component of the normal reaction due to the
right side of the vessel exerts a downward thrust on the base of the vessel equal to the
weight of the water in between the right side and the dotted line B’; that the net thrust
on the base is the same as due to the vertical column h of water. In vessel C, the upward
components of the normal reaction due to both the left and right sides of the vessel support
the extra weight of water in between the left and right sides and the dotted lines C’ and
D' respectively; so that the net thrust on the base of the vessel is equal to the cylindrical
column % of water in between the dotted lines C’ and D). This same principle is also true
for the other two vessels.

Similarly, if all the vessels are connected together with the same horizontal base (Fig. 1.3.),
then if water is poured into the vessel, it will be seen that water rises to the same height
in all the sections of the vessel.

Fig: 1.3
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1.5. PASCAL'S LAW

According to Pascal’s law, the pressure exerted anywhere in a confined fluid at rest is
transmitted undiminished equally in all directions throughout the volume of the fluid.

A simple theoretical proof of Pascal’s law may be given on the basis of the law of
conservation of energy. Fig.1.4. shows two cylindrical vessels B and C fitted with air-
tight, frictionless pistons P, P, with cross-sectional areas A, A, respectively. These vessels
are connected together by a narrow, horizontal tube D and filled with an incompressible
Hquid.

Let a force F, acting on P, push it downward while a force F, holds the piston P, in
equilibrium. If P, is allowed to move downwards through a distance /,, a Volume A, [, of
liquid is pushed into the cylinder C from the cylinder B. Since the liquid is incompressible,
the piston P, will be forced to move outwards through a distance [, (say) to accommodate
the liquid flowing from cylinder B to C. Clearly,

Al=AL (1.3)

Work done by the force F,in moving the piston F,
P, through I = F, I, E

Work done by the force F, in moving the piston BRSNS \
P,through [, = F, [,

Since no energy is stored in the system, therefore

F1 l1= Fz lz (1‘4) =
From eqns. (1.3) & (1.4),
Fl, _F,, 2
Al Al
£_E Fig: 1.4
= A4 A
1 2

Thus, pressure exerted by piston P, = Pressure exerted on piston P,
Hence, the applied pressure is transmitted undiminished.

Pascal’s law is applied in hydraulic lift, in hydraulic press and in hydraulic brakes. Pascal’s
law serve as the principle of working of JCB’s.

1.6. ARCHIMEDES PRINCIPLE

The Greek philosopher, Archimedes was the first to discover that, whenever a body is
fully or partly immersed in a liquid, it experience an upward thrust acting on it equal to
the weight of the liquid displaced. Thus the body appears to be lighter inside the liquid,

1.e. there is an apparent decrease in the weight of the body equal to the weight of the
liquid it displaces.
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Consider a homogenous body in the shape of a cylinder of length F,
I which is completely immersed inside a liquid as shown in Fig.
1.5. The liquid exerts normal thrust on all the faces of the cylinder. === o
The thrust exerted by the liquid on the curved surface area of the W'&&\
cylinder on all sides are equal and opposite and hence cancel each ES&&&&
other’s effect. Therefore, the net thrust on the liquid is only along NN
the vertical direction along the two end faces. ~  [EEE=d QAN
If the top face of the cylinder is at a distance h from the free surface F;
of the liquid, then the pressure acting on the top face is,

P = ghp Fig: 1.5

(where p is the density of the liquid) »
If ‘A’ be the face area of the cylinder, the downward thrust acting on it due to the liquid is,
F =P xA = ghpA
The pressure on the bottom face of the liquid is, P, = g(h + 0)p, so that the upward thrust
acting on it due to the liquid is,
F,=PxA=gh+/)pA
Therefore, the net upward thrust acting on the liquid = F, - F,
= Alpg
= Volume of liquid displaced
x density of liquid
X acceleration due to gravity
= Weight of liquid displaced
Thus, when a body is wholly or partially immersed in a liquid, it experiences an upthrust
equal to the weight of the liquid displaced by it. This is known as Archimedes principle.

The resultant upward thrust i.e. uphrust, is called the force of buoyancy, buoyant force
or simply buoyancy. It acts vertically upwards through a point, which is the centre of
gravity of the displaced liquid and is called the centre of buoyancy or centre of floatation.

In case of a homogenous body the centre of buoyancy coincides with the centre of gravity
of the body. Since the true weight (W) of the body acts vertically downwards and the
buoyant force (F,) acts vertically upwards, and is equal to the weight of the displaced
liquid (W'), therefore, the apparent weight of the body inside the liquid is

W, = W-F,=W- W (15)

a

Thus, the body appears lighter when it is immersed inside a liquid and the loss in weight
1s equal to the weight of the liquid displaced.

If o be the density of the solid body which is immersed inside the liquid, then from
eq. (1.5), we have

6 Fluid Mechanics (B.Sc Ist Year)



p
W, _=Alcg-Alpg=Al(c-pg=Alcg (1—;)
W

_P
o w=w(i-2)
app

The true weight of the solid, W = (1_3) (1.6)

o
From the above equation, if:

(1) o<pi.e., the density of the solid is less than the density of the liquid, then the true
weight of the solid will be less than its apparent weight which means that the
upthrust on the solid is greater than its weight. Then the solid will rise to the surface
of the liquid up to the extent that the weight of the displaced liquid (i.e., the upthrust)
is equal to the weight of the solid immersed in it and the solid will float on the
surface.

(it) o> p, then the true weight of the solid will be greater than its apparent weight i.e.,
the upthrust on it is less than its weight. In this case the solid will sink to the
bottom of the liquid.

(it}) o= p, then the true weight of the solid will be equal to its apparent weight i.e., the
upthrust due to the liquid is equal to the weight of the solid. In this case the solid
will be at rest anywhere inside the liquid. If the whole volume of the solid is immersed
inside the liquid, then it will float inside the liquid.

1.7. SURFACE PHENOMENA IN LIQUIDS: SURFACE TENSION

Surface tension is essentially a molecular phenomenon and hence, it is important to first
of all learn and have a clear idea about the forces that operate between the molecules of
substances. The forces between the molecules of a substance are called the intermolecular
forces. The intermolecular forces are of electrical origin and these forces are known as
Vander Waal’s forces. These forces are attractive in nature but are different from the
ordinary gravitational forces, and do not obey inverse square law. The molecular forces
are found to vary inversely as the seventh power of distance 1.e., their magnitude increases
rapidly with decrease in the distance between the molecules.

There are two types of molecular forces: (i) Forces of adhesion or adhesive forces and
(i) Forces of cohesion or cohesive forces.

(i) Adhesion is the force of attraction acting between the molecules of different substances,
and is different for different pairs of substances.

For example, the adhesive force between the molecules of water and glass makes
the water to wet the glass. Similarly, while writing, graphite from pencil sticks to
the paper due to the adhesive force. On the other hand gum has a greater adhesive
force for solid surfaces than liquids. '
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(i) Cohesion, on the other hand, is the force of attraction acting between the molecules
of the same substance.
For example, Solids have a definite shape due to the strong forces of cohesion between
the molecules of a solid. Liquids have a definite free surface but no definite shape
which shows that the cohesive force is weaker in liquids than in solids, while gases
have neither a definite shape nor a definite free surface, which shows that the
cohesive force is the weakest in gases. Mercury does not wet the walls of the glass
container because the cohesive force between the molecules of mercury is stronger
than the adhesive force between the molecules of mercury and glass.

1.8. MOLECULAR RANGE — SPHERE OF INFLUENCE

The maximum distance up to which the force of cohesion between two molecules can act
is called their molecular range. It represents the maximum distance up to which a molecule
can exert a measurable attraction on other molecules, and is generally of the order of
10°m in the case of solids and liquids, being different for different substances.

A sphere drawn with a molecule as centre and radius equal to its molecular range is called
the sphere of influence of the molecule. All the molecules lying inside this sphere attract
the molecule at the centre and are also attracted by the molecule, whereas the molecules
lying outside the sphere do not affect and are not affected by the molecule, at the centre.

The topmost layer of a liquid at rest with thickness equal to molecular range is called the
surface film.

1.9. SURFACE TENSION: MEASUREMENT OF

Whenever a body is stretched it is in a state of tension, and because of its elastic properties
it has a natural tendency to contract. For example, when we stretch a rubber tube it has
a tendency to shorten its length and if a rubber sheet is stretched it has a tendency to
reduce its area. Similarly, on account of the cohesive forces between the molecules of a
liquid, the free surface of a liquid always behaves like a stretched elastic membrane and
hence has a natural tendency to contract and assume the smallest possible area. This
tendency of a liquid to decrease its surface area is illustrated by the following examples.

() It is a general experience that a liquid in small quantity at rest, free from external
forces like gravity, always tends to assume the shape of a spherical drop e.g., rain
drops, small quantities of mercury placed on a clean glass plate, a freely suspended
drop of water form at the end of a tap etc. Since, for a given volume, a sphere has
the least surface area, the liquid assumes a spherical shape in order to have
minimum possible surface area. Ordinarily the effect is not as marked, as the liquids
tend to spread due to the force of gravity. If the force of gravity is eliminated the
liquid will assume a perfectly spherical shape.

(il) When a shaving brush is dipped in water, its hairs spread out. On taking out the
brush the hairs of the shaving brush are pressed together. This is because the water
film formed between the hairs while tending to make its surface area minimum
due to surface tension will bring the hairs closer to each other.
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(i7i) If a greased needle be placed on a piece of blotting paper and the latter is gently
placed on the surface of water at rest, the blotting paper will soon sink to the bottom,
but the needle will remain floating on the surface. A careful observation shows that
the surface of water below the needle gets slightly depressed. This shows that the
free surface of water supports the needle in the same way as a stretched rubber
membrane does. If the layer is pricked by one end of the needle, it sinks down.

(fv) Some insects, like mosquitoes etc, can move about freely on the surface of ponds
without sinking. This is on account of the support they get from the free surface of
water which behaves like a stretched membrane.

Measurement of surface tension: Imagine a line AB drawn tangentially anywhere on
the free surface of a liquid; the molecules lying just on its one side tries to pull it away
from the molecules lying just on the other side in order to decrease the surface area. Thus
the force of surface tension acts at right angles to this line on both sides and tangentially
to the liquid surface (Fig.1.6.). The force acting per unit length of such a line gives a
quantitative measure of surface tension.

Hence surface tension is defined and measured as the force per unit length acting on either
side of an imaginary line drawn tangentially anywhere on the liquid surface in equilibrium,
the direction of the force being tangential to the surface and perpendzcular to the line.

Let F be the total force acting on either side of an imaginary line
of length I, drawn tangentially on the liquid surface at rest. The
force of surface tension T, by definition, is given by

F
T==
/
T is constant for a given liquid (free from impurities) at a given B S =/

temperature. It is measured in Newton per meter (Nm!) in S.I units.

Fig: 1.6
1.9. MOLECULAR THEORY OF SURFACE TENSION g
The contractile tendency of a liquid surface at rest has been explained by Laplace on the
basis of the molecular theory, discussed below:

A molecule attracts and is in turn attracted by the molecules lying within its sphere of
influence. As shown in Fig. 1.7., let PQRS be the surface film of a liquid at rest in a
container, where PS = QR = molecular

range. Consider three molecules of the
liquid; A well inside it, B just below the
surface and C on the surface, with their
sphere of influence drawn around them.
Since the sphere of influence of molecule
A lies completely inside the liquid, it is
equally attracted in all directions by the
molecules lying within its sphere of
influence. Hence there is no resultant Fig: 1.7
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cohesive force acting on it.

The sphere of influence of molecule B, on the other hand, lies partly outside the liquid.
Therefore the number of molecules on the upper half of the molecule B pulling it upwards
is less than the number of molecules on its lower half pulling it downwards. Therefore,
there is a resultant downward force of cohesion acting on the molecule B.

Since the sphere of influence of molecule C lies exactly half inside and half outside, hence
the number of molecules in the lower half of sphere of influence of molecule C, attracting
it downwards, is very large as compared to the number of molecules (only gas or vapour
molecules) in the upper half of its sphere of influence attracting it upwards. Therefore
there is maximum resultant downward force acting on the molecule C.

Clearly this is true for all the molecules of the liquid. Hence all the molecules in the
surface film are pulled downwards due to the resultant cohesive force, the magnitude of
which increases from the bottom (SR) of the surface film to its top (PQ) i.e. the free surface
of the liquid. Now, if a molecule from the interior of the liquid is brought up to the surface
film, work has to be done against the downward cohesive force on it and hence its potential
energy increases. Therefore the molecules in the surface film have more potential energy
than the molecules lying below it. The greater the number of molecules in the surface
film, the larger is the potential energy of the surface film. A system in equilibrium tends
to acquire minimum possible potential energy. Thus, in order to attain a stable equilibrium
the surface film also tends to have minimum potential energy, which will be so if the
number of molecules in the surface film is minimum. For this the surface film should
have minirmum volume. This can be done only by decreasing the surface area of the film,
because its thickness is already fixed (equal to molecular range). Thus the free surface of
a liquid at rest always tends to have minimum surface area, and in so doing the surface
film tends to contract and behaves like a stretched membrane.

1.11. SURFACE ENERGY

It is seen from above that the potential energy of molecules in the surface film is greater
than those in the interior of the liquid. The excess of potential energy per unit area of the
film is called its surface energy. Also the free surface of a liquid at rest tends to contract
s0 as to acquire minimum surface area due to surface tension. Therefore, if the free surface

of the liquid is to be increased, work has to be done @f P A
against the force of surface tension. This work done 1

is stored in the surface film as part of surface l l l

energy of the increased surface area. — T D F
Consider a rectangular wire frame ABCD, with a 1
horizontal wire PQ in it which can slide freely on —T T

the sides AB and CD (Fig.1.8.). Let a soap film be T

formed over it. The wire PQ is pulled inwards due T N

to surface tension, acting perpendicularly to the T T T & L)
wire and in the plane of the film, by a force 27 x C ¢

l, where T is the surface tension of the soap film Fig: 1.8
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and [/ is the length of the wire PQ. The factor ‘2’ appears becaus
of the soap film. If the wire PQ is pulled outward by a small dis
@', keeping the temperature constant, then

The work done by the external force =2TxIxb

Increase in area of the soap film =2X[xb=
i 2TIb

Work done or Energy spent per unit area = T T

This energy is stored in the increased surface area of the soap film.

Hence the surface tension is numerically equal to the work done in increasing the surface area of
liquid film by unity under isothermal conditions. In other words, the surface energy per unit area of
a surface film is numerically equal to the surface tension.

Thus, surface tension can be expressed in joules per square metre (Jm-2).

In the above discussion, it is assumed that the temperature of the film remains constant.
But in the actual case, the film gets cooled on being stretched, because the drawing out
of the molecules from the interior of the liquid to the surface results in the increase of the
potential energy of the molecules. This increase in potential energy of the molecules is at
the expense of kinetic energy of the molecules. This leads to a decrease in their thermal
agitation, with a consequent lowering of temperature. Thus the film gets cooled and it
therefore, absorbs heat from the atmosphere to keep its temperature constant. This heat
absorbed, together with the mechanical work done, forms the energy of the new surface
area 2lb of the film formed.

Thus, if E is the surface energy of the film and H is the amount of heat absorbed per unit
area of the new surface formed, we have

Ex2lb =2lbxT+ Hx2lb

or E=T+H

= T = E - H = (Surface energy — Heat energy per unit area)
= Potential energy per unit area

i.e., T = Work done in forming unit area of the surface film

Thus, Surface tension is equal to the mechanical part of the surface energy of the liquid
film, which may be called as free surface energy of the liquid-film or surface.

1.12. PRESSURE DIFFERENCE ACROSS A CURVED LIQUID SURFACE

All the molecules lying within the surface film of a liquid are pulled downwards due to
the resultant downward cohesive force between the molecules of the liquid. This downward
force exerted per unit area of a liquid surface is called cohesive pressure.

When the free surface of a liquid is plane, a molecule in the surface is attracted by other
liquid molecules equally in all directions. Consequently, the resultant force on a molecule
due to surface tension is zero as shown in fig. 1.9. (i), and the cohesion pressure is negligible.
But if the liquid surface is curved, there is a resultant force of surface tension which acts
normally to the surface.

Hydrostatics—Surface Tension t




® (@0 _ (@ii)
Fig: 1.9

If the free surface of a liquid is concave, the resultant force on it acts outwards (away
from the liquid) as shown in fig. 1.9.(i7) and the cohesion pressure is decreased. But if the
free surface of a liquid is convex, the resultant force on it acts inwards (into the liquid) as
shown in fig. 1.9.(i7i) and the cohesion pressure is increased. Hence, for the equilibrium
of a curved surface, there must be a pressure difference across it so that the force of
surface tension will be balanced by the excess pressure acting on the concave side of the
liquid surface.

1.13. EXPRESSION FOR EXCESS PRESSURE ON A CURVED LIQUID SURFACE.

From the above section it is seen that if we have a curved liquid surface at rest, then the
inward/outward pressure on it due to surface tension must be balanced by an equal excess
of pressure, acting on the concave side of the curved liquid surface.

Let ABCD be a small cuvilinear element of the curved
liquid surface at rest as shown in Fig. 1.10. Let the length
of side AB be x and radius of curvature r, with centre at
O,, and the side BC is of length y and radius of curvature
r, with centre at O,. Clearly, AO,, = BO,=r, and BO,=
CO, = r,. Geometrically radii of curvature, such as AO,
and BO, are called principal radii of curvature. Surface
area of the curvilinear element ABCD = xy.

Let the excess of pressure on the concave side be p. When
the liquid surface is at rest, the outward force on the
element ABCD due to excess pressure = p - xy

Suppose the surface is expanded by giving an
infinitesimally small normal displacement § z (= A 4") so
that the element occupies a new position A’ B C' D, its
curvature remaining unchanged. Hence, the work done by
the excess pressure p is

W = force X displacement
=p xyxdz (1.8)
If x + 8x and y + 8y be the lengths of A’ B' and C' D' respectively, then increase in the area
of the liquid surface under consideration
= (x+3x) (y +8y) —xy
= x8y +y8x(the product § x 8y of very small quantities has been neglected).
12 Fluid Mechanics (B.Sc Ist Year)
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Increase in the surface energy of the element = . _
surface tension X increase in area =T (x 8y +y 6 x) (1.9

Where, T'is the surface tension of the liquid. This increase in the surface energy is equal
to the work done in expanding the surface by excess of pressure, hence equating (1.8) and
(1.9), we get

pxydz=Txdy+ y8x)

_[Lav 10 .
or p = y 8z x 6z (1.10)

Now from similar traingles ABO, and A’ B' O,, we have
A'B' AB x+0x x

A'0, N A0, " 1 +62 o

[+ A0, =A0,+AA =1 + 7]

x+8x r+6z Ox oz
or = or I+—=1+—
x y x K
ox_6: 101
or x n T %8z 7

Similarly, from similar triangles BCO,and B’ C' O,, we have

1oy 1
y 6z
o 1 6x 16y
Substituting these values of ——— and —-%_ in eq. (1.10), we get
x 0z y 0z
_ | —+— 1.11
p - (1.11)

If one of the curvatures is convex and the other is concave, the radii of curvature r,and
r, are of opposite signs. Thus, in such case, we have

P 112
p —_— (1.12)
Combining the equation (1.11) and (1.12), we may write the general realtion as
1 1 '
-7 —i—} (1.13
P (’i h )

Hydrostatics—Surface Tension P



If instead of a liquid surface, there are two surfaces of a film or membrane then the excess

of pressure is given by
1.1
p=2T [—i—] (1.14)

h n

The relations (1.13) and (1.14) hold for all surfaces. A few important particular cases are
given below.

(i) Spherical surface.

(@) In case of a single spherical surface such as that of a liquid drop or air bubble
inside a liquid, we have r, = r, = r (say). Hence from (1.13)

1 1)_2r
p=T| "0 )77 (1.15)

(b) In case of a single spherical surface such as that of a liquid drop or air bubble
inside a liquid, we have r, = r, = r (say). Hence from (1.14)

p=2x"—=— (1.16)

(it) Cylindrical surface.

(@) Here one of the radii is the same as the radius (r) of the cylinder while the
other is infinite i.e., r, = (say) and r,= 0. For one single surface, such as for a
cylindrical column of liquid or for a cylindrical bubble in a liquid, from (1.13)

we obtain
1 1 T
p = T(—+—j=—— (1.17)

r o r

For two surfaces such as for a cylindrical bubble or film, we get from (1.14)
p=2T/r

(iti) Case of a catenoid.
If the surface is one of revolution with no difference of pressure, the surface is
a catenoid. Here p = 0, hence we have

1,1
—t— =9 | (1.18)

h h
An example of such a surface is that of a film, supported in between two parallel rings
and ends of the film are burst so that p = 0, or, better still, between the mouths of two
funnels, obtained by dipping them in a soap solution with their mouths in contact and
then slowly pulling them apart, with their narrower ends open to the atmosphere.
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1.14. EXCESS PRESSURE INSIDE A LIQUID DROP .

A liquid drop is spherical in shape and hence the surface of a liquid drop is convex and,
therefore, the molecules on the surface experience a resultant force due to surface tension,
acting inwards. Therefore for the equilibrium of the spherical drop, the resultant inward
force must be balanced by the excess pressure, acting on the concave side of the spherical
surface.

EEE;: = = :.'*EEE

Fig: 1.11 (a) Fig: 1.11 (b)

Let r be the radius of the drop and P be the pressure on the convex side and P + p that
on its concave side [Fig.1.11 (a)]. Therefore excess of pressure inside the drop is p.

Now let us consider the equilibrium of one half of the drop, as shown in the fig.1.11 (b).
Neglecting the weight of the drop, there are two forces acting on it:
(?) The outward force on the plane face ABCD, due to excess of pressure p,
= excess of pressure x area of plane face ABCD
= p X mr?
(i) The inward force, due to surface tension, acting on the rim ABCD of the
hemispherical drop,
= surface tension of the liquid X circumference of the circle ABCD
=T X 2nr

Since the hemispherical drop is in equilibrium hence the outward force must be equal to
inward force,

i.e. pXnar?=Tx2nr, Lp=Tr (1.19)

1.15. EXCESS PRESSURE INSIDE AN AIR BUBBLE IN A LIQUID

An air bubble inside a liquid will have only one spherical surface. There will be the excess
of pressure p on the concave side, i.e., inside the bubble and hence this case is dealt exactly
in the same manner as described above [Art.1.14]. The expression for the excess of
pressure, as derived above, is

2T

p="— (1.20)
r
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1.16. EXCESS PRESSURE INSIDE A SOAP BUBBLE

A spherical soap bubble has two free surfaces in contact with air. There is an excess of
pressure acting on the concave side of the bubble as shown in Figl.12 (a). If p be the"
excess of pressure then by considering the equilibrium of one half of the spherical bubble
[Fig.1.12(b)], the outward force on the plane face ABCD of the hemisphere due to the
excess pressure = p X ars.

The inward force of surface tension on the circumference of the circle ABCD due to a
single surface is T' X 2nr, hence the total force of surface tension due to both the surfaces
is '

=2 x T x2ar

For the equilibrium of the bubble, the outward force due to excess of pressure must be
equal to the inward force due to surface tension. Hence,
pXnr2=2x T X 2nr, o p=4T/r. (1.21)

Thus we see that the excess pressure inside a drop or bubble is inversely proportional
to its radius, so that the smaller the bubble or drop, the greater is the excess pressure
inside it.

1.17. DETERMINATION OF SURFACE TENSION OF LIQUID — JAEGER’S METHOD

We know that the excess pressure inside an air bubble in a liquid is equal to 27/r [Art.1.15],
where T'is the surface tension of the liquid and r, the radius of the bubble. Jaeger measured
this excess pressure p, necessary to produce such a bubble, by a simple method described
below. So that, knowing p and r, the surface tension (7) of the liquid can be determined.

The apparatus, used for this
purpose, consists of a long thin glass
tube AB, with its lower portion
ending in a fine jet of about 0.2 to
0.5 mm in diameter, and its tip is
cut perpendicular to the axis of the
tube and quite smooth so that even
under a microscope, there appears
- no trace of roughness or ruggedness
at its inner or outer edges. This tube
is dipped in the experimental liquid,
contained in a vessel, with about 4 Fig: 1.13

to 5 cm of its length inside the C

liquid,— the diameter of the vessel being at least 8cm to ensure the flatness of the liquid
surface in it. It is then connected to a manometer M and a Woulff's bottle W, fitted with
a dropping funnel F containing (water or mercury) as shown in Fig.1.13. The liquid used
in the manometer is usually of low density (such as Xylol), so that the difference in the
levels of the liquid in the in its limbs may be large for a given pressure difference.
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Due to capillary action, some liquid rises up into the tube AB to a height well above the
level of the liquid outside, the shape of its meniscus being nearly hemispherical. Some
air is then forced into the tube by dropping water from the Woulff’s bottle, which displaces
its own volume of air from it. The liquid column in AB slowly moves down until it reaches
the end B and then a bubble is formed there. As the pressure inside the bubble increases,
the radius of curvature of the bubble gradually decreases, until it reaches a minimum
value, and the bubble acquires a more or less hemispherical shape, with radius r, equal
to that of the orifice at B, the pressure inside being now the maximum. The maximum
pressure is noted from the manometer by noting the difference of levels (H) in the two
limbs of the manometer. The bubble now becomes unstable; for any further growth of it
due to the force of air, tends to increase its radius. This results in the decrease in the
pressure inside it due to surface tension, thus destroying the equilibrium between its
internal pressure and the constant external pressure. It therefore, breaks away from the
tube and the whole process starts all over again.

The whole operation is so regulated that, (i) only one bubble is formed at a time and
(it) it takes about 10 seconds for one bubble to be formed-at B.

Just before the bubble breaks away from B, the pressure inside it is equal to that at C,
i.e., P+ H p g, where Pis the atmospheric pressure and H p g is the pressure due to the
liquid column H in the manometer, and p is its density. When the bubble just breaks
away from B, the pressure on it is equal to that at the level of B in the beaker, i.e.,
P+ ho g, where h is the depth of orifice B below the surface of the experimental liquid
and ¢, its density.

Therefore, the excess pressure inside the bubble = (P+H pg)- P+ h og)

=Hp-ho)g
But as the excess pressure inside the bubble = 277r
~2T/r = (Hp-ho)g
Hp—-ho)gr
- HpP : )g

Thus, knowing H, h, p and ¢, and determining r with the help of a microscope fitted
with a micrometer eye-piece, the value of surface tension T may be determined.

The method is not very accurate in so far as the determination of absolute values of surface
tension is concerned, as the phenomenon is a dynamical one and the exact value of the
radius of the bubble at the point of breaking is uncertain. This method however, can be
used to study the variation of surface tension with temperature, since the temperature of
liquid in the containing vessel can be easily controlled and the bubble is formed inside
the liquid itself. The method is also applicable for comparison of surface tensions of different
liquids, determination of surface tensions of molten metal, and studying the variation of
surface tension of a solution at different concentrations of solutes.

Note: To avoid the quantity o, the density of the test liquid, two tubes of radii r, and r, may
be taken. If H, H, be the maximum readings in the manometer in the two cases, then

2T/r,= (H,p-ho) g & 2T/r,= H, p- ho)g
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Subtracting the above two equations, we have

(=)
ZTL ", J

g p (hl—hz)

. _ &pnh—h)
=21

This is known as Sugden’s modification. Sugden also gave a more precise theory over
Jaeger’s allowing for the fact that the bubbles formed are not exactly spherical in shape.

1.17. SHAPE OF LIQUID MENISCUS IN A CAPILLARY TUBE

A narrow tube with a very fine bore is called a capillary tube. When a liquid is brought
in contact with a solid, its surface becomes curved near the point of contact, thus making
the shape of the liquid meniscus inside the capillary tube to be concave or convex. The
nature of the curvature depends on the relative magnitudes of the force of cohesion between
the molecules of the liquid and the force of adhesion between the molecules of the liquid
and that of the solid.

Let a capillary tube of glass be dipped vertically in a liquid, meeting its surface at P
(Fig. 1.14.). Then a liquid molecule at P will be acted upon simultaneously by two forces
(neglecting the weight of the liquid). These are:

() A resultant adhesive force due to the molecules of the glass tube near about it and
acting outwards perpendicular i.e., 90°, to the glass tube at point P. Let this force
be represented in magnitude and direction by PQ.

(ii) A resultant cohesive-
force due to the liquid
molecules near about it Q‘:ﬁ
and acting inwards at
an angle of 45° to the \
vertical at P. Let this \

) R
force be represented in
magnitude and direction
by PS. SRR

Thus the two forces are acting (a) (b) (©)

at an angle of 135° with each Fig: 1.14

other. The resultant of these C
force is obtained by the parallelogram law of vector addition, and is given by the diagonal
PR of the parallelogram PQRS. The direction of the resultant depends upon the relative
magnitudes of the two forces PQ and PS. The following cases may arise depending upon
the nature of the liquid and the solid glass tube.
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(@) If PQ/PS be equal to ‘E le, if PS = \/E PQ, the resultant PR will lie along the

vertical, as shown in Fig. 1.14(a).

(b) If PS be smaller than ﬁ PQ, the resultant PR will lie outside the liquid, as shown
in Fig. 1.14(b).

(c) If PS be greater than \/_ PQ, the resultant PR will lie inside the liquid, as shown
in Fig. 1.14(c).

All the molecules of the liquid which are similarly situated as at P lie on a circle, and
experience similar resultant forces. For molecules lying away from the surface of the wall,
the resultant force is inclined less and less with the vertical direction, because the
magnitude of the cohesive forces increases while that of the adhesive forces decreases,
and the former becomes more and more vertical as the distance from the wall increases.
Since a liquid cannot permanently withstand a shearing stress, therefore, in equilibrium
its surface at every point in contact with the solid will set itself at right angles to the
resultant force at the point considered.

Thus in case (a), when the resultant force PR acts along the vertical, i.e. when the cohesive
force is /2 times the adhesive force, the molecules of the liquid near the walls of the
tube are raised up against the tube, those at the middle remaining parctically unaffected,
thus making the liquid surface concave upwards. This is the cae of water or other liquids
which wet the walls of the glass tube.

And, in case (c), when PR lies inside the liquid, i.e., when the cohesive force is greater
than \/5 times the adhesive force, the liquid molecules near the walls of the tube are
depressed, while those in the middle of the tube are practically unaffected, thus making
the surface of the liquid convex upwards. This is the case of mercury and other liquids
which do not wet the walls of the glass tube.

1.18. ANGLE OF CONTACT

In general, when the free surface of a liquid is in /{j
contact with a solid, it becomes curved near its plane =
of contact with the solid. The angle between the o =TE=

tangent to the liquid surface at the point of TES /(
contact and the solid surface inside the liquid [ ] 773
is called the angle of contact for the particular G
pair of solid and liquid in contact. =

The angle of contact depends upon the nature of the
liquid and the solid in contact and is not altered by a
change in the inclination of the solid inside the liquid. 0] . (ii)

This angle may have any value between 0° and 180°. Fig: 115

For example, for ordinary water and glass, the angle of contact is about 18° while for
mercury and glass, it is about 138°. For most liquids and glass, however, it is less than 90°.
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In general, for liquids which wet the solid surface, the liquid have a concave meniscus
and the angle of contact is acute, while for liquids which do not wet the solid, it is obtuse
and the liquid have a convex meniscus [Fig. 1.15(i) & (ii)]. Apart from the nature of the
solid and the liquid, the angle of contact also depends upon the following factors:

(1) The medium which exists above the free surface of the liquid. e.g., when the angle

of contact between mercury and glass is different, when a layer of air exists above
the surface of mercury as when a layer of water exist.

(7i) The cleanness and freshness of the given two surfaces in contact.

e.g., the angle of contact for pure water and glass is 0° but if the surface of the glass
be contaminated with grease, its value may be as much as 35°.

1.20. THREE MEDIA IN CONTACT:— EQUILIBRIUM OF A LIQUID DROP

I. Case of a Liquid in contact with a Solid and with air: Consider a liquid which

is In equilibrium on the horizontal surface of a solid. Both the solid and the liquid
are in contact with air; the common line of their contact is through P, perpendicular
to the plane of the paper. Surface tension forces acts at the surface boundary. Let
T, T, and T, be the surface tensions for liquid-air, solid-air and liquid-solid interface
respectively as shown in Fig. 1.16(a). Let 8 be the angle of contact of the liquid with

the solid. Since the system is in equilibrium, T,
TcosO+T, =T,
cosf =21 ik p AN T, 577
= T WWW/W/W/W/Z/M}WA
Fig: 1.16(a)
Thus, if T, > T,, cos6 is positive and hence 6 is less than 90°. 7~ ™ T, cosf is
negative and hence 8 lies between 90° and 180°. This is the ca. _rcury on

glass, where T, is large and 61is about 138°. Therefore, mercury collects itself into
drops when placed on a clean glass plate. If in case, T, > T, + T,, there will be no
equilibrium and the liquid will spread over the solid surface. This is the case of
pure water when placed over a perfectly clean plate of glass.

II. Case of two Liquids in contact with a Solid and with air: If two immiscible
liquids are brought into contact with each other at point O as shown in Fig. 1.16(b),
both being in contact with air, there are three surface tensions to consider, viz. (a)
T, at the surface of contact between air and liquid I, (b) T, at the surface of contact
between air and liquid II and (c) T, at the surface T,
of contact between the liquids.

For equilibrium, the three forces T, T,and T, must =
be such that the sum of any two must be greater ==
than the third. Thus for equilibrium, the three t.;:f
forces must be represented by the three sides of a =
Fig: 1.16(b)
20 Fluid Mechanics (B.Sc Ist Year)



ge oo

u’fﬁélﬁﬂib\“ tpiangle.
In actual practice, no two pure liquids are known for h Neumann's® ) ugle
may be constructed, one of the surface tensions being al; greater ,ng:a‘r( the other

two; so that, the equilibrium condition shown in the fighgs {s E,e\@gag'tfained Tus,

This is because the surface ’pension of mercury of mercury™ N RENA], and
that of water, only 0.075Nm-1.

If, however, mercury surface is contaminated with grease, its surface tension
decreases and some water drops may stay upon it. Thus, now the Neumann's triangle
can be constructed. '

1.21. CAPILLARY ACTION OR CAPILLARITY

When a capillary tube is dipped vertically in a liquid, the liquid inside it either rises or
falls due to surface tension effects. This phenomenon is known as capillary action or
capillarity. For example, when a capillary tube of glass is dipped in water, the water level
rises inside the capillary tube. On the other hand, when the capillary tube is dipped in
mercury, the level of mercury in the tube is depressed than that outside it.

1.22. CAPILLARY RISE: ASCENT FORMULA

Consider a uniform capillary tube, open at both
ends, which is dipped vertically in a liquid of EENES I Y
density p, which wet the walls of the tube. The =4
angle of contact 6 < 90° and the surface of the
liquid inside the tube is concave upwards i.e. P p P \4
the liquid meniscus is concave upwards, as ==:p A C
shown in Fig. 1.17(a). Since the capillary tube ==
is open to the atmosphere, the pressure over
the curved surface is everywhere atmospheric. (@) (b)
Hence the pressure at point A just below the
curved surface of the liquid will be less than
atmospheric by an amount 27/R, i.e., the pressure at the point A willbe P—2T/R, where
P is the atmospheric pressure, R is the radius of curvature of the curved surface and 7
is the surface tension of the liquid. The pressure outside the tube is atmospheric at all
points (such as B and C) lying on the same horizontal level as A.

Fig: 1.17

Due to this difference of pressure at the same horizontal level, the liquid rises up the
capillary tube to a height h. Equilibrium is reached when the pressure due to the liquid
column i.e. h p g, inside the liquid column equals the deficit of pressure at the point A i.e.
2T/R [Fig. 1.17(b)]. Thus,

9T/R=hpg | (1.22)
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If r 1s the radius of the tube, then clearly from Fig. 1.17(c), we have

2T/R=hpg o
MN r r
cosb = 35" x O R= - (1.23) .
Hence from (1.22), we get -
2T cos® = hpg or h= =il (1.24)
rpg

Fig: 1.17 (¢)

Since the angle of contact, @ 1is acute, cos@ is positive and hence from the above formula,
the value of h will be positive, i.e., the liquid will rise up in the capillary tube. Also, it is
seen that as r decreases, i.e. as the diameter of the tube decreases, the greater is the
height to which the liquid will rise in the capillary tube. For example, when a capillary
tube of glass is dipped in water, the level of water inside the capillary tube will rise.

If the angle of contact is obtuse, i.e. 8> 90°, as in the case of liquids which do not wet the
walls of the tube, cos@ is negative, and hence from the above eqn.(1.23), the value of A
will be negative. This shows that level of liquid will fall inside the capillary tube, i.e.
there will be capillary depression. For example, when a capillary tube of glass is dipped
in mercury, the level of mercury inside the capillary tube will be depressed.

In case of pure water and glass, the angle of contact 6 is practically zero, so that from

eqn.(1.23),
o1 oLl
h= rpg or = 2”,08

This formula may be used to measure the surface tension of water by measuring its rise
in a capillary tube.

Rcosd Rcoso

Aliter: Let a glass capillary tube of uniform bore is dipped R
vertically in a liquid which wets the glass. Such a liquid
rises up the tube forming a concave meniscus as already
discussed. Let T be the surface tension of the liquid and
EGF be the liquid meniscus in the tube in the final position.
Since the force of surface tension tends to make the area
of the surface-film minimum, it acts downwards at all the
points of contact such as E and F [Fig.1.18 (a)], making an
angle 0 with the side of the tube. If r is the internal radius
of the capillary tube, the liquid film touches the surface of W
the tube round a length 2nr, the circumference of the circle
of contact. Thus, the surface tension force T acts at every
point of the circle of contact. According to Newton’s third
law, the reaction R acts on the liquid meniscus in the
outward direction, at an angle 6 to the vertical. - Fig:1.18
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Resolving R (= T') into two components:
(I) Rcos@ which acts at every point of the meniscus in the
upward direction and is responsible for the rise of liquid E F
in the capillary tube. = i "":D
(i) Rsin@ which acts at right angle to the length of the ==
capillary tube in the outward direction.

Considering the entire length of the circle of contact at the
meniscus, the horizontal components. acting in one half of the
circumference are equal and opposite to those acting in the other
half and hence cancel each other. The vertical components in
the upward direction are added up and thus the total vertical
force acting along the circumference of the circle of contact is :
given by , Fig: 1.18 (b)
F = RcosO x 2nr =T cos@ x 2nr

This force supports the weight of the liquid column raised above the level outside the
tube.

If h is the height of the liquid level in the tube from the horizontal surface in the vessel
to the tangent plane at the bottom G of the meniscus EGF [Fig.1.18 (b)] and p the density
of the liquid, then the volume of the liquid between the liquid surface in the vessel and
the tangent plane at G = ar?h.

If the tube is narrow, the radius of curvature of the meniscus is approximately equal to
the radius of the capillary tube i.e. r. Hence the volume of liquid raised in the capillary
tube is
= Volume of cylinder of length h and radius r + (Volume of cylinder EDCF of
length r and radius r — Volume of hemisphere of radius r)

reh + (ﬂrzr—%ﬂﬁ) = [nr2h+%7cr3)

r
e (143

. weight eight of the liquid raised in the capillary tube is W = Volume x density x g

2
= nr? [h-l-g) pg

In equilibrium, Total upward force = weight of liquid raised in the tube

A

or Tcos@ x 2nr = m? h"":,;“ pg
r 2T cos@
or h+§ = ——rpg
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. 2Tcos€_£
or h = rog 3

This relation is known as ascent formula.

For narrow tubes, r/38 can be neglected in comparison to h.
2T cos 8

rpg

Hence h =

This is the same as eqn. (1.24)

1.23. RISE OF LIQUID IN A TUBE OF INSUFFICIENT LENGTH

From the above, it is seen that when a capillary tube is dipped in a liquid, the liquid rises
up the capillary tube until the weight of the liquid in the tube is just balanced by the by
the force due to its surface tension. If 8 be the angle of contact between the liquid and the
tube, and R, the radius of curvature of the liquid meniscus in the tube, we have r=R cos 6
(eqn. 1.23, Art.1.21), where r is the radius of the tube, and from eqn. 1.24 (Art. 1.21) the
rise of liquid in the capillary tube is given by,

2T/R = hpg

Where T = surface tension of the liquid, A= height to which the liquid rises in the tube,
and p = density of the liquid.

2T
Hence, clearly Rh = —_ = a constant

Pg
When the length of the capillary tube is greater than h, R remains constant and the
liquid rises to a height h, so as to satisfy the above relation. But, if the length of the tube
be smaller than A, say h’, the only variable in the above relation is R, because now h =h/,
the length of the tube (a constant) and so is 6 a constant for the given liquid and the tube.
The liquid rises up to the top of the tube and just spreads over the walls of the tube at the
top and its meniscus acquires a new radius of curvature R’, such that

2T
R'hW = Rh =" = aconstant
%4

Thus, when A’ <h, R’ > R i.e., The radius of curvature increases and the liquid will not
overflow. '

1.24. ENERGY REQUIRED TO RAISE A LIQUID IN A CAPILLIARY TUBE

When a capillary tube is dipped vertically in a liquid which wet the walls of the capillary
tube, the liquid level rises inside the capillary tube. This rise in the level, obviously, takes
place against gravity and, therefore, the liquid must gain potential energy as it rises in
the capillary tube. According to the law of conservation of energy, energy can only be
converted from one form to another and it cannot be created. The question therefore arises,
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where from did the liquid get this increase in its potential energy? The explanation to
this is as follows:

At the meniscus of the liquid, there are three surfaces of separation to be considered, viz.

(@) An air-liquid surface (i7) An air-glass surface and (iii) A glass-liquid surface, each having
its own surface tension, different from the others, and equal to its free surface energy per
unit area.

As the liquid rises in the capillary tube, the area of liquid-glass surface increases whereas
the area of air-glass surface decreases by the same amount. Moreover as the plane liquid
surface in the tube acquires a curvature, i.e., it becomes concave, the air-liquid surface
also increases. Therefore, the surface energy of glass-liquid surface and liquid-air surface
increases whereas the surface energy of glass-air surface decreases by the same amount.
Thus the energy required to raise the liquid in the capillary tube is obtained from the
decrease in the surface energy of glass-air surface. In other words, the lost energy appears
in the form of gravitational potential energy of the raised liquid column in the capillary tube.

When a liquid falls down in a capillary tube, air-glass surface increases and liquid-glass
surface decreases by the same amount and thus there is a net increase in the surface
energy of the whole system. This energy is derived from the depression of the liquid inside
the tube, whose gravitational energy is thus decreased by the same amount.

1.25. PRACTICAL APPLICATIONS OF CAPILLARITY

Some of the practical applications of capillarity are as follows:

(i) The oil in a lamp or stove rises in the wick to its top by rising in the long narrow
spaces between the threads of the wick.

(i) The fine pores of a blotting paper act like capillary tubes and hence ink is absorbed
by the blotting paper by capillary action.

(it) A towel soaks water on account Qf capillary action due to the fine pores between the
threads of a towel.

(iv) Sap and water rises to the top of the leaves of the tree by capillary action.

(v) Ploughing of fields is essential for preserving moisture in the soil. By ploughing,
the fine capillaries of the soil are broken and hence water from within the soil shall
not rise and evaporate off.

(vi) Sand is drier soil than clay. This is because the particles of sand are not very fine
as in the case of clay, so as to draw water by capillary action.

1.26. FACTORS AFFECTING SURFACE TENSION

The various factors affecting the surface tension of a liquid are:

1. The presence of impurities either on the surface or dissolved in it, considerably
affect the force of surface tension of a liquid, depending upon the degree of
contamination.
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When a substance is dissolved in a liquid, it may increase or decrease the surface tension
depending on the nature of the dissolved substance. Many organic compounds when
dissolved in water reduce the tension, while most inorganic salts, however, increase the
surface tension of the liquid in which they dissolve. For example, when sodium chloride
is dissolved in water, it increases the surface tension of water. But when phenol is dissolved
in water, it decreases the surface tension of water.

The contamination of the surface also has a marked effect on the surface tension of a
liquid. Contaminants such as oil, grease etc. easily spread over liquids and reduce the
surface tension to a great extent.

2. The surface tension of a liquid also depends on the state of electrification of the
liquid. Electrification of a liquid is found to cause an outward force on the liquid,
thus trying to increase its surface area. This force thus acts opposite to the force of
surface tension of the liquid and, consequently the surface tension of the liquid is
reduced.

3. The surface tension of all liquids is found to decrease linearly with rise of
temperature. For small temperature ranges, the variation in surface tension with
temperature is given by,

T, = T,(1—at)

Where T and T, are the surface tensions of the liquid at 0°C and 6 °C respectively and
¢ is the temperature coefficient of surface tension.

At a certain temperature, called critical temperature (6,), the tension vanishes and no
surface phenomenon is observed. A relation representing the variation of surface tension
with temperature in terms of the critical temperature was given by Ferguson as,

(,_8)
T,= A=)

Where A is a constant and n is a constant for a given liquid. The value of n is different
for different liquids having an average value of 1.21.

A more accurate relation was given by Eotvos and improved by W. Ramsay and J. Shields
as follows,
3

M)2
T[?) = K(9-6-5)

Where M is the molecular weight and p is the density, of the liquid; K is a universal
constant of approximate value 2.2 and §is a constant, whose value lies between 6 and 8
for most liquids. The relation shows that surface tension of the liquid vanishes at
6 =0 -0, i.e, at a temperature little below the critical temperature.

26 Fluid Mechanics (B.Sc Ist Year)



1.27 SOLVED EXAMPLES

1. The surface What height of water column produces the same pressure as a 76cm column of
mercury? (density of mercury = 13.6 x 10% kgm)

v

76
Solution: Here, P=hrg= T(—)Em x 13.6 13.6 x 10® kgm3x 9.8ms™2

= 101292.8 Nm

Let A’ = height of water column; density of water p’ = 10° kgm™®
= 101292
P=h"p'g =h=P/pg

101292.8
or, h = m—10.336m

Hence, 10.336m of water column produces the same pressure as a 76cm high column of mercury.

2. Calculate the pressure exerted by water on a fish-10 m below the surface of a pond. Take
atmospheric pressure = 1.013x10%Pa.

Solution: Let P be the pressure on the fish at a depth of 10m.
P=P +hpg
=1.013x10°% + 10x1000%9.8
=1.993x10°% Pa

3. Two liquids of specific gravity 1.2 and 0.84 are poured into the limbs of a U-tube until the
difference in levels of their upper surfaces is 9 cm. What will be the heights of their respective
surfaces above the common surface in the U-tube? What is the pressure aat the common
surface? (take g = 10ms?)

Solution: Let h, and h, be the heights of the denser and lighter liquid respectively above the common

ievel. Then,
=1.01
h,-ph, =90 . 0)
At the common level surface, h,p,g = h,p,g
ie., hx12xg=hx0.84 xg
or, h, =(0.84/1.2) h,

From (i), h,- 0.7h,=9 or, 0.3h,=9
or, h, = 30cm and h, =0.7x30 =21cm
Pressure at the common surface = h,,g = 0.30x (0.84x10%)x10
= 2520 Nm™

4. A hydraulic lift is designed to lift cars with a maximum mass of 4x10° kg. The area of the
piston carrying the load is 5x102m?2. How much pressure the smaller piston will bear?
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Solution: here, maximum mass, m = 4x10° kg

h,-—h,=9.0
Maximum force = mg = 4x10° x 9.8

=39.2 x 10°

And, Area = 5x102m?
. Maximum force
Maximum force = —

Area

_ 39.2x10°

mqg7 = 784 % 10° Nim*

5. The density of ice is 917kgm=. What fraction of the volume of a piece of ice will above water,
when floating in fresh water? , ‘
Solution: Let p be the density of ice = 917 kgm-3, and p' be the density of water = 1000 kg.

Also, let V be the total volume of ice and v be the volume of ice above the water. Then,
volume of the water displaced by the immersed portion of the ice = (V —v).

According to the law of floatation, weight of ice = weight of the water displaced
. Vx917g=(V-v)x1000xg
or, 1000v = 1000V - 917V = 83V

or, vV 1000

Here, about 8.3% of the ice will float above the surface of water.

6. A piece of pure gold of density, 19.3gcm™ is suspected to be hollow inside. It weighs 38.250 g
in air and 33.865 g in water. Calculate the volume of the hollow portion of the gold, if any.

Solution: Here, density of pure gold, p = 19.3gm"
Mass of the gold piece (in air), M = 38.250g

38.25
. i - = —— = 3
. Volume of gold piece, V P 19.3 1.982¢cm

Therefore, the apparent loss in weight of the gold piece in water,
= 38.250 — 33.865
= 4.385
As density of water is 1gcm?3, therefore, the volume of displaced water
4.385
= 4.385¢cm3
.. Volume of the hollow portion of the gold = 4.385 — 1.982 = 2.403cm?
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7. Calculate the work done in blowing a soap‘ bubble from radius 2cm to 5om. Surface tension of
soap solution = 6.0x102Nm-2,

Solution: Initial radius of bubble, r, = 2cm = 2x10?m
Final radius of bubble, r, = 5cm = 5x10?m
Since a soap bubble has two free surfaces, therefore, increase in surface area of bubble
=2 (4ﬂ7‘22—-47[1‘12) =2x%x4p (rzz—qz) |

Z2x4x % (22 x 10-—4 x10~)
=528 x 10™*m?

Work done- = surface tension x increase in surface area
=6.0 x 1072 x 528 x 10 = 3.168 x 103J

8. Caluculate the energy evolved when 8 droplets of water, each of radius 0.5mm coalesce to
form one spherical drop. Surface tension of water = 72x103Nm-'.

Solution: Here, Surface tension, T=72x10°Nm-, r = 0.5mm = 0.5x10*m
Let R be the radius of the big drop formed.
Now, volume of 8 small drops = volume of the big drop

or, %ﬂ'R3 =8 x %7113
or, R=2r=2x0.5x10°=10"3m

Decrease in surface area = 8x4pr? — 4pR?=4p [8 r’— R?
= 4x3.14x[8(0.5%103)2 - (103)?]
= 12.56%x10°m?

Energy evolved = Tx decrease in surface area
= 72x10°%x12.56x10°
=9.04x107J

9. Caluculate If the excess pressure inside a spherical soap bubble of radius 1cm is balanced by .
that due to a column of oil of specific gravity 0.9, 2mm high, calculate the surface tension of
water.

Solution: Here, r = 1cm = 102m; density of oil, = 0.9x10%gm™; h = 2mm = 2x10*m
Pressure due 2mm column of oil, P = h p g = 2x103x0.9x10°x9.8

= 17.64Pa -
Let T be the surface tension of soap solution.
4T
.. Energy evolved, p=
_Pr _ 17.67x107°
or, T= 4 - a4
=4.42 x 102Nm™"
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10. A small hollow sphere which has a small hole in it is immersed in water to a depth of 40cm
before any water is penetrated into it. If the surface tension of water is 0.073Nm™, find the
radius of the hole.

Solution: Here, 7=0.073 Nm*; h = 40cm = 40%102m; p = 10%kgm™
Pressure exerted by 40cm column of water = hp g
= 40%102x10%x9.8
= 3920 Pa

. . 2T 2x0.073 0.146
Excess pressure inside the air bubble = = =

r r
146
Now, 3920 = g—r—
0.146
= — = ~5
or, r 3920 3.7 x 10°m

11. A capillary tube of inner diameter 0.5mm is dipped in a liquid of specific gravity 13.6, surface
tension 545dynecm-' and angle of contact 130°. Find the depression or elevation in the tube.

d 05
Solution: Here, r= > = Ty = 0.25mm = 0.025¢m; T = 545 545dynecm™, p = 13.6gcm
0= 130°
c0s130° = ~ 0.6428
_ r(h+r3)pg
T 2cos6
2Tcos6 r
rpg 3
_ 2x545x(~-0.6428) B 0.025
"~ 0.025x13.6 %980 3

Now,

=-2.111cm

Hence, the liquid will get depressed in the tube.
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1.28 SAMPLE QUESTIONS

. What is a fluid? Define thrust and pressure at a point. Why the thrust is always perpendicular

to the surface in contact with it?

What is pressure? Give its units and dimensions. Deduce an expression for the hydrostatic
pressure at a depth h below the liquid surface. Show that the pressure difference between two
points of a liquid varies as the vertical distance between them.

State and explain Archimedes’ principle. Also state the law of floatation.

Show that the pressure of a liquid is proportional to the height of the liquid column. Also
discuss the effect of gravity on the pressure of a liquid.

5. State and prove Pascal’s law. Give two applications of the law.

6. Define surface tension and surface energy. Show that surface tension is numerically equal to

10.

1.

12.

13.

surface energy.

What is surface tension of a liquid? State its units. Explain surface tension on the basis of the
molecular theory.

Show that }he ex%ess pressure acting on the curved surface of a curved membrane is given
1.1

by, p= 2r U—i;—J where r, and r, are the radii of curvature and T, the surface tension of the
1 2

membrane.

Calculate the excess pressure acting on the curved surface of (i) a liquid drop, (ii) an air
bubble inside a liquid and, (iii) a soap bubble.

What is angle of contact? Why the surface of water is concave and surface of mercury is
convex when it is kept in contact with solid?

What is capillarity? Derive an éxpression for the rise of a liquid in a capillary tube of uniform
diameter. Explain from where the energy comes when a liquid rises against gravity in a
capillary tube?

What do you mean by excess pressure inside a liquid drop? Describe Jaeger’s experiment for
the determination of surface tension.

Explain why:
(a) small liquid drops are spherical in shape, but big drops are flat?

(b) a needle when placed on blotting paper and then gently placed on the surface of water
floats?

(c) small insects are able to walk on the water surface?

(d) does the hairs of a shaving brush cling together when taken out of water?
(e) mercury does not wet glass but water does?

(f) fields are ploughed?

(g) pressure difference exists between the two sides of a curved surface?

(h) sand is a drier soil than clay?
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1.29 SAMPLE PROBLEMS

. A cylindrical jar of cross-sectional area 50cm? is filled with water to a height of 20cm. It carries

a piston of negligible mass. Neglecting atmospheric pressure, calculate the pressure at the
bottom of the jar when a mass of 1kg is placed on the piston. (Ans. 2.94x103Nm-2)

A column of water 40cm high supports a 30cm column of an unknown liquid. What is the
density of the liquid? (Ans. 1.33x10%kgm-3)

Calculate the pressure on a diver 100m below the surface of the ocean. (Ans. 11x10°Nm2)

4. A base of rectangular vessel measures 10cmx18cm. Water is poured into it upto a depth of

10.

11.

12,

13.

14,

4cm. What is the pressure and thrust on the base of the vessel? (Take g=10ms-2)
- (Ans. 400 Pa & 7.2N)

During blood transfusion, the bottle of the blood is hanged at a certain height with a stand. If
the guage pressure at a point where the needle is inserted in the vein of a patient is 1500Pa,
find the height of the bottle of the blood so that the blood may enter into the vein of. (Density
of blood= 1060kgm). (Ans. 14.4cm)

A hydraulic lift is designed to lift cars with a maximum mass of 4000kg. The area of cross-
section of the piston carrying the load is 5x102m2. How much pressure the smaller piston will
bear? (Ans. 7.84x10°Pa

The average mass that must be lifted by a hydraulic lift is 80kg. If the radius of the larger
piston is five times that of the smaller piston, what is the minimum force that must be applied?

(Ans. 31.4N)
A solid floats in water with % of its volume below the surface of water. Calculate the density of
the solid. (Ans. 750 kgm)

A spring balance reads 10kg when a bucket of water is suspended from it. What is the
reading of the balance when,—(i) an ice cube of mass 1.5kg is put into the bucket. (ii) an iron
piece of mass 7.8kg suspended by another string is immersed with half its volume inside the
water in the bucket? (relative density of iron = 7.8) (Ans. 11.5kg; 10.5kg)

A cylinder of length 10cm is immersed in mercury. it is found that the cylinder floats with
4.3cm of its length remaining above the surface of mercury. Find the density of the material of
the cylinder. (density of mercury = 13.6 g/cc) (Ans. 7.75¢g/cc)

What amount of energy will be liberated if 1000 droplets of water, each 10-®*m in diameter
coalesce to form one spherical drop? (surface tension of water = 72x103Nm-)
(Ans. 2.035 x 10%J )

There is a minute circular hole at the bottom of a small hollow vessel. The vessel has to be
immersed in water to a depth of 0.4m so that no water penetrates inside. Calculate the radius
of the hole. (surface tension of water = 72x10-Nm-"). (Ans. 1.37x10°m)

A soap bubble (surface tension = 25dyne/cm) is slowly enlarged from a radius of 3cm to a
radius of 5¢cm. Calculate the work done in the process. (Ans. 10.05x10%rg)

A soap bubble of surface tension 0.026Nm-" is slowly enlarged from a radius of 0.01m to a
radius of 0.10m. Calculate the work done in the operation. Explain why this is less if the
operation is done slowly? (Ans. 6.36 x 10°J)

32
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15,

16.

17

18.

19.

20.

21.

22,

23,

24,

25,

26.

A glass plate of length 10cm, breadth 1.54cm and thickness 0.20cm weighs 8.2g in air. If it is
held vertically, with its long side horizontal and its lower half immersed in water, what will be
its apparent weight? (surface tension of water = 72x103Nm-") (Ans. 8.18 gwt)

A wire ring of radius 3cm is rested flat on the surface of a liquid and is then raised. The pull
required 3.03g more before the film breaks than it is after. Calculate the surface tension of the
liquid. : (Ans. 78.8 dyne/cm)

. Two spherical soap bubbles of diameter 10cm and 6cm respectively are formed, one at each
end of a narrow horizontal glass tube. What is the pressure difference between the ends of
the tube? (surface tension = 30 dyne/cm) : (Ans. 16 dyne/cm?)

(a) Calculate the excess of pressure in a soap bubble of 2mm radius, if the value of T is
0.03Nm™". : (Ans. 60N/m?)

(b)Calculate the excess pressure inside a soap bubble of radius 3cm. The surface tension of
the soap solution is 0.02 Nm-. Find also the surface energy of the soap bubble.
(Ans. 2.67N/m?; 4.52x10%J)

The pressure of air inside a soap bubble of diameter 0.7cm is 8mm of water above the
atmospheric pressure. Determine the surface tension of soap solution. - (Ans. 0.069 Nm™)

A soap bubble is spherical in shape and has a diameter of 10cm. If the surface tension of the
surface separating soap solution and air is 0.04 Sl units, what is the excess pressure of the
air in the bubble over the atmospheric pressure? (Ans. 3.2 N/m?)

Find the pressure in a spherical bubble of of 0.002 cm radius at a depth of 85cm in an oil of
density 800kgm™ and surface tension 0.025 Nm™'. (Ans. 9164 N/m?)

What is the difference of pressure between the inside and outside of of a spherical drop of
water of radius 1mm? (surface tension of water = 72x103Nm-') (Ans. 146 N/m?)

A capillary tube of uniform bore of diameter 0.5mm stands vertically in a wide vessel
containing a liquid of surface tension 0.03Nm-". The liquid wets the tube and has a specific
gravity of 0.8. Calculate the rise of liquid in the tube. (Ans. 3.061cm)

What should be the radius of a capillary tube so that water will rise to a height of 8cm in it?
(Ans. 0.018 cm)

A _capillary tube is dipped in water. Water rises to a height of 4 cm above the surrounding
liquid. If the angle of contact is zero and the radius of the tube is 0.1 mm, what is the surface
tension of the liquid? (Ans. 0.0196 N/m)

In Jaeger’'s experiment, a capillary tube of internal diameter 5x10-2cm dips 3cm inside water
contained in a beaker. The difference in level of manometer, when the bubble is released, is
0.09m. Calculate the value of surface tension. (Ans. 73.5%103 N/m)
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Hydrodynamics— Viscocity

2.1. STREAMLINE AND TRUB}ULENT FLOW

When a liquid flows such that the velocity of every particle passing through a point in the
liquid is constant, both in magnitude and direction, then the flow of the liquid is called
steady or streamline flow.

In such a case, the path followed by the
particles of the liquid represents the
direction of flow of the liquid at any
particular point in the liquid. This path
followed by the particles of a liquid (or
a fluid, in general), in a streamline flow
is called a streamline. More correctly,
a streamline is a curve, the tangent to which at any point and at any instant, gives the
direction of flow of the liquid at that point. A streamline, therefore, may be straight or
curved according as the lateral pressure on it is the same or different.

Consider a liquid flowing through a tube as shown in Fig.2.1. Let ABC represent a
streamline in the liquid i.e., a path along which the particles of the liquid would move.
Let v, v, and v, be the velocmes of a particle at A, B and C respectively. If all the
preceding or succeeding particles of the liquid move along A, B and C with the same velocities,
then the flow of the liquid is known as steady or streamline flow. In a streamline flow,
the energy needed to drive the liquid is used up only in overcoming the viscous drag between
the layers.

Characteristics of a streamline: (i) A tangent drawn at any point on the streamline
gives the direction of the velocity of the liquid particles at that point.

(i1) No two streamlines can cross each other. If they intersect each other, then at the
_point of intersection, two tangents may be drawn, which represent two directions of liquid
flow at that point, which is not possible.

A bundle of streamlines having the same velocity of the liquid particles over any cross-
section perpendicular to the direction of flow is called a tube of flow. The flow of the liquid
remains streamline so long as the velocity of flow of the liquid does not exceed a certain
value, called its critical velocity. The value of critical velocity is different for different
liquids. If a liquid is flowing over a horizontal surface with a steady flow such that different
layers of the liquid move with different velocities, but these layers do not mix with each
other, then the flow of the liquid is called a laminar flow. In this type of flow, the velocity
of flow is always less than the critical velocity of the liquid and one layer simply slides
over the other layer of the liquid.
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When a liquid moves with a velocity greater than its critical velocity, the motion of the
particles of liquid becomes disorderly or irregular. Such a flow is called turbulent flow.

In a turbulent flow, the path and velocity of the particles of the liquid change continuously
and haphazardly with time from point to point. The flow becomes zigzag and sinuous in
character; most of the energy maintaining the flow is dissipated in the formation of eddies
and whirlpools in the liquid and, only a small fraction of the energy is available for driving
the liquid forward.

2.2. RATE OF A FLOW OF A LIQUID

The rate of flow of a liquid is defined as the volume of the liquid that flows across any
section of a pipe in unit time. Rate of flow is actually the volume rate of flow of the liquid,
i.e. the volume of the liquid flowing per second across any section of the pipe. It is usually
represented by the letter @ or V.

Considering the liquid to be incompressible, if its velocity of flow be v, in a direction
perpendicular to two sections A and B, (Fig.2.2.) of area a, and distance [ apart, and if ¢
be the time taken by the liquid to flow from A to B, we have vt = [

Obviously, the volume of liquid flowing through the section AB, in this time, is equal to
the cylindrical column AB=1[X a =vt X a. ThlS therefore, is the volume of liquid flowing
across the section in time ¢.

Volume rate of flow of liquid,

vixX a

=vXaq

QorvV=>V=

= velocity of liquid x area of cross-section of the pipe.

Sometimes, the rate of flow of a liquid is also expressed in terms of the mass of the
liquid flowing across any section in unit time and is referred to as its mass rate of
flow. Thus,

mass rate of flow of a liquid = mass of liquid flowing across any section per unit time
= volume rate of flow of liquid x density of liquid
= velocity of liquid X area of across-section x density of liquid = v X a X p.

2.3. EQUATION OF CONTINUITY OF FLOW

This is a fundamental equation of flowin , _— _________________
. . e Vs ——> da
hydrodynamics and it expresses the [\ __-=—=% __—cme—————m—--bo 7 2

general physical law of conservation of 2@ |()}--
matter/mass. For an incompressible fluid
i.e., a liguid, it may be deduced as follows:

Fig: 2.3

A

Consider a liquid to be flowing through a pipe AB, (Fig.2.3.) of varying areas of cross-
section. Let a, and a, be its areas of cross-section at sections A and B and consider an
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infinitesimally small tube of flow (shown dotted) of cross-se
its two ends. Then, if the liquid covers distance ds, and ds{i/fime dt, a%&h;e two ends

with velocities of flow v, and v, at sections A and B respect , ar\(@W?‘ and ;}2{ the
densities of the liquid at A and B, we have v /

Mass of liquid entering flow-tube at end A per unit time = d
=da,.v,. p,

and mass of liquid leaving ﬂow-tube,at end B per unit time = da,. ds, p, / dt
=da,.v,.p, [ds,/dt=v,]

". mass of liquid entering the whole section A per sec, i.e. mass rate of flow at A
: .
= J‘dal.vl.pl =a.v.p,
0
and, mass of liquid leaving the whole section B per sec, i.e., mass rate of flow at B
a 2 '
= _[ da,v,.p, = a,v,.p,
0

Since a liquid is incompressible, therefore, p, = p, and since there is no source or sink in
between the sections A and B, we have, from the law of conservation of mass,

a,v,=a,v,=V(or Q)
i.e., the rate of flow of the liquid at A = rate of flow of the liquid at B.

This is called the equation of continuity and it states that, for an incompressible fluid i.e.
a liquid, the quantity of liquid entering one end of the pipe per second is the same as that
leaving the pipe at the other end per second.

Obviously, what is true of sections A and B is also true of all otl._r sections of the pipe too.
It follows, therefore, that the rate of flow of an incompressible and mobile fluid is the
same throughout a pipe in the case of steady or streamline flow.

v, a

) 2 . . .
Further, it follows straight away from the above that, ;_ = ;’ i.e., the velocity of the liquid
2 1

varies inversely as the cross-section of the pipe. Thus as the area of cross-section of the
pipe becomes larger, the speed of the liquid becomes smaller and vice-versa.

Examples: (i) Velocity of a liquid is greater in the narrow section of a tube as compared
to the velocity of the liquid in the broader section of the tube.

(it) Deep waters run slow because the area of cross-section increases where water is deep
and hence the velocity or speed decreases.

In the case of a gas, since the density changes with pressure (due to its high
compressibility), it is not the volume but the mass of the gas that remains constant through
any section of the pipe. So that, if p and p,be the densities of the gas at the two sections
A and B respectively in the figure above, we have a, v, p, =@, v,p,0r V,p, =V,p,.
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2.4. ENERGY POSSESSED BY A LIQUID

A liquid in motion has three types of energy, viz., (i) Kinetic Energy, (ii) Potential Energy
and (iit) Pressure Energy. :

(1) Kinetic Energy. It is the energy possessed by a liquid by virtue of its motion or
velocity. Since a liquid has inertia, therefore, it possesses kinetic energy when in
motion.

If a liquid of mass m and density p is flowing with a vélocity v, then the kinetic

1 ,
energy of the liquid will be Emvz-Hence, kinetic energy per unit mass = Evz and

. . 1
kinetic energy per unit volume = —2—pv2

(i) Potential Energy. It is the energy possessed by a liquid by virtue of its height or
position above the surface of earth or any reference level taken as zero level.

If m is the mass of a liquid at a mean height h above some reference horizontal
level and Vis its volume, then the potential energy of the liquid is mgh. Hence, its
potential energy per unit mass = gh, and its potential energy per unit volume
=pgh.

(iii) Pressure Energy. It is the energy possessed by a liquid by virtue of its pressure or hydrostatic
pressure.

Consider an incompressible liquid of density p which is
contained in a vessel provided with a side tube S and fitted
with a frictionless piston of area of cross-section a (Fig.2.4.).
Let h be the height of free surface of the liquid in the vessel
above the axis of the tube. Then, the hydrostatic pressure
on the piston p = h p g.

Let the liquid be pushed inside the vessel by slowly pushing
the piston inward through a small distance dx. Since the
process is slow, hence the kinetic energy acquired by the
liquid in the process is negligible.

Il
Q
X
&

Now, the volume of liquid pushed into the tank

I

Q

X
&
X
©

and, mass of liquid pushed into the tank

Force on the piston, F = p X a

. Work done in pushing the liquid into the tank = F xdx =p xa X dx

This work done in pushing the liquid against the pressure p into the tank without
imparting it any kinetic energy (K.E.) becomes the pressure energy of mass a dx p and of
volume a dx, of the liquid.

38 . Fluid Mechanics (B.Sc Ist Year)



Hence, the pressure per unit mass of the liquid = P , and pressure per unit volume = p.

Thus, the pressure energy per unit volume of the liquid is equal to the hydrostatlc pressure
due to the liquid.

2.5. BERNOULLI'S THEOREM

This theorem states that for the
streamline flow of an ideal liquid
(incompressible and non-viscous),
the total energy (i.e., the sum of
pressure energy, kinetic energy and
potential energy) per unit mass of
the liquid remains constant at
every cross-section throughout the
flow. A

h, - h,

e., (pressure energy + kinetic
energy + potential energy) per unit
mass = constant

Y7777777 77777 177777 77777777777 777717 7777777777777777777717

Fig. 2.5

1
or £+ Evz + gh = constant

Proof. Consider a tube AB of varying area of cross-section through which an ideal liquid
is in streamline flow from A to B as shown in Fig.2.5. Let p,, a,, h,, v, and p,, a,, h,, v,
be the pressure, area of cross-section, height and velocity of flow at points A and B
respectively. Since the liquid is flowing from A to B, therefore, p,>Dp,. According to the
equation of continuity, the mass m of the liquid crossing per second through any section
of the tube is given by,

m = au, =au,p

or, a,v, = a,u, =m/p 2.1)
Force acting on the liquid at section A causing the liquid to move through the tube towards
the section B = p,a,. The mass m of the liquid entering the tube through section A moves
forward and travel a distance v, per second parallel to the axis of the tube and along the
direction of the force p,a,.

Work done per second on the liquid at section A = p,a,X v, = p,a,v,

At the section B, the mass m of the liquid leaves the tube and moves forward a distance
v, per second. But the flow is opposite to that of the force p,a, acting over the section.
Thus, in this case,

The work done per second by the liquid at section B = p,a,Xv, = p,a,v,
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g The net work done per second by the pressure forces on the liquid in moving it
m
from section A to section B=p a v, —p,av,= (p,—p,) ; {using (2.1)}

Since h,> h , therefore there is a gaih in the gravitational potential energy of mass m of
the liquid as it moves from sections A to B. Hence the increase in potential energy per
second of the liquid in moving from A to B = mg (h,—h,).

Also, as A>B, therefore v, > v, i.e., there is an increase in the kinetic energy of mass m of
the liquid in moving from A to B. Hence the increase in kinetic energy per second of the

1
liquid in moving from A to B =Em(V22 - V12) .

This gain in energy of the liquid in moving from A to B is obiziously at the expense of the
pressure energy of the liquid and thus represents a loss in the pressure energy of the
liquid. According to the principle of conservation of energy,

total loss in energy per second = total gain in energy per second

1 2 2
or, (®,~p) = mg (hh). + 7m(v] -7

2

whence, hg + &4- %vf =hg + &_,_ lv2
p

ie. hg+ L+ ;—vz = constant (2.2)

Hence, the Bernoulli’s equation is established.

From equation (2.2) it is seen that the sum of the three forms of energy of a perfectly
- mobile and incompressible liquid in motion is constant and thus, when one form of energy
~ decreases, the other forms will increase and vice-versa. Hence the three forms of energy
of a liquid are mutually convertible to each other.

Dividing eqn. (2.2) by g, we have
1 2
hg + P Y _ constant (2.3)
pg 2¢g |
Each of these quantities has the dimensions of length and is called a head — h

2
v

is called gravitational head, is called pressure head and 2g is called velocity head.

i
Pg
Thus, gravitational head + pressure head + velocity head = constant

Hence, Bernoulli’s theorem can also be stated as, in the streamline flow an ideal liquid,
the sum of the gravitational head, the pressure head and the velocity head at every cross-
section is a constant.
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If the liquid is flowing through a horizontal tube, the gravitational head is a constant, so
that from eqn. (2.3), we have
. 2
p Vv 1,

~— +— = constant . or, p+—pv" =constant

pg 2¢ 2
This relation shows that greater pressure corresponds to smaller velocity and vice-versa.
Thus, in the streamline flow of an ideal liquid through a horizontal tube, the velocity
increases where pressure decreases and vice-versa. For example, when a liquid flows
through a horizontal tube having a constriction, the velocity of the liquid in the constricted
part increases and hence the pressure of the liquid in this part decreases. In the above

2

' 1
equation, p is called the static pressure while = pv? is called the dynamic pressure.

2.6. VELOCITY OF EFFLUX OF A LIQUID — TORRICELLI'S THEOREM

Consider a tank containing a liquid of density p. Let the ;
free surface of the liquid be at a height h above the level of A
a circular and sharp edge orifice O as shown in Fig. 2.6,
such that the liquid is allowed to escape through O. Both
the free surface of liquid and the orifice being exposed to the =
atmosphere have the pressure in them equal to the

atmospheric pressure, say P. Also, if the tank be sufficiently [== et |- S
wide, the velocity at the liquid surface may be taken to be
zero. If v be the velocity of liquid at the level of the
orifice, then considering a tube of flow from point A at
the free surface to point O, we have by Bernoulli’s theorem

Fig.2.4

total energy per unit mass at A = total energy per unit mass at O

£+0+hg=£
p p

or, vt =2gh whence v = ,/2gh

This is the velocity of efflux at the orifice O. This result was first deduced by Torricelli (in
1644), and hence is known as Torricelli’s theorem or the law of efﬂux and may be stated
as follows;

140
2

The velocity of efflux of a liquid at an orifice is equal to that attained by a body while
falling freely from the surface of the liquid to the orifice.

Since, clearly if a body falls freely through the same height & under the action of gravity,
then its velocity v is given according to the relation

- 02 =2gh = v=./2gh
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That is, same as the relation obtained above. Since no liquid is perfectly free from internal
friction or viscosity, hence this ideal velocity if seldom attained because of loss of kinetic
energy of the liquid.

'2.7. VENTURIMETER

A venturimeter is a gauge which is attached to a pipe to measure the rate of flow of liquid
through the pipe and it is a practical application of Bernoulli’s theorem.

Principle of the instrument is that when a liquid flows through a tube of varying areas
of cross-section, the velocity and pressure vary along the length of the tube, the velocity
being the greatest where the pressure is the least and vice-versa.

In its simplest form, a venturimeter is as
shown in fig. 2.7. It consists of a constriction
B, called the throat inserted in a pipeline = 7'y
with properly designed tapering both at = h
inlet and outlet (A and C respectively) to =
ensure streamline flow and avoid = : =
turbulence. To measure the rate of flow of = =
liquid, the venturimeter is inserted :
horizontally into the pipe line and the throat
is kept at datum level.

When the liquid flows from A to B, owing to Fig: 2.7

the decrease in the area of cross-section of

the tube, the velocity of flow becomes greater. If v, is the velocity of flow at A of cross-
sectional area A1 and v, in the section B of cross-sectional area A,, and if Vis the volume
of the liquid that passes in unit time across the tube, then according to the equation of
continuity, :

D E

V=Av =Apy, 2.4
As the mean height of the liquid in A and B is the same and its flow is horizontal, there
is no change of gravitational potential energy. If p, be the pressure at A and p, be the
pressure at B, and p be the density of the liquid, then according to Bernoulli’s theorem,

2

PP Y
pg 28 pg 2g

or, b= D =§(v22 —V12)

Since v,> v,, therefore form above equation, p, > p,. So the pressure of liquid at the
constriction is less than that in the main pipeline. Consequently, the level of liquid in the
attached vertical side tubes is higher at the wide region than in the constricted region. If
h be the difference in heights in the two vertical side tubes D and E at the wide and
constricted region respectively, then ‘
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p,— p,=hpg (2.5)

Hence, from equations (2.4) and (2.5), we have

p V: V?
hpg =~(— - —
Pg 2(/122 e
v2=2(p1_p2)= 2gh
' . A 4 1 (using 2.5 )
PUeTN e e
2gh
v =4, AZ—A22
|

Thus, knowing h from the manometric reading and other quantities by auxiliary
measurements, v, can be easily determined.

The volume of liquid flowing per second through any section of the pipe is,

2gh
V=4v= AlAz,b‘z_—Azz
1

Thus, the rate of flow V of the liquid through the pipe can be measured. The actual rate
of flow, however, is less than this due to viscosity of the fluid and friction at the walls.

2.8. VISCOSITY

When a liquid moves slowly and steadily over a fixed horizontal surface, i.e., when its
flow is streamline, every layer of the liquid moves parallel to the fixed surface. Its layer
in contact with the fixed surface is at rest and the velocity of every other layer increases
uniformly and continuously with the distance from the fixed surface, i.e., the greater the
distance of a layer from the fixed surface, the greater is its velocity. Thus, there is a
regular velocity gradient set up in the liquid, with the topmost layer moving the fastest.

Now consider the motion of two adjacent

layers, say P and @, of the liquid at Zimaiiesssseciores e
distances x and x + dx above the fixed : v dyisies ==
horizontal surface, which are moving with ===
the velocities v and v + dv respectively :
(Fig. 2.8). As the upper layer @ is moving x
faster than the lower layer, the upper
layer tends to increase the velocity of the WW
lower layer by dragging the layer along 7
with it, while the lower layer tends to Fig: 2.8

decrease the velocity of the upper layer.
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The two layers together tend to destroy their relative motion as if there is some backward
dragging force acting tangentially on the layers. Thus, to maintain the relative motion,
an external force must be applied to overcome this backward drag. In the absence of any
such outside force, the relative motion between the layers is destroyed and the flow of
such a liquid ceases.

This property of a liquid by virtue of which it opposes the relative motion between its different
layers is known as viscosity and the tangential force that tends to destroy the relative motion
is called viscous force. Viscosity is also called the internal friction of the liquid.

Considering the two layers P and @ of the liquid, the separation between these layers is
dx and the relative velocity between them is dv. The quantity dv/dx is called the velocity
gradient. According to Newton, the tangential backward dragging, or viscous force F,
acting on a layer is proportional to its surface area A and velocity gradient dv/ dx, i.e.
dv dv
Foc—A— or F=—-nd— 2.6
I nd—- (2.6)
Where, 1 is a constant, depending upon the nature of the liquid, and is called its coefficient
of viscosity. The negative sign indicates that the viscous force acts opposite to the direction
of flow of the liquid. Thus, it is obvious that the external force required in maintaining
the relative velocity dv between the two layers is also equal to F, but opposite in direction.

If A=1 and dv/dx =1, then from (2.4), F=n

Hence, the coefficient of viscosity of a liquid may be defined as the tangential force
acting per unit area between two parallel liquid layers, and required to maintain unit
velocity gradient between these layers perpendicular to the direction of flow of the liquid.

The cgs unit of coefficient of viscosity is dyne-s/cm? or poise. In SI, the unit of 1 is N-s/m?
or decapoise, where ldecapoise = 10 poise. The dimensions of n is [MLT].

Viscosity in liquids corresponds to solid friction since like the latter, it also opposes the
relative motion between two surfaces in contact i.e. the liquid layers. But, unlike solid
friction, viscosity depends upon (i) The surface area of contact of the two layers (ii) The
relative velocity between the two layers and (iii) the distance of separation between the
two layers under consideration.

2.9. CRITICAL VELOCITY

The maximum velocity up to which the flow of a liquid is streamline is called its critical
velocity. Above this value, the flow of a liquid ceases to be streamline and it becomes
turbulent.

Osborne Reynold’s showed by direct experiment that the critical velocity of flow of a liquid
for long, narrow tubes depends upon (i) the coefficient of viscosity (n) of the liquid (i) the
density (0 ) of the liquid, and (ii¢) the radius (r) of the tube. The expression for the critical
velocity (v,) of a liquid can be derived by the method of dimensions.
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Since v, is found to depend upon h, p and r, therefore
v,=kn? Pbre where k is a dimensionless constant.
Putting the dimensions of the various quantities involved, we have
[LTI] —_ [ML-lT-l]a [ML3]b [L]c OI‘, [LTl] = [Ma+b L-a-3b+c T-a]

According to the principle of homogeneity of dimensions, the dimensions on the two sides
of the equation must be same, therefore

a+b =0 ; -a-3b+c =1 and-a=-1

a=1, b=-1 and ¢ =-1
Substituting the values of a, b and ¢, we have
v,=kh' P1rt
k
or, vc = —-Tl
, p

The constant k& is called Reynold’s number and its value is about 1000 for narrow tubes.
It is-a pure number and is independent of the system of units used for the measurement
of various quantities. If & lies between O(zero) and 2000, the flow of the liquid is streamline
or laminar. For values of k& above 3000, the flow of the liquid is turbulent and for values
of k in the range 2000 to 3000, the flow of the liquid is unstable and may change from
streamline to turbulent flow.

From the above equation, it is seen that the critical velocity of flow of a liquid is (i) directly
proportional to its viscosity (it) inversely proportional to its density and (iii) inversely
proportional to the radius of the tube through which it flows.

Thus, it follows that narrow tubes and liquids of high viscosity and low density tend to
promote orderly motion, whereas tubes of wide bores and liquids of low viscosity and
high density lead to turbulence. Again, if a liquid is perfectly mobile, i.e., a liquid in which
n =0, then, v = 0; so that its flow would be turbulent and not orderly even for the smallest
velocity and no matter how narrow the tube is. Thus, it is due to the viscosity of a liquid
that a liquid can have a streamline flow.

2.10. POISEUILLE’S EQUATION FOR FLOW OF A LIQUID THROUGH A
HORIZONTAL NARROW TUBE

Around 1940, the French physicists, Poiseuille derived a relation for the volume of a liquid
. flowing per second through a narrow horizontal capillary tube based on the following
assumptions:

(i) The flow of the liquid is steady and streamline, with the streamlines everywhere
parallel to the axis of the tube.

(i) The pressure over any cross-section at right angles to the axis of the tube is constant,
i.e., there is no radial flow.
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(iii) The velocity of the liquid layer in contact with the walls of the tube remains at rest and increases
regularly towards the axis of the tube. '

(iv) The tube is horizontal so that gravity does not affect the flow.

Consider a liquid flowing through a horizontal
capillary tube of length ! and radius r under a
constant pressure difference p as shown in Fig. 2.9.
Consider a cylindrical layer of the liquid, coaxial
‘with the tube, of radius x and thickness dx. The
liquid on the inner side of this cylindrical layer is
moving faster while that on the outer side is moving
slower. Let the velocity of the liquid at a distance x
from the axis of the tube is v and at a distance x+dx
1s v — du, so that dv/dx is the velocity gradient.
Therefore, the tangential force exerted by the outer
layer on the inner layer opposite to the direction of flow, in accordance with Newton’s law
of viscous flow, is given by

F=-n (2n'xl)911
dx

Where, 2n xl is the surface area of the cylinder of radius x, and 7 is the coefficient of
viscosity of the liquid.

The force driving the liquid forward due to the pressure difference p at the two ends of
the cylinder of radius x = p X nx?.

When the flow of the liquid is steady, there is no acceleration of the liquid and thus, we
have

-n (27th)ﬂ = prx’
dx
4
dv=———xdx
or, v 2l X

2

Integrating both sides, we get V= —ﬁ‘i‘ +C, where C is the constant of integration

When x=r, v = 0; since the velocity of the layer in contact with the walls of the tube is
Zero.

0= PT ¢ . c-2r

46 Fluid Mechanics (B.Sc Ist Year)



2 2 e
px pr e
Vet VA :
Hence, ml 2 2ml 2 Ko Q
R
”~.\::’ {/ \::\ i \\\ \\,’
. _ P 2 prag LT ¥x*
v=——\r —x sa L b
or, 4111 ( %\ (T l,/ )’r
This expression gives the velocity of flow of the liquid at a dlsta eMe axi Q‘yf the
tube. The velocity distribution curve of the advancing liquid in t% (ﬂo‘b‘la, the
velocity increases from O (zero) at the walls (x=r) of the tube to a maxi at’its centre

(x=0).

Now considering the cylindrical layer of radius x and thickness dx, the volume of the liquid flowing
per second through the cylinder given by,

dV= velocity x area of cross-section of the cylinder
=v(2rx dx)

Therefore, the total volume of the liquid flowing per second through entire tube is

V = ]‘2n'vx dx

TP _ P2 s
or, V_ij(r —x*). 27x dx = 277loj(xr —x*)dx

_mp 2t X _mp ___i
Tomil 2 4, %o 4
_npr'

8nl

or,

This is known as Poiseuille’s formula. This formula is true only for the streamline flow
of a liquid. Knowing the values of p, r, [ and V, the coefficient of viscocity of the liquid can
be determined.

The flow of a liquid is streamline only when the average velocity of flow of the liquid is
less than the critical velocity, and since the critical velocity of flow is inversely proportional
to the radius of the tube, therefore, the above formula fails in case of tubes of wide bores.
Moreover, Poiseuille’s formula has been derived on the basis that the pressure difference
across the ends of the tube is used to overcome the viscous forces and no part of it is spent
In imparting any kinetic energy to the liquid. Thus the formula is true for liquids (or
fluids) for which the kinetic energy of the liquid is negligible i.e. the velocity 1s small, or
In other words, the flow is streamline.
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2.11. DETERMINATION OF COEFFICIENT OF VISCOSITY BY USING POISEUILLE’S .
FORMULA '

From Poiseuille’s formula, the coefficient of viscosity of a liquid for streamline flow of the
liquid through a horizontal capillary tube is given by,

_npr'
8V

Where Vis the volume of liquid flowing per second through the tube, p is the pressure
difference across the ends of the tube, / the length and r the radius of the tube.

Experimental Arrangement: The apparatus for the determination of coefficient of
viscosity by Poiseuille’s formula is shown in Fig.2.10. It consists of a long narrow capillary .
tube T of uniform bore which is fitted horizontally and having its ends inserted into two
brass unions B and C and fitted with a rubber bung at each end. The capillary tube is
connected to an out-flow tube D through C where it can be collected in a measuring jar,
and to a water (experimental liquid) vessel A through B by using rubber tubes. A pinch
cock K is used to regulate the flow of the liquid through the capillary tube.

2.7

Tap

1
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S
=11
3%—:—15
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i P rEEe
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E = == T E _____ —T=- D
..'.E‘_ "‘C" '..-
=
t::- 8 :::
Fig: 2.10

The unions are connected to the two limbs of a manometer M by means of rubber tubes,
and the pressure difference between the ends of the capillary tube T is noted by the
difference in the levels of the liquid in the two limbs of the manometer. The vessel 4, in
which the tap water is coming, is fitted with an overflow tube O, so that a constant head
of water may be maintained in the system.
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Procedure: with the help of the pinch cock, a steady flow of water is maintained through
the capillary tube such that water leaves the tube in a slow trickle. When the flow becomes
steady, this may be noted by noting that the difference in the levels of liquid in the limbs
of the manometer is constant, the emerging liquid is collected in a graduated jar for a
certain interval of time. Thus, the volume of liquid flowing per second V is found out for
a constant difference of levels h in the manometer. The experiment is repeated a number
of times for different values of h. The pressure difference is directly read from the
manometer and is equal to hpg . The radius of the capillary tube r can be determined by
using a high power travelling microscope and its length [ can be measured by a
scale. Thus knowing the various quantities, the value of n can be determined from
equation (2.5). '

Precautions: (i) since r is involved with fourth power in the expression forh, extra care
has to be taken while measuring the diameter of the capillary tube.

(ii)) The pressure difference should be kept small to obtain streamline flow.

(iit) The bore of the tube must be narrow as the formula is applicable only for tubes of
narrow bores.

(iv) The tube should be long enough so that any non-uniformity of flow at the inlet be
negligible.

(v) The tube should be placed horizontally to avoid any effect of gravity.

2.12. STOKES’ LAW: TERMINAL VELOCITY

When a body falls through a viscous medium, it carries along with it the fluid in contact
and thus tends to create a relative motion between the layers in contact with it and the
layers below it; whereas the layer at an infinite distance from it is at rest. Thus a frictional
retarding force, due to the viscosity of the medium, acts opposing the relative motion
between the layers of the liquid which in turn is experienced by the body in motion. The
opposing force or viscous force increases with the velocity of the body, until, in the case
of small bodies, it becomes just equal to the driving force, and the body then attains a
constant velocity, called its terminal velocity. Stokes showed that for a small spherical
body of radius r moving through a viscous medium of coefficient of viscosity n, the viscous
drag F acting on the body is given by,

F = 6anrv (2.6)

The above relation is known as Stokes’ law, which may be deduced as follows, by the

method of dimensions. (The rigorous deduction of Stokes’ law is beyond the scope of
this book).

Consider a small spherical body of radius r moving with a velocity v through a viscous
medium of coefficient of viscosity h. According to Stokes, the viscous retarding force F
acting on the body depends upon— (i) the coefficient of viscosity of the medium, (ii) the
radius of the spherical body and (iii) the velocity of the body.
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Let F=kn®r> v
Where % is a dimensionless constant of proportionality and a, b, ¢ are arbltrary constants
to be determined.
Putting the dimensions of the various terms in the above equation, we have

[MLT? = [ML"T"]* [L]* [LT]°

= [MeLab+eT 2]
Whence, by principle of homogeneity of dimensions,
Ha=1 (i) —a+b+c=1 (iii)) ~a ¢ = -2
On solving, weget a=1,b=1,¢c=1
. F=knrvu
The value of k& was found by Stokes to be 6.
Hence, F=6mmru

If the density of the sphere be p, its weight W = volume X density X acceleration due to
gravity
_4 nr’p
3 g

And, if ¢ be the density of the medium, then the upthrust on the body due to the dlsplaced
medium, i.e. buoyant force,

- T = weight of the liquid displaced

= 47rr30'

. resultant downward force on the body

—iﬁ'ﬁ s
3 Pg 3 g

4
= gm”3(P—0')g

When the body attains terminal velocity (v,), the net vertical force acting on the body
becomes zero, i.e. the resultant downward force becomes equal to the retarding force acting
on the body.

4
Thus, 6aMrv, = gﬂf (p-0)g

_2r(p-o)
= T 9 n
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From the above équation, it is seen that the terminal velocity of the spherical body falling
through the viscous medium is:

(a) directly proportional to the square of the radius of the spherical body. Thus larger
bodies have larger terminal velocities and vice-versa. This explains why larger rain
drops hurts more when they fall on a person than smaller drops.

(b) directly proportional to the difference in the densities of the body and the medium
respectively. If p > ¢, then v, is positive. In this case, the body will fall through
the viscous medium. But if p <g, then v, is negative; in that case, the body will
rise through the medium instead of falling through it. For example, rain drops fall
through air, while an air bubble inside a liquid rises up through the liquid.

(c) inversely proportional to the coefficient of viscosity of the liquid. Thus, larger the
viscosity of the medium, smaller is the terminal velocity of the body falling through
the medium and vice-versa.

In arriving at the above results, Stokes made a number of assumptions which are as
follows: '

— The medium through which the body is falling is infinite in extent.

~ The medium is a continuous, homogenous fluid and the diameter of the spherical
body is much larger than the size of the molecules of the medium.

— The spherical body is perfectly rigid and smooth.

— The velocity of motion of the body is less than the critical velocity of the medium
and that there are no eddy currents or waves which are set up in the medium due
to the motion of the body through it.

This case which have been discussed find useful applications in determining the coefficient
of viscosity of a liquid, the radius of small spherical objects like rain drops etc., and the
charge of electrons by Millikan’s oil drop experiment. However, since a medium of infinite
extent is not possible in such experiments, corrections are to be made for the finite
boundaries of the vessel — the so called, wall-effect correction and the bottom
correction. Ladenburg made the following corrections for the ‘wall-effect’ and the
‘bottom-effect’ respectively,

v, = v(l + 2.41) and v, = v(l + 3.3—’;)
R D

Where, v is the observed velocity of the sphere of radius r, v, is the velocity of the sphere
in the medium of infinite extent, R is the radius of the vessel and D is the full depth of
the liquid column in the vessel. Combining the two corrections, therefore, we have the
following relation for n, viz.,

2 r’g(p - o)
=3 : :
v(l + 2.4;) (1 + 3.35)
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2.13. EFFECT OF.TEMPERATURE AND PRESSURE ON VISCOSITY:

Temperature has a very marked effect on the viscosity of fluids. While the viscosity of
liquids decreases rapidly with temperature that of gases increases with the increase in
temperature.

For example, the viscosity of water at 80°C is found to be only one-third of its value at
10°C. Although various empirical relations have been suggested from time to time, however,
no satisfactory relation could be suggested to express the relationship between viscosity
and temperature. Within a narrow range of temperature, Slotte gave the following
empirical formula for liquids.

U0

n’:1+at+ﬂt2

Where o and f are constants and 7, and 7, are the viscosities at t°C and 0°C respectively.

Other empirical relations were also given by other workers as follows:

_,.B __ 4
log nT =0+ T and T’l (1 + Bt)c

Where A, B and C are constants and 1), is the viscosity at T K. The second relation, however,
is not applicable to oils.

Andrade, based on certain assumptions, gave a satisfactory theory for liquids. He put
1 cp
forward the relation, 77,03 — geT for variation of viscosity of liquids with absolute

temperature; A, C being constants and p the density of the liquid. This relation is in fair
agreement with experimental results for many liquids except water and some alcohols.

According to the kinetic theory, the viscosity of a gas should be directly proportional to
the square root of the absolute temperature and is given by the relation, n, = An,T"/%,
where A is a constant, 1, is the coefficient of viscosity at 0°C and T is the absolute
temperature. In practice, this holds only approximately, because real gases are not ideal.

A more correct relation was given by Sutherland as follows:

T _ 273+C(T)5
n T+C \273

Where n, and n, are the viscosities at T K and 0°C and C is a constant known as Sutherland
constant which is different for different gases. This formula agrees well with experimental
data.

The effect of pressure on viscosity is small for mobile liquids. For liquids having large
values of viscosity, however, the effect is considerable. For all liquids, except water, the
viscosity increases with increase of pressure. The viscosity of water decreases with the
increase of pressure up to a few hundred atmospheres.
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As per the kinetic theory of gases, the viscosity of gases is independent of the pressure
over a wide range at ordinary pressures. At low pressures, n oc p, while at high pressures
(~ 500 atmospheres), n increases by 25-50 % of its value at ordinary pressures.

2.14 SOLVED EXAMPLES

1. A metal plate 10sq.cm rests on a 2mm thick castor oil layer. Calculate the horizontal force

needed to move the plate with a speed of 3cms-'. Coefficient of viscosity of castor oil is
15poise.

Solution: Here, Area, A= 10cm?; dv = 3cms™'; dx = 2mm = 0.2cm

Coefficient of viscosity, h = 15poise

. . . L dv
Force required in moving the plate is given by, F = TlVd—X

=15 x 10 % (3/0.2)
= 2250 dyne

2. Water is flowing with a speed of 50cm/s through a pipe of diameter 3mm. Calculate the value

of Reynolds’s number and characterizes the flow. Coefficient of viscosity of water is 1
centipoise.

Solution: Here, density of water, r = 1g/cc; coefficient of viscosity,h = 10?poise; v = 50cm/s;

d =3mm =0.3cm

_pvd
Reynolds’s humber R is given by, R _—77
1x50x0.3
R= BT = 1500

Since R = 1500, hence the flow is streamline.

3. Water is flowing through a horizontal pipe 8cm in diameter and 4 kilometers in length at the
rate of 20lit/s. Assuming only viscous resistance, calculate the pressure required to maintain
the flow in terms of mercury column. Coefficient of viscosity of water is 0.001 Pa-s.

Solution: Here, r = 8/2 = 4cm = 0.04m; / = 4km = 4000m: V = 20lit/s = 20x10-3m3s"";

d=3m
n=0.001Pa
_ mpr? _8vnl
AS, ‘ V - 8pnl ory p n_r4
_ 8x2010™ x 0.001x 4000 _ 7 654 x10° P
p= 3.14 x 0.04* =0 a

.. Height of mercury column for pressure difference p will be,

p 7.954 x 10
h= g = (136 x10°)x 9.8 - 0-5968m = 53.68cm
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4. At what speed will the velocity of a stream of water be equal to 20cm of mercury column. Take
= 10ms>,

Solutlon Here, velocity head = 20cm of Hg = 20x13.6cm of water

2

Now, velocity head = 29 g

2

20%x 13.6 = 2%1000

= v = \/20 x13.6 x 2 x 1000 = 737.56cm/s = 7.3756m/s

5. What should be the minimum velocity of water in a tube of diameter 2.0 cm so that the row is
turbulent? The viscosity of water is 0.001NN-sm2.

Solution: Minimum value of Reynolds’s number for the flow to be turbulent, N_ = 3000.
Here, D = 2cm = 0.02m; p = 10% kgm®; 11 = 0.001 N-sm™

N _ Ngm  3000%0.001
ow, Ye™ pD T T10%x0.02
= (0.15 ms™!

6. Water flows through a horizontal pipe of which the cross-section is not constant. The pressure

is 1cm of mercury where the velocity is 0.35 ms™'. Find the pressure at a point where the
velocity is 0.65 ms™.

e

Solution: Here, at one point, p,= 1cm of Hg = 0.01 m of Hg
' =0.01% (13.6%10%) x 9.8 Pa
v, =0.35 ms™
At another point, v, = 0.65 ms™
If p, be the pressure at this point, then according to Bernoulli’'s theorem

L 1 2
p1+ Epv1 =p2+ —2—pV2

or, P, =Py~ %P (% -¥%)

1
=0.01%x13.6x10°x9.8 - 2 x 10° x [(0.65)% - (0.35)]

1182.8
9.8x13.6x10°
= (0.00887 m of Hg

7. The diameter of a pipe at two points where a venturimeter is connected is 8cm and 5cm and

the difference of levels in it is 4cm. Calculate the volume of water flowing through the pipe per
second.

=1182.8 Pa =

Solution: Here, r,=8/2 =4 cm; r,=5/2=2.5cm; h=4cm

Here, a,= nr? = n(4)?= 16ncm® and a,= nr,? = n(2.5)2= 6.25ncm?
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second is,

_ 2gh
VAN
2x980x4\

= 6.25n x 167 \/(1671:)2 ~(6.25
= 1189 cc/s
8. Find the velocity of efflux of water from an orifice near the bottom of a tank in which pressure
is 500gf/cm? above atmospheric.
Solution: Here, pressure at the orifice, P = 500gf/cm? = (500/1000) x 9.8 x 1002 Nm-2
| =0.01x (13.6x10%) x 9.8 Pa ‘

= 500x98 Nm2
Let h be the depth of the orifice below the surface of the water in the tank.
As,P=hpg ‘
500%98

Hence, the velocity of efflux, v= ,/2gh = \/2x9.8x5 = 9.893ms™"

9. The velocity of a small ball of mass 10g and density 7.8g/cc when dropped in a container
containing glycerin becomes constant after sometime. If the density of glycerin is 1.3g/cc,

what is the viscous force acting on the ball?
Solution: Here, m = 10g; p = 7.8g/cc; a= 1.3g/cc.
Weight of the ball = mg = 10x980 dyne
Volume of the ball, V=m/p_ =10/7.8 cc
Buoyant force on the ball = weight of displaced liquid

= oxg= 22« 1.3 x 980 dyne
S pror9=Tg* y

.. Viscous force acting on the ball = net weight of the ball
=10 x 980 - ;%x 1.3 x 980

=8.166 x 10® dyne

10. Twenty seven identical drops of water are falling down vertically in air each with a terminal
velocity of 0.15 ms™'. If they combine to form a single drop, what is the terminal velocity of the

big drop?
Solution: Let the radius of each small drop be r.
Terminal velocity of each small drop, v = 0.15ms™"
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2r’(p-o)9
1

Now, on - ()
Let R be the radius of the bigger drop.
Now, Volume of one big drop = volume of 27 small drops
i 4 R3 =27 x 4o
.e, 3 TR = 37
or, R=3r
, : : 2R*(p-o)g y
The terminal velocity of the bigger drop, ' = T ... (i)
Dividing (if) by (i), we get
v R? [R)z
—=—=|—=] = 9
v r r

y =9v=9x0.15=1.35ms"’

11. A spherical ball of radius 10m and density 10°kgm- falls freely under gravity through a
vertical distance h before entering a tank of water. If after entering the water, the velocity of
the ball does not change, find h. The coefficient of viscosity of water is 9.8x10° N-sm™

Solution: The velocity attained by the ball after falling freely through a height h is, .

v=2gh o h=5 ' S ()

Terminal velocity of each small drop, v=0.1
Where, vis the velocity with which the ball falls through and is its terminal velocity.

Now, terminal velocity of the ball is,

L - 2r(p-0)g
on
Here, p = 10*%kgm-3; o = density of water = 10°kgm-3; 7 = 9.8x10°N-sm?,
r=10*m
2(10* -10°)x9.8x10°
v = = 20ms™
9x9.8x10°
Substituting the value of vin eqn. (i), we get
400
h = %98 - 20.4m

11. Calculate the rate of flow of glycerin of density 1.25x10° kgm- through the conical section of a
pipe if the radii of its ends are 0.1m and 0.04m, and the pressure drop across its length is
10Nm=2,
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Solution: According to Bernoulli’s theorem,
, = 2%(p-0)g
97

p, )
= ——+th +EV2

p, 1
—‘+gh1 ""2—V12 =

For horizontal flow, h, = h,

p_‘+_1_V2 -b.p_2+1V2
p 27 " p 2°
P, -p 1
or, ( 1p J = E(Vg—"f)
2(p,-p
(v2—+?) = (1p 2)

Now, P~ p,= 10Nm?;p = 1.25x10°%kgm™?
2 2 2x10
(v ~v}) = oexig = 16 % 107

According to the equation of continuity, a,v, = a,v,
W o oa mpoor

= 2 = 2
v, a 7 h

2
0.04 1.6 x 102

0. ~
v, = (16x10%) v,

or,

Hence, from eqn. (/), we have
= v2-256x10*v; =16x10°

L[, 256
Vs 1"1‘07 =16 x 10°°

,| 9774
v, 10" =16 x 103

» 160 _ »
v, = 9774 or, v, = 0.13ms

Hence, the rate of flow of glycerin = a,v, = zr?v, = 3.14x (0.04)*x 0.13
=6.53 x 10*m3s""

(i)
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2.15 SAMPLE QUESTIONS
Distinguish between streamline and turbulent flow and explain the significance of Reynolds’s
number. '

What is critical velocity and Reynolds’s number? Obtain dimensionally the relation between
the critical velocity and this number for a liquid flowing through a capillary tube.

Explain the terms streamline flow and turbulent flow. Derive the equation of continuity for the
steady flow of an incompressible liquid.

Define coefficient of viscosity and the poise. State its Sl unit and also find its dimensions.

5. State and prove Bernoulli's theorem for fluids and give the assumptions used in deriving it.

6. State Bernoulli's theorem. Prove that the total energy possessed by a flowing ideal liquid is

10.
1.

12.

13.

14.
15.

conserved, stating clearly the assumptions made.

What are the various types of energy possessed by a flowing liquid? Derive the expression for
the energy per unit mass of a flowing liquid.

State and prove Stoke’s law and hence find an expression for the terminal velocity of a
spherical body falling through a viscous medium. Discuss the factors on which the terminal
velocity depends.

Prove that the velocity of efflux of an ideal liquid through an orifice is equal to the velocity
attained by a freely falling body from the surface of the liquid to the orifice.

What do you mean by terminal velocity? Derive an expression for the same.

Derive Poiseuille’s formula for the steady flow of an incompressible viscous liquid through a
horizontal capillary of uniform cross-section.

Describe an experiment o the basis of Poiseuille’s formula to determine the viscosity of a
liquid.

A sphere of radius r travelling through a viscous liquid of density p with a velocity
v experiences a retarding force F given by the relation,

F=krp (v

Where k is a constant and 7 is the coefficient of viscosity of the liquid. Use dimensional
analysis to determine a, b and c.

Discuss the effect of temperature and pressure on the viscosity of fluids.

Show how the Bernoulli’s theorem is applied to measure the rate of discharge of water
through the city water mains.
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10.

1.

12.

13.

14.

15.

1.29 SAMPLE PROBLEMS

. 1. Aliquid is flowing through a horizontal pipe line of varying cross-section. At a certain point,

the diameter of the pipe is 5cm and velocity of flow of liquid is 2.5cms™'. Calculate the velocity
of flow at another point where the diameter is 1cm. (Ans. 62.5 cms™)

. Water flows through a hose pipe whose internal diameter is 2cm at a speed of 1ms-'.

Calculate the diameter of the nozzle if the water is to emerge at a speed of 4ms™'.
_ ‘ (Ans. 1cm)
At what speed will the velocity head of water be equal to 20cm? (Ans. 1.98 ms™)

A tank containing water has an orifice 10 metre below the surface of water in the tank.
Assuming that there is no wastage of energy, find the speed of discharge. (Ans. 14 ms™)

A capillary tube of 1mm diameter and 15cm long is fitted horizontally to a vessel kept full of
alcohol of density 0.8 gcm™. The depth of the centre of capillary tube below the free surface of
alcohol is 25cm. If the viscosity of alcohol is 0.12poise, find the amount that will flow in five
minutes. (Ans. 6.408 g)
A pipe is running full of water. At a certain point A it tapers from 50cm diameter to 15 cm at
point B. The pressure difference between A and B is 10cm of water column. Find the rate of
flow of water through the pipe, the pipe being horizontal. (Ans. 3.5x10* cm3s™)

Water from a tap emerges vertically downward with an initial speed of 1.0ms"'. The cross-
sectional area of the tap is 10*m?. Assume that the pressure is constant throughout the
stream of water, and that the flow is steady, what is the cross-sectional area of the stream
0.15m below the tap? (Ans. 5.0%x10% m?)

The pressure difference between two points along a horizontal pipe through which water is
flowing is 1.4 cm of mercury. If due to non-uniform cross-section, the speed of flow of water at
the point of greater cross-section is 60cms™, calculate the speed at the other end.

(Ans. 63 cms™)

What volume of water will escape per minute from a tank through an opening 1cm in diameter
and 5.1m below the level of water? (Ans. 4.7 m3/min)

Water is conveyed through a horizontal tube 8cm in diameter and 4km in length at a rate of
20lit/s. Assuming only viscous resistance, calculate the pressure required to maintain the flow.
(n of water = 0.01poise). (Ans. 7.95%10°dynecm2)

A venturimeter is connected to a horizontal main of radius 20cm. If the radius of the throat of
the venturimeter is 15cm and the difference of water level is venturimeter tubes is 10cm,
calculate the rate of flow of water per hour through the main. (Ans. 43.11x10*lit/hour)

If a venturimeter is connected at two points where the diameters of the pipe are 8cm and 5¢cm
and the pressure difference between two points is shown to be 6cm of water column,
determine the rate of at which the water is flowing through the pipe. (Ans. 2.31x10-2 m3")

Calculate the velocity of efflux of water from a tank in which the pressure is 980Nm- above
the atmospheric pressure. (Ans. 1.4 ms™)

Find the terminal velocity of an oil drop of density 0.95 g/cc and radius 10 cm falling through
air of density 0.0013 g/cc, if the viscosity of air is 18.1x10%poise and g = 980 cms™.

(Ans. 1.33x102cms™)
A flat plate of area 2x102m? is separated from a large flat surface by a film of oil of uniform
thickness 1.5x10°m and viscosity 2N-s/m2. Determine the force required to slide the plate
over the surface at a velocity of 4.5x102ms™. (Ans. 1.2N)
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16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

A spherical glaés ball of mass 1.34x10-4kg and diameter 4.4x10-*m takes 6.4s to fall steadily
through a height of 0.381m inside a large volume of oil of specific gravity 0.943. Find the
viscosity of the oil. (Ans. 0.365Nsm?)
A soap bubble of radius 4cm and surface tension 30dyne/cm is blown at the end of a capillary
tube of length 10cm and internal diameter 0.2cm. If 77 = 1.85x10*poise, find the time for the
reduction of the bubble to 2cm radius. (Ans. 4min-56s)
Water flows through a horizontal tube of length 20cm and internal radius 0.081cm under a
constant head of the liquid 20cm high. In 12 minutes, 864 cc of liquid issue from the tube.
Find the viscosity of water and verify that the flow is streamline. (Ans. 0.0138poise)

Two drops of water of the same size are falling through air wit terminal velocity 1ms™. If the
two drops combine to form a single drop, calculate its terminal velocity. (Ans. 1.588 ms™)

An air bubble of 1cm radius rises through a long narrow column of liquid of density 1.47x103

kgm= with a steady velocity of 0.21cms-'. Find the viscosity of the liquid, neglecting the

density of air (g = 9.8ms™>). (Ans. 1.52x102kgm's*1)
The flow rate of water from a tap of diameter 1.50 cm is 3 lit per minute. Calculate the

Reynolds’s number and characterize the flow (n for water = 10 Pa-s).
(Ans. 4242 4, turbulent)

Eight rain drops of radius 1mm each falling downwards with a terminal.velocity of 5cms
coalesces to form a bigger drop. Find the terminal velocity of the bigger drop.
: (Ans. 20 cms™)

The terminal velocity of a copper ball of radius 2.0mm falling through a tank of oil at 20°C is
6.5cms'. Compute the viscosity of the oil at 20°C. Density of oil is 1.5%x10°kgm3, density of
copper is 8.9x10° kgm. (Ans. 0.99 Pa-s)
The flow rate of water from a tap of diameter 1.25cm is 0.48lit/min. The coefficient of viscosity
of water is 10-3Pa-s. After sometime, the flow rate is increased to 3lit/min. Characterize the

flow for both the flow rates. (Ans. Streamline, Turbulent)
What should be the average velocity of water in a tube of radius 0.0005 m so that the flow is
just turbulent? The viscosity of water is 0.001Pa-s. (Ans. 0.3 ms™)

Calculate the total energy possessed by 1kg of water at a point where the pressure is 20g.wt./
sq.mm, velocity is 0.1ms™* and the height is 50cm above the ground level. (Ans. 200.905 J)

Water flows at the rate of 4lit/s through an orifice at the bottom of a tank which contains water
720cm deep. Find the rate of escape of water from the orifice if an additional pressure of 16
kg/cm? is applied at the surface of water. (Ans. 19.28litres/s)

A cubical vessel of height 1m is full of water. What is the work done in pumping water out of
the vessel? (Ans. 4900 J)

A large tank filled with water to a height h is said to be emptied through a small hole at the
bottom. Find the ratio of time taken for the level of water to fall down from h to h/2 and h/2 to

zero. (Ans. 2 -1)

The flow of blood in a large artery of an anaesthetized dog is diverted through a venturimeter.
The wider part of the meter has a cross-sectional area equal to that of the artery which is
8mma2. The narrower part has an area of 4mm?. The pressure drop in the artery is 24Pa. What
is the speed of the blood in the artery?(density of blood = 1.06x10% kgm=) (Ans. 0.123 ms™)
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FLUID MECHANICS

The present book has been written taking into account the Syllabus of the North Eastern Hill University for the first
year students, and subsequently with the introduction of the semester system, for the students of the first semester.
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of differentboards of Higher Secondary Education, however, particular care have been taken to make the treatment
clear and comprehensible to the slightest detail, keeping in mind the fact that the average student may not have
been able to grasp the subject matter completely and thoroughly by simply learning about it in the earlier class
because of time constrain and many other factors. The mathematical treatment involved in the different sections is,
therefore, given in detail and in a way to make the reading easy to understand and follow. In fact, any sincere
student will find that the book is a ready material for the University exams and he/she can readily answer any
questions set from the various topics presented in the book. The book has been written in such a format, that
answers to various questions that may be posed are a ready reference in the sections covered.

Also, keeping in mind, the fact that, a mere knowledge of theory will not fully help the students in solving
numerical problems, solved examples are given at the end of the chapters for the students to understand how to go
about solving the various types of problems that may be set from the different sections. A number of unsolved
numerical and sample questions are also given so that the students can practice and also refer to, respectively.

Although a humble attempt has been made to present the subject matter inasim ple and concise manner by keeping
in mind the average students, however, no originality is claimed, or indeed can be claimed in a work which is of a
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