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Combination of thin lenses in contact:

| Prism: Refraction of light through a Prism: | 322 |
Angle of deviation in a prism (&): Angle of minimum deviation in a prism (& ):

Deviation produced by thin Prism:

Plot of angle of deviation (d ) versus angle of incidence (7 ) for a triangular prism:

Dispersion of white light: Angular dispersion: Dispersive power. Scattering of light: ' 324
Blue colour of the sky:

Reddish appearance of the sun at sunrise or sunset: The Human eye:

Defects of vision and their correction: Simple Microscope or Magnifying Glass:

| Compound Microscope: [ 326 |

{ Astronomical Telescope: 1328 |
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| Wavefront: Wavelet: Ray: Types of wavefront: [ 329 ]

Refraction of a plane wave by a thin prism, a convex lens and Reflection of a plane wave by a
concave mirror: Huygen’s principle:

[ﬂws of Reflection at a Plane Surface base on Huygens’ Principle: 331
Laws of Refraction at a Plane Surface base on Huygens’ Principle:
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Coherent sources of light: Coherent sources can be produced by two methods:

Incoherent sources of light: Interference of light waves: Constructive interference:

Destructive interference:Theory of Interference of Waves Or Analytical treatment of interference:
Intensity I is proportional to the square of the amplitude of the wave: 333
Condition for Constructive Interference of Waves:

Condition for Destructive Interference of Waves:

Comparison of intensities of maxima and minima: Resultant Intensity J:

Relation between Intensity (/), Amplitude {a) of the wave and Width (w) of the slit:
! Young’s Double Slit Experiment: Positions of Bright Fringes: | 335 |

Positions of Dark Fringes: Expression for Bright Fringe Width (£, . ):
Expression for Dark Fringe Width ( 8, ):

Distribution of Intensity: Interference pattern: Conditions for sustained interference: 337
Diffraction of light: Diffraction of light at a single slit (Fraunhofer diffraction):
Types of diffraction:

| | ' | 339 |
Diffraction at various angles: Fraunhofer diffraction:

Width of Central Maximum (Fenral maximum): 341
Angular width of the central maximum ( Weenyat maximem):
Position of the secondary minima from the central point (O}):
Position of the secondary maxima from the central point {O}):

[ Difference between Interference and Diffraction: Polarization: Polarization of Light Waves: [ 343 |
Maius' Law: Polarisation by Reflection: Polarizing angle: Brewster’s Law

| Polaroids: Rayleigh Criterion: Resolving power: | 345 |
CHAPTER-17 DUAL NATURE OF RADIATION AND MATTER
Hertz and Lenard’s Observations of Photoelectric Effect: Photoelectric Effect: 346

Effect of Intensity of Incident Radiation:

Effect of Potential Difference between C and D: Effect of Frequency on Photoelectric Effect:
Laws of Photoelectric Emission: Failure of Classical theory to Explain Photoelectric effect: 348
Photon theory of light: Properties of photons:

Work function (W5) of a metal: Threshold frequency (w): Threshold wavelength (Ao}
Einstein’s photoelectric equation: Application of Photoelectric Effect:

| Dual Nature of Radiation and Matter: de Broglie wave: Expression for de Broglie wave: | 350 |
de Broglie wavelength of an electron: Davisson—Germer Experiment:

| | 352 |
CHAPTER-18 ATOMS AND NUCLEL
Thomson’s model of atem: Limitations of Thomson's atomic model: 353

Rutherford’s Alpha Scattering Experiment: Experimentat fact

Distance of Closest Approach (Nuclear size). Impact Parameter: Rutherford’s model of an atom:
Drawback of Rutherford’s model of an atom: Bohr’s quantisation condition: 355
Bohr’s mode! of hydrogen atom:
Radius of the n” orbit (r, ):

Speed of electron in the n" orbit (v,): Frequency of electron in the nth orbit ( £, ): 357

Energy of an electron in the n” orbit (£,):
Spectral series of hydrogen atom:

| Frequency of spectral line: [ 359 |
Energy level diagram for hydrogen atom: Excitation energy:
fonisation energy; Ground state: Excited state: Excitation potential: lonisation potential: 361

Success of Bohr's theory: Limitations of Bohr’s theory:
Composition of a nucleus: Neutral atom: Nucler: Nuclide: [sotopes:
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[ Isobars: Isotones: Atomic mass unit (amu or u): Electron volt: Relation between amu and MeV: | 363 |

Nuclear size: Volume of the nucleus: Density of the nucleus: Properties of nuclear force:
Einstein’s mass-energy equivalence:

Mass defect: Binding energy (BE): Binding energy per nucleon: 365
Explanation of binding energy curve:
Packing fraction { PF ): Radioactivity: Soddy-Fajan’s Displacement Laws:

[ Rutherford and Soddy’s Laws of Radioactive Decay: Alpha particle (a): Beta particle (B): | 367 |

Gamma ray'(y): Comparison of the properties between alpha particle, beta particle and gamma ray:

Nuclear energy levels: Radicactive decay law:

[ Mathematical treatment of decay law: Haif-life (T,):

1369 |

Average-life or mean life (r): Activity of radioactive sample 4: Nuclear fission:
Artificial or induced radicactivity: Natural radicactivity:

[ Spontaneous Fission: Induced Fission: Chain reaction: Nuclear fusion:

1371 |

Thermonuclear energy: Nuclear fusion in the sun: (proton-proton cycle):
Nuclear fusion in the sun; CNO (Heavier than the sun);

[ Comparison between fission and fusion 373 |
CHAPTER-19 ELECTRONIC DEVICES
Classification of Solids: Metals and Insulators: Semiconductors: Compound semiconductors: 374
Energy band: Fermi level: Metals: Insulators: -

Semiconductors: Properties of semiconductors : Effect of Temperature on Semiconductors

[ Intrinsic semiconductor: Doping a Semiconductor: [ 376 |
Methods of doping: Extrinsic semiconductor: n-type semiconductor:
p-type semiconductor: Majority and Minority Carriers: pn junction (Semiconductor diode): 378
Potential barrier:

Depletion layer: V-1 characteristics of a pn junction diode:
pn junction diode under forward bias and forward characteristics of the pn junction diode:
pn junction diode under reverse bias and reverse characteristics of the pn junction diode: 380

- pn Junction Diode as Rectifier: pn Junction Diode as a Half Wave Rectifier: Disadvantages of
Half Wave Rectifier: pn Junction Diode as a Full Wave Rectifier:

Disadvantages of Full Wave Rectifier:Zener diode:

[ Photodiode: Solar cell: | 382 |
Light Emitting Diode (LED): Junction Transistor: Action of n-mTrans:stor

[ Action of p-n-p Transistor: | 384 |
p-n-p Transistor Characteristics in Common Base (CB) Configuration:

[ p-n-p Transistor Characteristics in Common Emitter (CE) Configuration: | 386 |
Show that fi > a: Relation between a and £: p-n-p transistor as Common Emitter Amplifier:

[ Barkhausen conditions for oscillations: Transistor as an Oscillator (p-n-p}: | 388 |

| Transistor as a switch: Analogue signal: [ 390 |
Digitai signal: Digital Circuit: OR Operation: AND Operation: NOT Operation

[ Logic Gates: Truth Table: Digital OR gate: Digital AND gate: [ 392 ]
Digital NOT gate:

[ NOR gate: NAND gate: | 394 ]
CHAPTER-20 COMMUNICATION SYSTEM
Ejements of a communication system: Basics of communication: 396

Basic components of a transmitter and a receiver:

Basic terminology used in electronic communication systems: Transducer: Signals: Noise:

Transmitter: Receiver: Attenuation: Amplification: Range: Bandwidth: Modutation: Bemodulation:

Repeater:

| Bandwidth of signals: Speech signals: Music signals: Video signals: TV signals:

I 398 |
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| Some important wireless communication frequency bands: Digital signals:

Propagation of Electromagnetic Waves: Ground wave propagation:
Sky or ionospheric wave propagation. Atmosphere:

Important Terms used in Sky wave propagation: Critical frequency (f.): Critical angle:
Skip distance (Du.p): Skip zone: Space or tropospheric wave propagation;

400

Height of TV Transmitting Antenna: Modulation: Production of Amplitude modulation (AM) wave:

| Modulation factor:

| 402 |

| Importance of modulation factor: Need for modulation:

| 404 |

Detection of Amplitude Modulated (AM) Wave:
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PHYSICAL WORLD AND MEASUREMENT

What is physics?
Physics is a branch of science which deals with the study of nature and its natural
phenomena.

Measurement: Measurement is the comparison of unknown physical quantities with a
known fixed unit quantity.

Force: Force is the external agency applied on a body to change its state of rest and motion.

Forces in nature: There are four basic forces in nature. They are gravitational force,
electromagnetic force, strong nuclear force and weak nuclear force.

Fundamental and derived quantities: Physical quantities can be classified into two
categories namely, fundamental quantities and derived quantities.

(1) Fundamental quantities are quantities which cannot be expressed in terms of any other
physical quantity. For example, quantities like length, mass, time, temperature are
fundamental quantities.

(2} Derived quantities are gquantities that can be expressed in terms of fundamental quantities.
For example, quantities like area, velocity, acceleration etc. are derived quantities.

Unit: The quantity used as a standard of measurement is called the unit.

Or
Unit of a physical quantity is defined as the established standard used for comparison of the
given physical quantity,

Fundamental and derived units: The units in which the fundamental quantities are
measured are called fundamental units and the units used to measure derived quantities are
called derived units.

Or
Fundamental units: The units selected for measuring mass, length, time, temperature,
current, luminous intensity, quantity of matter, plane angle and solid angle are called
fundamental units. For examples, metre {m), kilogram (kg), time (s) etc are fundamental
units.

Derived units: The unit of physical quantities which can be expressed in terms of
fundamental units (mass, length and time) are called derived units. For examples, metre per
second (ms'i), metre per second’ (ms‘z), newton () etc are derived units.

Systems of units: There are three main systems of units. They are The British system of foot-
pound-second or fps system, the Gaussian system of centimetre-gram-second or ¢gs system
and the metre-kilogram-second or the mks system. The SI unit is essentially a modification of
the mks system.

SI Units: This system is essentially a modification of the mks system and is, therefore
rationalised mksA {metre kilogram second ampere) system.

e e e __]
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In the SI system of units there are seven fundamental quantities and two supplementary
quantities. They are presented in the Table below.

L]

SI system of units

Physical quantity | Unit | Symbol
{Fundamental quantities)

Length meter m

Mass : kilogram kg

Time second 5

Temperature kelvin K
Current ampere 4 |

Luminous intensity candela cd
Quantity of matter - mole mol 1
‘ _ (Supplementary quantities) ‘
Plane angle radian rad |
Solid angle steradian sr |

Note:

(1) The fundamental units are not definable in terms of other quantities. For this reason they
are called base or fundamental units.

(2) To express the unit of physical quantities in mechanics, the unit of mass, length and time
are adequate.

Supplementary units:

Radian: The angle in radians & is defined to be the ratio of the arc length / to the radius 7.

ie., 8= !» !
! Aﬁ

Note: o1 ::>9:~l-
r

27 2@r

One radian: One radian is defined as the angle subtended by an arc whose length is equal to
the radius.

A to radius squared . i.e., Q= -f;-

Q A
Note: e T
o 47  Anrt r

One steradian: One steradian is defined as the angle subtended at the centre of a sphere of
radius 1m by a part of its surface having an area of 1m?.

Practical units for large distances: In order to measure very large distances, we use the
following three units.




(1) Astronomical Unit (4.0): It is the mean distance between the centres of the earth and the
sun.

14U =1496x10"m
1 AU ~1.5x10" m

(2) Light year (ly): It is the distance travelled
by light in vacuum in one year.

In 1 second light travelled 3 x10% m

In 1 year or 1 x 365 x 24 x 60 x 60 seconds, light fravelled
3x10%x 1 x 365 %24 x 60 x60m=9.46x10"m
S 1ly=9.46x10Ym

(3) Parsec: It is the distance at which an arc of 1 4.U

subtends an angle of 1" _ ) =14.U
ol b

r
! 14U  1.5x10"

Or r=—=
r 9 ‘IH ﬂ-
180% 60x 60
13
Or r=l2210 U80x60x60) 4 810 m
4
.1 parsec =3.08x10"m
Note: 180° =7 rad ~ =1°=-"— rad Or 60'=—— rad
180 180
's—2  rad Or 60"=—"— rad
180x 60 180x 60
L S rad
180x 60 x 60
Practical units for very small distances:
(1) Angstrom (A): Diameter of an atom (1A = 107"m )
(2) Fermi (fm): Diameter of the nucleus of an atom (1fm = 107"°m)
Expressing larger and smaller physical quantities
Power of ten Prefix Abbreviation
10 tera T
10° oiga G
10° mega M
10° kilo k
10” milli m
107 micro P
107 nano n
10712 pico D

. |
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Measurement of large distances (parallax method)

(1) Measurement of size of heavenly bodies:
vl = a4 =d=D§
D
If D is known, @is known, then d is known

(2) Measurement of distances of heavenly bodies:
g =—§; =8 = %

If b is known, &is known, then Sis a

known,

Measurement of mass: D

in translational motion, the ratio of
resultant force applied on the body
and the acceleration produced in it is Earth
called inertial mass (m;) of the body. T Rt
F=ma () (2)
F

=>m=—
a

(1) Inertial mass: When a body is '

(2) Gravitational mass: When the mass of a body is measured under the effect of gravity,
and the body is not in motion, it is called gravitational mass (mg).
w
W=m.g = m, =—
g
Note: m, = m,; . But if the body moves with a very high speed (compare to the speed of light},

m, > mg

Measurement of gravitational mass:

Weight: The weight of the body is defined as the gravitational force exerted on it due to the
Earth.

W =mg
Thus if a body has a mass of 10 kg, then its weight is W =10x9.8N =98N .

Note:
(1) The mass of the body is the same whether it is on the Earth, on the Moon or somewhere in

space. But the weight of the body depends on the acceleration due to gravity.

(2) The mass has magnitude only (scalar quantity), whereas weight has magnitude as well as
direction (vector quantity).

(3) The mass is a measure of body's inertia, however weight of a body is the gravitational

force. -
(4) The ST unit of mass is kg, whereas that of the weight is newton (N).
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Dimensions of a physical quantity: The dimensions of a physical quantity are the powers to
which the fundamental units are raised in order to obtain the units of that quantity,

. . Unit of mass
+» Unit of density =+—
Unit of volume

Thus in order to get the unit of density, we raise the unit of mass to the power 1 and the unit
of length to the power —3. These powers are called the "dimensions of density”. In other
words dimensions of density are 1 in Mass and -3 in Length i.e., [M'L™]

Dimensions of fundamental quantities

Fundamental quantities Dimension

_Length L]
Mass [M]
Time [7]
Temperature [K]
Current [4]
Luminous intensity [cd]

Quantity of matter [mol]

Example:

We know that velocity is given by v = %

The dimensional formula of velocity is [v] = % =[L[TT" =[LT™"]

Or [v]=[M°L'T™
Where [M], [L] and [7] are the dimensions of the fundamental quantities mass, length and

time respectively.
Therefore velocity has (0) dimension in mass, (1) dimension in length and (—1) dimension in

time. Thus the dimensional formula for velocity is [M°L' T7'Jor simply[LT"'].

Dimensional formulae of some derived quantities
Physical quantity Expression Dimensional formula
Area length x breadth [L][L] = [L]]
Volume length x breadth x height [LIELNL] = [L]
Density mass/volume [ML™T"
speed or velocity distance/time (MLT
Acceleration velocity/time [M°LT
Force mass x acceleration [MLT ]
Momentum mass x velocity [MLT]
Wark force x displacement MLPT
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Four categories of physical quantities:

(1) Dimensional variables: Physical quantities which have dimensions but do not have fixed
value are called dimensional variables. Examples force, velocity etc.

(2) Dimensional constants: Physical quantities which have dimensions and a fixed value are
called dimensional constants. Examples velocity of light, planck’s constant ete,

(3) Dimensionless variables: Physical quantities which have neither dimensions nor fixed
value are called dimensionless variables. Examples angle, specific gravity efc.

(4) Dimensionless constants: Physical quantities which have no dimensions but have fixed

value are called dimensionless constants. Examples 1, 2, 7 etc.

Principle of homogeneity of dimensions: An equation is dimensionally correct if the
dimensions of the various terms on either side of the equation are the same. This is called the

principle of homogeneity of dimensions.
The equation A + B = C is valid only if the dimensions of A, B and C are the same.

Uses of dimensional analysis: The method of dimensional analysis is used to
(1) convert a physical quantity from one system of units to another.

(2) check the dimensional correctness of a given equation.

(3) establish a relationship between different physical quantities in an equation.

Limitations of Dimensional Analysis:

(1) The value of dimensionless constants cannot be determined by this method.

(2) This method cannot be applied to equations involving exponential and trigonometric
functions.

(3) It cannot be applied to an equation involving more than three physical quantities.

(4) It can check only whether a physical relation is dimensionally correct or not. It cannot tell
whether the relation is absolutely correct or not. For example, applying this technique

S = ut + % at’ is dimensionally correct whereas the correct relation is S = uf + % af’.

Least count: The least count of a measuring device is the smallest value that can be
measured accurately.

For example,
0 0.1 0.2 4.3 04 0.3 0.6
bt Seae
Line-1 0.3 unit
Line-2 - 0.3 unit
Line.3 ~——————— (.1 unit
Line-4 —— 0 unit (can’t measure)

The least count of the given scale is 0.1 unit.

Significant figures: The number of digits in a measurement about which we are certain plus
one additional digit which is uncertain are known as significant figures,
Example:

23.1m --—-- 3 significant figures

2310 cm--- 3 significant figures

23100mm- 3 significant figures

0.0231km- 3 significant figures

m
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Note:

(1) If we expressed the length of the table as 52.37 c¢m, four significant figures are there.
Three certain and one estimated. It may be noted that in recording a measurement or
calculation, one and only one doubtful digit is retained.

{2) If the distance between two objects is 3050 m then 3050 m or 305000 ¢m or 3.050 km has
four significant figures.

Example
Number Number of Rules
significant figures
1.31 3 All nonzero digits are significant
13.1 3 "
231 3 !
450076 6 All zeros between two nonzero digits are
significant
21.05 4 All zeros to the right of a decimal point and to the
right of a nonzero digit are significant
0.10004 5 All zeros between two nonzero digits are
significant
1.001 4 All zeros to the right of a decimal point and to the
right of a nonzero digit are significant
1,000 4 "
1.310 4 "
0.310 3 "
0.0310 3 "
2.0310 5 "
2310 3 All zeros to the left of an understood decimal
point but to the right of a nonzero digit are not
- significant
2310. 4 All zeros to the left of an expressed decimal point
and to the right of a nonzero digit are significant
0.1000 4 All zeros to the right of a decimal point and to the
right of a nonzero digit are significant
0.0001 1 All zeros to the right of a decimal point but to the
left of a nonzero digit are not significant
1.0001 5 All zeros to the right of a decimal point and to the
right of a nonzero digit are significant
6200 2 All zeros to the left of an understood decimal
point but to the right of a nonzero digit are not
significant
62 x 10° 2
6.2 x 10’ 2
6.200 x 10° 4
6200. 4 All zeros to the left of an expressed decimal point
and to the right of a nonzero digit are significant
8.26 x 107 3

Significant figures in algebraic operation:
(1) In addition or subtraction: In addition or subtraction of the numbers, the final result
should retain the least decimal place as in the various numbers.
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Example: [fa=1234m and b=1.20m
Thena+b=(1.234+120ym=2.434m

" As b has measured upto two decimal places

Catb=243m

(2) In multiplication or divisien: In Multiplication or division of the numbers, the final
result should retain the least significant figures as in the various numbers.
Example: ifa=1234m and b=120m
Then a x b=1.234 x 1.20 m* = 1.4808 m’
As b has only 3 significant figures,

L axb=148m’
Rounding off:
(1) If the digit to be dropped is less than 5, the preceding digit is left unchanged. Example
Number ' Rounding off to three significant figures
1.870 1.87
1.871 1.87
1.872 ~1.87
1.873 1.87
1.874 1.87

(2) If the digit to be dropped is more than S, the preceding digit is raised by one. Example

Number Rounding off to three significant figures
1.875 1.88
1.876 1.88
1.877 1.88
1.878 1.88
1.879 1.88

Special cases: -
(1) If the digit to be dropped is 5 followed by digits other than zero, the preceding digit is
raised by one. Example

Number Rounding off to three significant figures
1.8051 1.81
1.8151 1.82
1.8252 1.83
1.8351 1.84
1.8453 1.85
1.8555 1.86
1.8656 1.87
1.8758 1.88
1.8851 1.89
1.8953 1.90

e g S g
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L
(2) If the digit to be dropped is § or 5 followed by zeros, the preceding digit, if it is is BRAR )
left unchanged. Example

Number Rounding off to three significant figures Ay [ 6".?,/
1.8050* 1.81* (zero is not an even or an odd number) -t
1.8250 1.82

1.8450 1.84

1.8650 1.86

1.8850 _ 1.88

(3) If the digit to be dropped is 5 or 5 followed by zeros, the preceding digit, if it is odd is
raised by one. Example

Number Rounding off to three significant figures
1.8150 1.82
1.8350 . 1.84
1.8550 1.86
1.8750 1.88
1.8950 1.90

Errors of measurement: The difference in the true value and the measured value of a
quantity is called error of measurement.

Types of error:

(1) Systematic errors: Systematic errors are errors whose causes are known, Such errors
can, therefore be minimised. For examples

(1) Instrumental errors

(ii) Personal errors

(ii1) Errors due to imperfection arise on account of ignoring certain facts

(iv) Errors due to external causes arises due to changes in temperature, pressure, humidity
etc.

(2) Random errors: These errors may arise due to a large variety of factors. The causes of
such errors are, therefore not known precisely.

Commonly used terms in errors analysis:
(1) True value: The true value of a physical quantity is the arithmetic mean of a large
number of readings of that quantity.

If a\, as, a3, ...a, are the n different readings of a physical quantity in an experiment, then true
value of that quantity is

. a+a,ta, +..+a 1=
Ge=lfTh " Za:'

n. h i=]

Example: The period of oscillation of a simple pendulum in an experiment is recorded as
2.635,2.565,2.42 5,2.71 5 and 2.80 s respectively. Find (1) True value (mean time period)
(2) Absolute error (3) Mean absolute error (4) Relative error and percentage error.
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L+T,+T,+7T,+ 7
5
2.63+2.56+2.42+2.71+2.80 13.12

5

Solution (1) T =

=2.62s

Mean time period T =

(2) Absolute error: The difference in the magnitudes of the true value and the measured
value of a physical quantity is called absolute error.
g ta,tat..ta,

v a
n
The absolute errors in the various measured values are
Aa, =a—a,
Aa,=a-a,
Aa,=a~a,

Solution (2) Absolute error in each observation is
AT, =T ~T, =2.62~2.63=-0.0ls AT, =T ~T, =2.62-2.56=0.06s
AT, =T T, =2.62-2.42=0.20s AT, =T ~T, =2.62-2.71=-0.09s
T,=T ~T,=262-2.80=~0.18s :

C>

(3) Mean absolute error: The arithmetic mean of all the absolute errors in the measured
values is called mean absolute error.

The mean absolute error or the final absolute error is

EE:IMI[+IM2|+|M3I+"'+|Aa”!=~I~Z|Aa,.|
n

R

Solution (3) The mean absolute error is
AT - | AT, |+ AT, | +| AT, | +| AT, [+] ATy | _0.01+0.06+0.20+0.09+0.18

5 5

=0.11s

Then the time period of the pendulum is recorded as 7' =T £ AT = 2.62+0.11s

(4) Relative error and percentage error: The ratio of mean absolute error and mean value
or true value of the quantity being measured is called relative error or fractional error,

Relative error is

R l=1k|

Percentage error is —x100%
a

Solution (4) The percentage error is %ﬂ_z x100% = (2);;

x100% = 4.2%
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Propagation or combination of errors:

L3

(1) Error in sum:

Let QO+ AQ=(atAa)+ (bt Ab)
Q+AQ=atAa+btAb
QrAQ=a+btAat Ab
Here Q=a+b
And +AQ=tAatAb
The four possible values of AQ are (+Aa+ Ab), (+Aa ~ Ab),(~Aa + Ab) and (—Aa ~ Ab)
Therefore the maximum absolute error in @ is AQ =1 (Aa+ Ab)

(2) Error in difference:

Let Ot AQ=(at Aa)~ (bt Ab)
grAQ=atAa-bFAb
QrAQ=a~btAaFAb
Here Q=a-5
And *AQ=*%AaFAb
The four possible values of AQ are (+Aa — Ab),(+Aa+ Ab),(—Aa~ Ab) and (~Aa+ Ab)
Therefore the maximum absolute error in @ is AQ =+ (Aa+ Ab)

(3) Error in product:
Let O+ AQ=(atAa)x (bt Ab)
Q[l‘iﬂ}:a (ui“i]xb(li@I
Q b

a

Q{lié«Q—)uab 1¢3‘i}x(1ié§]
2, b

a
: /
o1+22 1. 1¢A—bi%i%-A—b]
Q b a a b
Here Q=ab

And li%gzli%éi%i—!&—a—tﬁ—b

a a b

Or iégziégiéﬁi_‘ﬁ_a_.éé

0 b a a b |
Aa Ab . —
As | — |and e both are small, their product is still smaller and can be neglected.
a

L0, A b
Q a b
Four possible values of A9 are (4«%4—3—!)) ,(—}-%H"ﬁ—b] ,(ME +A_bJ and [Hﬁwéﬁ]
Q a b a b a b a b
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Hence maximum possible value of A0

It

{2.2)
a b

(4) Error in division:

_ (atAa)
LetQiAQ-(biAb)
a(liﬁJ 4
o )il %)
0 b(1+9—‘”~J b\ a b
b

As 5 << 1, therefore expanding Binomially, we get

{252

[ } I—Qigieﬂga_b]
a a b
a
Here =—
¢ b
And 1+ Q_1-£+£i££
Q b a a b
Or £80_; b da Ao b
b a a b
Aan Ab \ ..
As | — |and 5 both are small, their product is still smaller and can be neglected.
a
(B0, ba s
o a b
Four possible values of A0 are [+%—A—b],(+£+A—bJ ,[—ég—éé)md (_é‘i.*.é{’_J
0 a b a b a & a b
Hence maximum possible value of —AQQ = [é‘i + %b)
a

{(4) Error in power of a quantity:

(atAa)
(bt Ab)"

n

Or Q= (1)

Let Q+AQ =

Suppose Aa is the absolute error in the measurement of a, Ab is the absolute error in
the measurement of b and AQ is the absolute error in calculation of {.

Taking log of both sides of equation (1) gives
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logQ =loga” —logb™
logQ =nloga—mlogh

Differentiating both sides with respect to O, we get

1 1 da 1 db

= e v o PP} — m—n
0 adQ ' bdQ -
dQ _ da__db

AQ . ba_ Ab

Hence maximum value of Q =+ [nég + m%bJ
a

thsild AnMeasurement



KINEMATICS

Mechanics: Mechanics deals with the study of particles or bodies when they are at rest or in
motion.

Mechanics can be divided into two branches, statics and dynamics. ]

(1) Statics is the study of objects at rest, this requires the idea of forces in equilibrium.

(2) Dynamics is the study of moving objects.

Dynamics is further subdivided into kinematics and kinetics.

(1) Kinematics is the study of the relationship between displacement, velocity, acceleration
and time of a given motion, without considering the forces that cause the motion.

(2) Kinetics deals with the relationship between the motion of bodies and forces acting on
them.

L Mechanics [
A
{ )
[ Statics | l Dynamics l
{ }
| Kinematics l 1 Kinetics ‘

Particle: A particle is ideally just a piece or a quantity of matter, having practically no linear

dimensions but only a position.
Or

A particle is defined as an isolated point mass having no size and incapable of rotation.

Rest: When a body does not change its position with respect to time, then it is said to be at
rest.

Motion: Motion is the change of position of the body with respect to time.

Types of motion of a body:
(1) Rectilinear motion and translatory motion: Rectilinear motion is that motion in which

a particle or point mass body is moving along a straight line. Translatory motion is that
motion in which a body, which is not a point mass body is moving such that all its constituent
particles moves simultaneously along parallel straight lines and shift through equal distance
in a given interval of time.

g ----------------- )
L LT repap - -1
............. v |

(2) Circular motion and rotatory motion: A circular motion is that motion in which a
particle or a point mass body is moving on a circle. A rotatory motion is that motion in which
a body, which is not a point mass body, is moving such that ali its constituent particles move
simultaneously along concentric circles, whose centres lie on a line, called axis of rotation

and shift through equal angle in a given time.

{3) Oscillatory motion and vibratory metion: Oscillatory motion is that motion in which a
body moves to and fro or back and forth repeatedly about a fixed point (mean position) in a
definite interval of time. If in the oscillatory motion, the amplitude is very small i.e.,
microscopic, the motion of the body is said to be a vibratory motion.
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Frame of reference: The place from which motion is observed and measured is called frame
of reference.

Frames of reference can be of two types,

(1) Inertial frame of reference: Inertial frame of reference is one in which Newton's laws of
motion hold good

(2) Non-inertial frame of reference: Non-inertial frame of reference is one in which
Newton’s laws of motion do not hold good.

Motion in one, two and three dimensions:

(1) Motion in one dimension: Motion of an object is said to be one dimensional, if only one
of the three coordinates specifying the position of the object changes with respect to time. For
example, an ant moving in a straight line etc.

(2) Motion in two dimensions: In this type, the motion is represented by any two of the three
coordinates. For example, a body moving in a plane.

(3) Motion in three dimensions: Motion of a body is said to be three dimensional, if all the
three coordinates of the position of the body change with respect to time. For examples, the
motion of a flying bird, motion of a kite in'the sky, motion of a molecule, etc.

Scalar quantities or scalars: Physical quantities which have only magnitude but no
direction, are called scalar quantities or scalars. Mass, length, time, temperature, speed, work,
distance covered etc are examples of scalars.

Vector quantities or vectors: Physical quantities which have both magnitude and direction
are called vector quantities or vectors. Velocity, displacement, -~
acceleration, force etc are examples of vectors. 4
A vector can be represented by a single letter with an arrow head on it,

_J

=Y
for example Ais a vector whose magnitude is represented by Aor | 4| | A]or 4
Distance and Displacement: The total length of the path travelled by the particie is called

the distance, and the shortest distance between the initial and final position of the particle is
the displacement.

Note: The distance travelled is a scalar quantity and the displacement is a vector quantity.

Example: The distance travelled by a particle, is different from its displacement from the
origin. For example, if the particle moves from a point O to position P and then to position
P,, its displacement at the position P, from the origin is

Ax=-x,-0=-x,
but, the distance travelled by the particle is
X+ % +x, =(2x +x,)

- .
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Note: The displacement can be positive, zero or negative. The distance is always positive,

o o
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) f T
~800km  -500km  -200km O 200km 500km 800km

In @, the displacement and also the velocity are positive i.e.,
Ax = {0~ (-800)} + {500 ~ 0} = 800+ 500 = +1300km
Or Ax =500~ (-800) = + 13004m

In @, the displacement and also the velocity are negative i.e.,
Ax = {0~ 500} + {-800 — 0} = —500 — 800 = ~1300/km

Or Ax =-800 - 500 =~ 1300&km
Speed: Speed is defined as the time rate of change of distance. It is a scalar quantity. The SI
unit of speed is ms™'. The dimensional formula of speed is[M°L'T].
distance travelled
time

Speed =

Uniform speed: An object is said to be moving with a uniform speed, if it covers equal
distances in equal intervals of time, however small these intervals may be.

Variable speed or non uniform speed: An object is said to be moving with a variable speed
if it covers equal distances in unequal intervals of time, or unequal distances in equal
intervals of time, however small these intervals may be.
Average speed: Average speed for the given motion is defined as the ratio of the total
distance travelled to the total time taken i.e.,
total distance traveiled
Averagespeed = -
total time taken

A B

Instantaneous speed: The speed of an object at a given instant of time is called its

instantaneous speed.
Let at an instant of time ¢, an object while moving covers a distance As in a small interval of

time Ar around #, so that A7—>0, then
Lim As ds

Instantaneous speed = =
At—->0Ar dt

Velocity: Velocity is defined as the time rate of change of displacement. It is a vector
quantity. The SI unit of velocity is ms™'. The dimensional formula of velocity isfM°L'T™'].
displacement

Velocity = "
ime

Uniform velocity: An object is said to be moving with a uniform velocity, if it covers equal
displacements in equal intervals of time, however small these intervals may be.




Displacement{nt)

Ty 5s 10s I8s 20s
=
100m 200m 300m 400m
250
-?a 2 "\T 1 o
= 15
3 10
.7} H
S . :
i i ; time {s)
o 8 o 15 2
Wy, - 10s 15s 20s
20m/s 20m/s 20m/s 20m/s
Note: 8

(1) In the figure, the slope of the displacement-time graph
represents the uniform velocity. If 8is different for different

interval of time, then the velocity is non uniform. F LA
e
>t
oppside As O
tam9=—-p~}.3-.—~—=-—~=v = v=tanf At
adjside  Ar

(2) In figure (1) below, 8, > 8, the velocity increases with time. So we have acceleration.
(3) In figure (2) below, 8, < &, the velocity decreases with time. So we have retardation.
(4) In figure (3) below, 8, = G the velocity is constant with time. So there is no acceleration.

3 Y B 3 B
B A A
A :”,’,’,- '.“-'/- "‘)‘ . 9 E: E
20 NG Ny \61 A% >t 6" P Ny
0 0 0
1) (2) (3)

Variable velocity or non uniform velocity: An object is said to be moving with a variable
velocity, if it covers equal displacements in unequal intervals of time, or unequat
displacements in equal intervals of time, however small these intervals may be.

= " ______ e ___]
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Average velocity: Average velocity of an obiect is defined as the ratio of the displacement to
the time interval for which the motion takes place i.e.,

... displacement % P
Averagevelocity e taken S, g 2
Let S be the displacement of a body in time #; and S; be its »
displacement in time &, . The change in displacement is ; i
(5; ~ S1). The average velocity during the time interval s, 4
(2 - 1) 1s defined as PR, YN
= §2____S_I = E 4 i _}I

av

t,—t, At

Instantaneous velocity: It is the velocity at any given instant of time or at any given point of
its path. The instantaneous velocity v is given by :

- im A 45
Y= _——
A0 A dr
SIL
P K
t ’f {

Note: The magnitude of the instantaneous velocity is called the instantaneous speed.

Speed versus velocity: When a particle moves on a circular path with a constant speed, then
at every point on the path, the speed will be

the same, but the velocity is different. Velocity atpoint B

- B
Velocity at point A

Note:
(1) Speed is a scalar quantity, velocity is a f::;‘l;i
vector quantity.
\\
(2) The magnitude of velocity represents the . A

speed.
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Relative velacity in one dimension: The A

relative velocity of abody A w.r.t.abody B Teaga A
is'the time rate at which a body 4 changes its X40
position w.r.t. a body B. ) -
’ B ~— ¥p
Let x40 and xpp be the displacements of the o—ﬂ
bodies 4 and B from the origin O at ¢ =(). B0

Clearly, (x40 ~ x50) is the displacement
between the bodies 4 and B at ¢ = 0. If x4 and xp are their position coordinates in time ¢, then

X, =X 0tV !
and x, = x5, + vy

X=Xy = (X = Xpo) H (v, — VN

Increase in displacement between the two bodies in time ¢
= Final displacement — Original displacement
= [(xgo = %p0) + (v = va)t) = [(x,5 — X5,)]
= (v, — V)t
Therefore, relative velocity of 4 w.r.t. B is
_ displacement _ (v, —vy)t

Vyp = V=V
AB . A B
time ¢

Note:
(1) Relative velocity of 4 wrt. Bis v, =v, —v, (i.c., B is the observer)

(2) Relative velocity of Bw.r.t. 4is vy, =v, —v, (i.e., 4 is the observer)

) If v, > vy, v, is positive i.e., B will see that 4 moves to the right with velocity v,
@ If v, >vy, vy, is negative i.e., 4 will see that B moves to the left with velocity v,
(5) To an observer on the ground, 4 and B move to the right with velocity v,and v,
respectively. So v, and v, are both positive

1€, Vo=V, —Vg=v,—0=v and vy; =vy, —v, =v, -0 =,

(A

Bean 1

B
ﬁéﬂn V4 i ﬂ

B >V

t

(6) If 4 and B are moving in opposite direction, then v, =v, —{(-v,)=v, +v, also

y -v, =—(v; +v,). Inthis case v, =v,, in magnitude. v, is positive, while v, is

Bs = " Vg
negative.

{7) To an observer on the ground, 4 moves to the right, so v, is positive while B moves to the
left, so v,is negative
e, V=V, ~Ve=v,—0=v, and vy, =—v, ~v, = v, ~0=~v,

e
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Graphical representation of uniform motion

Y
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O Wrmma. — 20km/h
Q@ 10km/he &@
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~1km Okm Lkm Yhem 3km

Acceleration: Acceleration of a particle is defined as the time rate of change of velocity.
Or
If the magnitude or direction or both of the velocity changes with respect to time, the particle
is said to be under acceleration. :
changein velocity
time taken
VU

Acceleration =

Or a=

Where u is the initial velocity, v is the final velocity and ¢ is the time taken.

Acceleration is a vector quantity. The SI unit of acceleration is ms~2. The dimensional
formula of acceleration is[M°L'T™].
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Uniform acceleration: An object is said to be moving with a uniform acceleration if its
velocity changes by equal amounts in equal intervals of time,

Kinematics
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Note:
(1) In the figure, the slope of the velocity-time graph

represents the uniform acceleration. If « is different for
different interval of time, then the acceleration is non

>

uniform. .=
PolAv
d @ : .
mazwzé}i:a —Da=tlana 0<———N——+ d
adjside Af

(2) In figure (1) below, &, > «, the acceleration increases with time.
(3) In figure (2) below, &, < @, the acceleration decreases with time.
(4) In figure (3) below, @, = &, the acceleration is constant with time i.e, we have uniform

acceleration.
(5) If the acceleration increases uniformly, we have an acceleration (variable acceleration).

An example is given below in figure (4).

‘I.: \: B x B
B Ag A
A .”‘/‘,_,- p ‘,',J
: . o
SN ot % A ot @)’ | y
0 0 ol .
1) (2) (3
&
g
k]
3
k']
3
~
rens. 1s 2s 3s ds
¢ — —— — —
1m/s? 2m/s? 3m/st 4m/s?
—_— —— >
1m/s 4m/s om/s 16m/s

{4)

Variable acceleration: An object is said to be moving with a variable acceleration if its
velocity changes by unequal amounts in equal intervals of time.

- v 1s 2s 3s 4s
Ca
—_— _— R > »
im/s 4m/is Im/s 8m/s

W@
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Average acceleration: When an object is moving with a variable acceleration, then the
average acceleration of the object for the given motion is defined as the ratio of the total
change in velocity of the object during motion to the total time taken i.e.,

_ total change in velocity

av

total timme taken

Retardation or deceleration: If the velocity decreases with time, the acceleration is
negative. The negative acceleration is called retardation or deceleration.

_— —_— — — e
22nk/s 20m/s 18m/s 16m/s 14m/s

Uniform motion: When a particle is in uniform motion, its velocity is constant, so the
acceleration is zero.

s 1s 25 3s 4s
20m/s 20m/s 20m/s © 20mfs 20m/s

Instantaneous acceleration or acceleration: Instantaneous acceleration is an acceleration of
an object at any given instant of time.

Instantancous acceleration can be expressed in terms of average acceleration as
lim Ay lim dv
a= - = (aav) =—
At—>0Ar At->0 dt
Instantaneous acceleration can be expressed in terms of position as
_dv_d (ds)_ d’s

ar) dar*

==
dar 4t

Derivation of equations of uniform accelerated motion from velocity-time graph:
Consider an object moving along a
straight line with uniform acceleration a.
Let u be the initial velocity of the object
at time ¢ = 0, v be the final velocity of the
object after time ¢ and S is the distance
travelled by object in time £, The
velocity-time graph of this motion is a
straight line AB, as shown in the figure.

Velocity

Let OA=ED =y,
OC=EB=v, 6 ; >Time
OE =¢=AD. g

(1) Prove that v=u+at
Acceleration = slope of the graph AB
DB EB-ED v-u
OF t

a=tana =

. e ___]
Kinematics Page 23



Or v—u=at
Or v=u+at Proved

(2) Prove that S=ut+ %atz
S = Area QADE + Area ABD
S =OAXOE+--;—X ADx DB

S:uxt+é—xrx(v—u)
S:uxt-&--;—xtxat [ v—u=at]

S=ut+ %a:‘2 Proved

(3) Prove that v’ —u’ =2aS
S= Area OABE

S=%(EB+OA)><OE

S=~;-(EB+ED)><0E ------- M

,.DB_EB-ED
AD  OE
or 0p=ZB-£D )

a
Putting equation (2) in equation (1) we have

S=%(EB+ED)xM
§ =2 (EB* - ED?)
2a
1 2 2
S=—07-
2a(v u)
v? ~u? =2aS Proved

Derivation of equations of uniform accelerated motion by calculus method:
Consider an object moving in a straight line with uniform acceleration a. Let v, v, are the

velocities of the object in time £, ,¢, respectively.

(1) Prove that v=u+ar

av
eg=2r

dt

Or dv=adt

Integrating the above equation we have
v2 f

Jav=a [

4 h
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v,~v,=alt, -t} |
Ifr,=0, vy=u, v,=v and ¢, =¢ then we have _ ‘\_\.
v-u=a{t-0)=at :
v=u+at Proved

(2) Prove that § =.u!+~%af2

Consider an object moving in a straight line with uniform acceleration a. Let at instant ¢, dx
be the displacement of the object in time interval dr. then
_dx
dt
dx=vdt

Or de=(u+at)dt [rv-—u=al]

Or de=udt+at dt
Integrating the above equation we have

4

]dx=u)'dr+a)':dt
X, 1} ]

0

x=x =u{t-0+a|———

. =u{t-0) [2 2}
_’2
X—Xx,=ut+a—
2

If x=5, x, =0 then we have

S=ut+ %aﬂ1 Proved

(3) Prove that v’ -4’ =248
Consider a particle moving in a straight line with initial velocity # and uniform acceleration
a. Then

dv dv dx dv

g=-—=—X—=—XV
dt dx dt dx
vdv=adx

Let u and v be the velocity of the particle at position given by displacement x_and x.
Integrating the above equation we have

¥

Ivdv=a]‘dx

2z
v u2

S-t=a(-x,)

vi-u’ =2g(x-x,)
If x=§, x, =0 then we have

vl —u®=2aS Proved

bese e ——— o —
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Prove that distance travelled during the n™ second is Sp=u+t %(Zn ~1)
Distance travelled during n seconds is S, =un+ %cm2

Distance travelled during (n -1) seconds is S, =u{n-1)+ %a (n-1?*

. the distance travelled in the #™ second is
Smh = Sn -_Sn—I

Snfhzun+_;_an2 —[u(n—l)-i-%a(n—l)z:!
S —Lm+lm12—u(n—I)-—la(n“l)2
nith 2 2
Snm=un+laﬂ2—u(n—l)_%a(nz*l—zn)

] 2 1 2 I
S,=un+—an’ —un+u—~—~an —~—a+an

2 2

S,,,,,=u-—£a+an

2

a
Smh = u—E(}_zn)

S, =u+~g—(2n~—})

Special cases:

(1) Prove that 7=27"

Given ¥ is the average velocity, u is the initial velocity and v is the final velocity.

S = Area OADE + Area ABD
S:OAXOE-&-%XADXDB Velocity

S=uxt+%xtx(v-u)

S=ut+lxtv—-%xru
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(2) Prove that v=u+ %at

Consider a body moves with a constant acceleration a in time ¢ and let « be the initial
velocity.

S=ut+lar2
2
\7=§=u—t+lat2
:r ot 2t

Vertical motion under gravity:

(1) For downward motion: For a particle moving downwards, a = g, since the particle
moves in the direction of gravity.

(2) For a freely falling body: For a freely falling body, @ = g and » = 0, since it starts from
rest.

(3) For upward motion: For a particle moving upwards, ¢ = — g, since the particle moves
against the gravity.

Equations of motion for a freely falling body are:

DN v=u+tgt (2) h=ut+}2-g12 (3) vi —~u’ =2gh
@) b, =u+E2n-1) (5)h=(""'”}r (6) ¥ =1+ gi

2 2 2
Equations of motion for a body moving upward are:
(Dv=u-gt (2)1‘1=w—:,12—;_gt2 (3) v ~u’ =-2gh
(@) by =u=S2n=1) (5) h=(”“2“".]r ©6) v zu—%gr

Types of vectors:

(1) Polar vector: Vectors which have a starting point or a point of application are polar
vectors. Examples are displacement, force etc

(2) Axial vectors: Vectors which represent rotational effect and act along the axis of rotation
in accordance with the right hand screw rule are axial vectors. Examples are angular
velocity, torque, angular momentum etc

B

Ax B A

. toy
Lo
X
I
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A few definitions in vector algebra:

(1) Unit vector: A vector having unit magnitude is called a - —>
unit vector. It is also defined as a vector divided by its own - T
magnitude. ’
. F _F
¥y = —— I —
|7l r

(2) Equal vectors: Two vectors are said to be equal if they have the same magnitude and
same direction.

A , A N
B \ B____,
(3) Negative vectors or opposite vectors: The vectors of same e >
magnitude but opposite in direction are called negative vectors or _i

opposite vectors.

(4) Co-initial vectors: Vectors having the same starting point are
called co-initial vectors.
0

(5) Collinear vectors: Vectors having equal or unequal magnitudes B
and are acting along the parallel straight lines are called Collinear vectors.

A A
A B B B

» —_——
Eal El

(6) Coplanar vectors: Vectors lying in the same plane are called

coplanar vectors and the plane in which the vectors lie is called plane of C y
vectors. .
_—
(7) Localised vector: It is a vector whose initial point is fixed. It is also

called fixed vector.

(8) Non-localised vector: It is a vector whose initial point is not fixed. It is also called a free
vector.

(9) Like vectors: Two vectors are said to be like vectors, if they have same y ~
direction but different magnitudes. b))

(10) Unlike vectors: The vectors of different magnitude acting in opposite -
directions are called unlike vectors. :y -

(11) Null vector or zero vector: A vector whose magnitude is zero, is
called a null vector or zero vector. It is represented by 0.

(12) Proper vector: All the non-zero vectors are called proper vectors.
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(13) Position vector: The position vector of a particle is the Y
vector from the origin of the coordinate system to the position
of the particle.

!

In the figure 7 is the position vector joining the origin O of the
coordinate axes X, Y and the position P of the particle. 5 »X

Note: The position vector in terms of coordinates x and y is
given by
F=ix+Jy
FoF=(x+ jy)-(ix+ jy)
Pt =(ix-ix)+(x jp)+ (Gy-in)+0y- jy)
ri=x? +(0)+(0)+ y*

rt=xt+p? Sr=ygxt+ )t

(14) Displacement vector: When a particle moves, the
position vector changes from 7 to 7,during a certain time

interval. Then the particle’s displacement A7 during that
time interval is called the displacement vector. . AN,

>

In the figure A¥ =7, —F, is called the displacement vector. 5 >X

Note: The displacement vector in terms of coordinates

(x1, y1) and (xz, y2) is given by v
&F =7, ~F
AF = (ix, + Jy,) = (ix, + Jy) ol AF
ﬂ?=;x2+jy2—fxl _.;yl n+d [ ‘r' """ '
AF=fx2-fx|+jy2—}‘yl }’2{ ' ]
‘AF:f(xz_xl)"‘.;(yz_yl) —
Ar =iAx+ jAy —

(15) Orthogonal vectors: If two or three vectors are
perpendicular to each other, they are known as orthogonal
vectors. For example, the cartesian coordinate axes are
orthogonal vectors.

b

(16) Orthogonal unit vectors: There are three most common
unit vectors in the positive directions of X, Y and Z axes of

Cartesian coordinate system, denoted by, j and k

respectively. Since they are along the mutually perpendicular
directions, they are called orthogonal unit vectors.

-
'\“<

—“')v

4

Multiplication of a vector by a real number: Multiplication of a vector A by a real number
n becomes another vector nd . Its magnitude becomes n times the magnitude of the given
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vector. Its direction is the same or opposite as that of A, according to 7 is a positive or
negative real number. Thus
If n is positive real number, +n (A) = +nA

If n is negative real number, - » (A=

Note: If a vector Ais muluply by 3, we have a new vector 3 4 whose magnitude is three
times the original vector A, and the direction is in the direction of Aas shown in figure (1).
But if a vector Ais multlply by -3, we have a new vector —34 whose magnitude is three
times the original vector A, and the direction is opposite to A as shown in figure (2).

__Aiﬁ_) 34 . __/_f_l___) < ~34

(b 2

Resultant vector: The resultant vector of two or more .
vectors is defined as that single vector which produces the A
same effect as is produced by the individual vectors o >
together.
In the figure, R is the resultant vector of two vectors Aand B.

=¥

)

Addition of vectors:
(1) When the two vectors are acting in the same direction:

The resultant vector is R=A+B
The magnitude of Ris |R|=| A+ B|=| 4]+|B| >
Or R=A+B . R

h Ny
o
toy o

(2) When two vectors are actmg in opposue directions: i B
The resultant vector is R=A+(~ B)= A~ B >
Themagmtudeofos|R1=|A~—B|=|A|—|B| >

Or R=A4-B J

(3) When two vectors act at some angle:
The resultant vector in both the cases is R=A+B
But the magnitude of RisnotR=A+B.

i A B
—

0 = O

(D (2)
Note: In figure (2) we can have three more direction of R as shown below

I
o
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Figure (1) R=B~ A
Figure (2) R=A- B .
Figure (3) R=~A-B=—(A+5)

Triangular law of vectors: If two vectors are represented in
magmtude and direction by the two adjacent sides of a triangie taken R B
in order, then their resultant is the closing side of the triangle taken in
0
A

the reverse order.

Note: In the figures below we have

- - = .
a ¥ 0 ¥/ 8 8 o
9] — 0 o PRI TERR 3 [ LRRRRRRRTTEtE SPIRRREEEE » —. =
A A A A A
(1) 2 (3)
Figure (1) =2~ X
sinf  sina siny
Figre 2) —2—=—2 R
sinf sina sin(180"-6)
A B R

sin Csing  sind
Figure (3) R= \/Az +B* +2A4Bcosd
Bsin@
A+ Beos@

tana =

Parallelogram law of vectors: If two vectors acting at a
point are represented in magnitude and direction by the
two adjacent sides of a parallelogram, then their resultant
is represented in magnitude and direction by the diagonal
passing through the common tail of the two vectors.

Note: In the right angled triangle OQN we have

0Q? =ON? + ON*
0Q* =(OP+ PN)? +ON?
R? = (A+ Bcos@) +(Bsing)
R' = A* + B*cos’ §+24Bcos@+ B sin” @ A
R? = A* + B*(cos* @ +sin’ 8)+ 24Bcos8
R*= A"+ B* +24Bcosf
R=~A*+B® +24Bcosd

ON  OgN  Bsind
ON OP+PN A+ Bcosf

tana =

. e _____]
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.. Bsing

a= o e
A+ Beos#

Special cases:

(1) When two vectors Aand B are acting in the same direction,
then #=0°, cos@ =1 and sind =0
R=+vA*+ B +24Bcosf =V 4> + B> +24B =./(4+ B)’

SR=A+8B

,  Bsiné I ¢ =
ren———— = tan =tan" 0
A+ Bcos@ A+ B

o =tan”
s (P

(2) When two vectors A and Bare acling in opposite direction,
then 6 =180°, cosd=-1 and sind =0
R=+A*+ B +24Bcos@ = A* + B —24B = /(4 ~ B)’
~R=A-B
., Bsin# o
—————— =tan
A+ Bcosé A+ B
~.a=0%r 180°

o = tan

(3) When two vectors Aand Bact at right angle to each other,
then @ =90°, cos@=0 and sin@ =1
R=+vA? + B +24Bcosf =V A + B
S R'=A"+ B
4 Bsin@
A+ Bcosf

soo = tan ‘(EJ
A

Lami's theorem: If three forces acting at a point are in equilibrium, then each force is
proportional to the sine of the angle between the other two forces i.e.,
A B C

sinag  sinfg siny

2 B
@ =tan tan™ =
A

Where 4, B and C are the three forces and @, J and y are the angles between forces B
and C, C and 4 and Aand B respectively.
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Subtraction of vectors: Subtraction of a vector B from a
vector A is defined as the addition of vector— B (negative B
of vector E) to a vector 4. Thus k
A-B=A4+(-B)
-B

Note: Figures show the addition of a vector Aand a vector B, subtraction of a vector B from a
vector A and subtraction of a vector 4 from a vector B

"5 R=-i+h-5-1

_ B
B R=7i+B '- 4
\< .

5 iv(-By=4i-3 1 4

Wl

Relative velocity in two dimensions: Let two objects A and B are moving in a plane with
velocitiesV, and ¥, and 6 be the angle between their directions.
(1) The relative velocity of B w.r.t A is shown in figure (1)

Bps = ofv] 492 +2v,v, cos(180° ~8)

Vs, = \/vf, +v) ~2v,v, 0088

1 Om smamarT -
tan B = v, sin(180 09) VA
v, +v,cos(180" - &)
tm}ﬂ:ﬂ
vy —v,c088

(2) The relative velocity of A w.r.t B is shown in figure (2) v,

V= Jvf, +v2 +2v,v, cos(180° — 6)

S
VBA«»\/VA+VB 2v,v, cos 8

v, sin(180° - )

t =
ey cos(180° - 6)
v, siné
tan f = —2——
4 v, —~vycosd 2)

Resolution of vectors and rectangular components: A vector directed at an angle with the
co-ordinate axis, can be resolved into its components along the axes. This process of splitting
a vector into its components is known as resolution of a vector.

Note: Any number of vectors can be combined to give a single equivalent vector, therefore a
vector can be resolved into any number of components.

w
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Rectangular components of a vector in two dimensions (2D):

Y Y
Q| e A b
e B
: R}{ I ..................
R }“a : Ay¢ ---------------------
¥ ) :
o
61 T P —X o =X
R,
(1)

Consider a vector R in the X-Y plane, this vector can be resolved into two rectangular
components R and R along the X-axis and Y-axis as shown in the figure (1).

R=R, +R,
R=IR +JR,
In AAOP and AAQQ we have
%=cos¢9 = R = Rcosf - (1)
and R—f;’:sinS = R, = Rsing ------- (2)

A vector R can also be written as R =iRcos#+ jRsinf=R (i cosd + jsin6)
Squaring and adding equation (1) and equation (2) we have
(Rcos8)? +(Rsind)’ =(R,)’ +(R,)’

RY(cos’ 6 +sin’ 6) = R + R
x ¥
R*=R}+R;

R=(RI+R:

Dividing equation (2) by equation (1) we have

Rsiné?:& ::tan@:—R—y

Rcos@ R, R,
R

Or #=tan” [—yJ
RX
Int the figure (2) we have
R, =A,+B and R =4, +B8,
R=iR,+ R,

o R=i(A,+B)+j(4,+B)
Note:
(1) By using the dot product
R=iR, +JR,

e — e e e e Sttt
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R-R=(R +JR)-(R,+]R)
R*=(iR,-iR)+ (R,  JR)+(jR,-IR)+(jR,-JR )
R*=R;+R} ‘

R=R}+R]

(2) By using the Pythagoras theprem
In the right angled triangle AQP, we have
R*=R;+R

L R= R+ R
(3) In three dimensions (3D) R can be written as
R=iR, +jR, +kR,
R*=R!+R*+R}

R=R}+R}+ R}

The velocity vector: Consider a particle moving along a curved path in the XY plane as
shown in the figure. At time#, the particle is at point £, and at time ¢, the particle is at point P, .

The vector 7 is the position vector of the particle at time#, and vector 7, is the position vector
of the particle at time?, .

Y
Displacement AF =7, —F =iAx+ jAy I AF B
Time interval Af=t¢, —t, ;2— ______ By > :
Ll ~ l‘-'"'--
- FooiAx+j = ot
or 5 <A _itx+ ity I
At At
- Ax - A}v’ >
Or Vm:‘*&?‘”“g O Xy X2 X
Or ¥, =1iv, +jvy
Ax A
Where v, =—— and v, =
Af LY

Instantaneous velocity vector: The instantaneous velocity vector is given by

. lim AF dF

V= —_——

Ar >0 At dt‘
§=~—————1dx+jdy=;6_ix_.+}@
dt dr =~ dr

V=i v, +j’vy
Note : .
(1) The magnitude of the velocity is

R AC TN
V= vx-i-vy

(2) The direction of the particle at any time is described by an angle 8 between the velocity
vector and the X axis as
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v
tanfd = -+ = @ =tan"' (v_y}
v

v

X x

The acceleration vector: The acceleration of a body is given by
. AV Y, -7,
aav ==
At At

Instantaneous acceleration vector:

G- m a7 _dv
Ar—=>0A
. idv, +}dv 2dv,  adv,
a= =] + ]
4t dr dt

Ei=fa,+}'ay
dv, d(dx] dx qa P d[dyJ d’y

Where a, = =—|—|=—5 and a —=
d d\di) at Todt drt

dt

Laws of vector algebra: If 4, Band C are vectors and m and » are scalars, then

(1) A+B=B+4 Commutative law for addition

(2) A+ (B+ C‘) = (}i +B)+C” Assoctative law for addition

(3) mA = Am Commutative law for multiplication

4) m(nd)=(mn)A4 Associative law for multiplication

(5) (m+n)A=mA+nd Distributive law

6) m(A+B)=mA+mB Distributive law

The dot or scalar product: The multiplication of one vector by another vector so as to

produce a scalar is called scalar product or dot product of vectors. y

If 4 and B are two vectors and &is the angle between them, then /

A-B=AcosO(B)= ABcosd, 0<8=<r o o i .5

- - -—

Where Acosé is the projection of a vector 4 on a vector B Acosf

The following laws are valid:

(1) 4-B=B-4 Commutative law for dot product
(2) 2-(§+5):2-E’+ﬁ-6 Distributive law
(3) m(A-B)=(mA)-B=A-(mB)=(A-B)m Where m is a scalar

Where i, j, 4 are unit vectors

1
0
+kA andB=iB, +jB +kB then
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(T)If A-B=0, Aand B are not null vectors, then 4 and B are perpendicular.

The cross or vector product: The multiplication of one vector by another vector so as to
produce a vector is called vector product or cross product of vectors.

If 4 and B are two vectors and #is the angle between them, then
Ax B= ABsiné1, 0<8<n
Where i is a unit vector indicating the direction of Ax B.

AxB

o
C

o)
%
A

In the above figures, it is clear that the direction of Ax Bis opposite to that of Bx A

The following laws are valid:

(1) AxB=-Bx A4 Commutative law for cross product fails
(2 Ax(B+C)=AxB+ AxC Distributive law
(3) m(AxB)=(mA)x B=Ax(mB)=(AxB)ym Where m is a scalar
(4) ixi= j)(j kxk=0 Wheref,},i::areunitvectors
(5) ixj=k jxk=i kxi=] .
(6)j><:— -k kxj=—i ixk=-j
(VIf A=iA4,+JA, +kd, and B=1B, + B, + kB, then jﬁﬁ
i] ok
AxB=l4, 4, 4,
B, B, B,
Or AxB=1(4,B, ~B,A,)+ J(4,B, - B,A)+k(A,B,- B .A)

(8) The magnitude of Ax B ie., | Ax Blis the same as the area of a parallelogram with sides
Aand B.
(9)If Ax B =0, Aand B are not null vectors, then A and B are parallel.

Projectile: A projectile is an object that is thrown into the air and moves under the influence
of gravity alone. The path followed by the projectile is called trajectory. Examples of
projectile are

(1} A body dropped from the window of a moving train.
(2) A bomb released from an aeroplane in flight.

(3) A bullet fired from a rifle.

(4) A piece of stone thrown in any direction.

(5) A javelin or hammer, thrown by an athlete.

e _____________]
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A projectile moves under the combined effect of two velocities
(1) Uniform velogity in the horizontal direction, provided there is no air resistance.
(2) Uniformly changing velocity (increasing or decreasing) in the vertical direction due to

gravity.

29.4ms™

Two independent motion of a projectile

Motion Forces Velocity Acceleration
Horizontal No force acts Constant Zero
Vertical The force of gravity | Changes (9.8 ms™) Downwards
acts downward 9.8ms )

Projectile given horizontal projection:
Motion of the projectile along the horizontal direction OX: Since the velocity of an object

in the horizontal direction is constant, so the v Ot =u /

acceleration a, along the horizontal direction &= # = : X
is zero. The position of an object at any time¢ ~ »° |

along the horizontal direction is given by

x:umr—}-«l—.@:n‘2 h

2 ;

1., E

Or x=u!+5(0)t ;
Or x=ut :{

Motion of the projectile along the vertical direction OY: Since the vertical velocity of the
object is increasing downwards due to gravity, hence the acceleration of the objecta, is + g.

The position of the object at any time ¢ along the vertical direction is given by
1
y= umt + 5 ay.f
1
Or y= (0)3‘4»55;732

2

1
Or y=—gt
y 28’
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Co 1 (xY ng
o-peli) 38
Or y=kx’ '

Hence the path of the prolecnle projected horizontally from a certain height from the ground
is a parabolic path.

Time of flight: It is the total time for which the projectile is in flight,

Let A be the vertical height of point of projection of the projectile from the ground, and the
time taken by the projectile to hit the ground is T. thus

- [P ._
y-—u},ﬂr+5a?t i
Or h:(ﬂ)r}%grz
| R
Or h=LgT
S8

2h
g

Or T=

Horizontal range: It is the horizontal distance travelled by the projectile durmg its flight. It
is denoted by R.
X =ut

Or R=uT

S R=u 2
Ug

Velocity of the projectile at any instant: At any instant f, the projectile possesses two
perpendicular velocities v, and v along the X-axis and Y-axis respectively.

vV, =u
and v, =u, +aft
Or v, =(0)+gt=
The resultant velocity ¥ of V, and ¥, is given by
vyl +vl =ul + gl

Letv makes an angle § with the horizontal direction, then

tan 2 8
v, u
Or ﬂ =tan™ [g)

u
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Projectile given angular projection;

Y .
H ucos® ¢
""""""" P(x.y)
Uy,=u sind} . h
. '
8 : ;
O u,=ucosf A B X

Motion of the projectile along the horizontal direction OX: Since the velocity of an object
in the horizontal direction is constant, so the acceleration a_in the horizontal direction is zero.

The position of the object 4t any time ¢ along the horizontal direction is given by

L,
x=umt+—2-a,f

X = ucos@e‘%-—;-a(O)f2

X=ycosdt?

Motion of the projectile along the vertical direction OY: Since the vertical velocity of the
object is decreasing from O to P due to gravity, hence accelerationa, is— g . The position of

the object at any time ¢ along the vertical direction is given by

y= uyot+5ayt

y=usin9r—%gt2

X
x=ucosbt ==
_ ucosé
2
“y=using ad ~lg( a ]
' ucos@ 2 \ucosf
. 1 2
Or y=xusm9 SR x

ucos@® 2° u'cos’d
! g 2
Or y=xtanf-} -——==—|x
Y (2 u? cos? 6‘)
The path of a projectile projected at some angle with the horizontal direction from the ground
is a parabolic path.

Time of flight or total time of flight: It is the total time for which the object is in flight. It is
denoted by 7.
Since time of ascent = time of decent =  {say)
As total time of flight = time of ascent + time of decent
T=t+t=2

. T T
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O:r.-tzz
2

At the highest point H, the vertical velocity v, is zero. then
v, =‘Iu o Tal
O=usinf-g (—g—]

L

T .
0O Zl=ysing
Or g(zj usm
2using
g

Or T=

Time to reach-the greatest height: If  be the time to reach the greatest height, then at the
highest point the vertical velocity v, is zero. Then

v, =u, —at Or O=usind-gr
using

g

Maximum height: It is the maximum vertical height attained by the object above the point of
projection during its flight. It is denoted by 4.

yzusin&h%gtz

. . 2
hzusinéumnewL [usm@J
g 2 g
hﬁuzsinzé_uzsinzé
g 2g
2 .12
h:u sin” ¢
2g

Note: At the highest point, the linear momentum is mucosé, and the kinetic energy is

-Iim(ucosé?)2.

Horizontal range: It is the horizontal distance covered by the object between its point of
projection and the point of hitting the ground. It is denoted by R.

X=ucoséi
R=ucos8T
) yon s
R=ncosg 2using _u (2sinfcosf)
& g
9 .
p = ¥ sin26
b4

Note: .
(1) The maximum horizontal range is when sin 26 is maximum i.e., sin 28 = 1. Hence
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u?

R=""
g
Now sin26=1
Or 28=sin"'(1)
Or 26=90°
. 0=45°

(2) For the angle of projection #and (90° — ), the horizontal range is the same. So if the
angle of projection is 15° or 75°, the horizontal range is the same.

(3) The maximum height occurs when the projectile covers a horizontal distance equal to half

the horizontal range i.e., g

(4) When the maximum range of the projectile is R, then its maximum height is g—

Angular displacement: Angular displacement of an object moving
around a circular path is defined as the angle traced out by the radius Q
vector at the axis of the circular path in a given time. A‘

; - , P
Since angle = arc/radius,

-8 =PQ/r

The angular displacement is expressed in radians (denoted by rad )
The angular displacement is a vector quantity.

Note: The angular displacement is a vector quantity provided &is small because the
commutative law of vector addition for large angles, is not valid, where as for small angles,

the law is valid.

Angular velocity: Angular velocity @ of an object in circular motion is defined as the time
rate of change of its angular displacement i.e.,

o= lim A_&Hgﬁ
A —0 A dt
@

p

O P O Q

Its ST unit is radian per second (denoted by rad/s or  rad s7'). Its dimensional formula is
IMLT). .

Angular velocity is a vector quantity, and its direction is the same as that of A8 .

Note: It is important to note that nothing actually moves in the direction of the angular

velocity vector @ . The direction of @ simply represents that the rotational motion is taking
place in a plane perpendicular to it.
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Uniform circular motion: When a point object is moving in a circular path with a constant
speed, then the motion of the object is said to be uniform circutar motion.

(1) Time period: The time period is defined as the time taken by the object to complete one
revolution on its circular path. It is denoted by T and is expressed in second.

(2) Frequency: The frequency is defined as the number of revolutions completed by the
object on its circular path in a unit time. It is denoted by v. Its unit is s™ or hertz (Hz).

Relation between time period and frequency:
If vrevolutions, the time taken = 1 second

. . , 1
. in 1 revolution, the time taken = — second
1%

Or T=l
v

QOr Tyv=t

Relation between angular velocity, time period and frequency:
Whentime =T, thend =2x

& 2&
@ =—=—
t T
1
Also T=—
y
=2y

Relation between linear velocity and angular velocity:
Whentimes=T, then8 =2xn
2

o
Angular velocity@=—=
s Y H T

. . 2 . . .
Linear velocity v= vi;i where r is the radius of the circular path.

Or v=(2£]r=a)r
T

In vector notation we can write

(1) ¥=ax7
Q) B=Fx¥V
(3) F=Vxd

Angular acceleration: Angular acceleration a of an object in ctrcular motion is defined as
the time rate of change of its angular velocity 1.e.,
o [im Ao _ do
AM—>0 A dt
Its SI unit is radian per second per second (denoted by rad/s® or rad s7%). lts dimensional
formula is [M°LT™].

Relation between linear acceleration and angular acceleration: We know that the relation
between the linear velocity and angular velocity is
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In vector notation we can write
d=@a&xr

Centripetal acceleration: Acceleration acting on the object undergoing uniform circular
motion is called centripetal acceleration.

As shown in the figure, let an object moves from P to R with angular velocity , making a
small angular displacementdd , and let the linear velocity at any point is v.

At P the horizontal component of v is PQ = v cos 0" = v, and the vertical component is

PO = vsin 0°= 0.

At R the horizontal component of v is RS = v cos d6, and the vertical component is

RL = v sin dé.

Change in velocity along the horizontal direction is
dv=vcosdf—v=v—v=0 [‘.‘cosdé?ml]
Change in velocity along the vertical direction is

dv=vsindg-0=vdf [.-sin d6 = d6)
dv vdé dé
Or —=—— =y =0
e dt  at
Or a=v
¥
2
Or amL
;

This acceleration is directed towards the centre of the circle along the radius and

perpendicular to the velocity of the particle.
This acceleration is known as centripetal or radial or normal acceleration.
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LAWS OF MOTION

Force: A force is an agent that produces or tends to produce acceleration (or retardation) in a
body. Force has magnitude and direction, so it is a vector quantity.

Or :
Force is a push or a pull which changes or'tries to change the state of rest, the state of
uniform motion, the size or the shape of the body.
The SI unit of force is newton (N) and its dimensional formula is [ML T

Note: If several forces act simultaneously on the same object, it is the net force that
determines the motion of the object. The net force is the vector sum of all the forces acting on
the object. We ofien call the net force as the resultant force.

Inertia: The tendency of the body to maintain its state of rest or of uniform motion in a
straight line is called inertia. -

The inertia of a body depends upon its mass. The greater the mass of the bedy, the greater is
its inertia. Both mass and inertia are measured in the same unit.

Types of inertia: Inertia of a body is of three types viz, (1) inertia of rest (2) inertia of
motion {3) inertia of direction

(1) Inertia of rest: The resistance of a body to change its state of rest is called inertia of rest.
(2) Inertia of motion: The resistance of a body to change its state of motion is called inertia
of motion.

(3) Inertia of direction: The resistance of a body to change its direction of motion is called
inertia of direction.

Mass: The quantity of matter contained in the body is called mass.
Note: Mass = Density x Volume

Linear momentum: Linear momentum of a body is the quantity of motion contained in the
body.
Or
Linear momentum p of a body with mass m travelling with velocity v is defined as the
product of the mass and velocity i.e.,
p=mv
Its SI unit is kg ms™' and its dimensional formula is [MLT™'].

Note: The momentum associated with rotation is called angular momentum.
Newton's laws of motion:

(1) First law: A body continues to be in its state of rest or of uniform motion along a straight
line, unless it is acted upon by some external force to change the state.

Note:

(1) Newton's first law of motion is also called law of inertia

(2) If no net force acts on the body, then the velocity of the body cannot change i.e., the body
cannot accelerate




(2) Second law: The rate of change of linear momentum of a body is directly proportional to
the external force applied on the body, and this change always takes place in the direction of
the applied force.

If pis the momentum of a body and  the net external force applied on the body. Then
according to Newton's second law of motion we have

Fa®
dt
F=i %P
dt
Where £ is a constant of proportionality. In ST or cgs unit £ = 1
=%
dt
=~ d ., .
Or F=-"—-(mv
" (mv})
Or F= mf?'-—z
dt
But ‘;—v =a the acceleration produced in the body
t
S Fe=ma

If the acceleration produced is in three dimensions, having componentsa_, a,,a, along X-
axis, Y-axis, Z-axis respectively, then
G=la, +}a}, +1;a:
~F=mi=m(a, +fay +1€a;)
If ¥, F,, F.are the components of F along X-axis, Y-axis, Z-axis respectively, then
F=iF + JF, +kF,
Or iF, +}f-} +IEF: =fmax +}may +£ma:

F. =ma,, F,=ma, F, =ma,

The SI unit of force is kgms™ or newton (N). Hence 1N is that force which produces an

acceleration of Ims™ in a mass of lkg.
Its dimensiona! formula is [MLT].

Note:

(1) 1N = 10° dyne

Q) Vkg-wtorl kg-f=1kgx 9.8 ms2=98N

(3) Forces acting simultaneously at the same point on the body are called concurrent forces
and forces acting in the same plane are called coplanar forces. Forces acting parallel to each

other are called collinear forces.

(3) Third law: To every action, there is an equal and opposite reaction.

wm
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Note:

(1) Action and reaction forces act on different bodies

(2) Newton's second law of motion is called the real law of motion because the first and the
third laws of motion can be obtained by it.

(3) If no external force acts on the system, then its total linear momentum remains conserved.
(4) Linear momentum depends on the frame of reference but the law of conservation of linear
momentum is independent of the frame of reference.

(5) Newton's laws of motion are valid only in the inertial frame of reference.

Impulse or impulse of a force: Impulse of a force is a measure of total effect of the force. It

is given by the product of force and the time for which the force acts on the body i.e.,
Impulse = Force x time

According to Newton's second law of motion,

F=2
dt
- Fdi=dp

Integrating both sides within the limit indicated we get
f B
[Fat = [dp
a A
If F= Fw is constant during this time, then the above equation can be written as
F I, =187
F, xt=P~P
Or Impulse ] = F_xt=P, - P
Impulse is a vector quantity. Its direction is the same as that of the constant force.

Impulsive force: Forces which are exerted over a short time interval are called impulsive
force.

E F
F,

imp inp

ol ¢, no 0

Note: The impulsive force is much larger than any other forces acting on the body. All other
forces can be neglected. So change in momentum during a collision is due almost entirely to
the impulsive force.

Impulse-momentum theorem: A given change in momentum can be produced by applying
a larger force for a smaller time or by applying a smaller force for a larger time. This is called
Impulse-momentum theorem.,

Note: Change in momentum depends only on J'ﬁ“ dt , and independent of the detailed time

dependence of the force.

L T T L e _____
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Apparent weight of a man in a lift:
R R R R
1 1
l Ll
mg mg mg mg mg mg
(1) (2) (3) 4 &) (6)
(1) When the lift is at rest:
Acceleration of the person =0
Net force on the person F =0

ie, R=mg
Apparent weight is equal to the actual weight of the person. Shown in figure (1).

(2) When the lift is moving uniformly in the upward or downward direction:
Acceleration of the person = 0

Net force on the person F =0

ie, R=mg

Apparent weight is equal to the actual weight of the person. Shown in figure (2).

(3) When the lift is accelerating upwards:

Acceleration of the person = a

Net force on the person F = ma

i.e., ma=R-~mg

Or R=mg-+ma=m(g+a)

Thus R >mg

Apparent weight of the person becomes more than the actual weight, when the lift is
accelerating upwards. Shown in figure (3).

(4) When the lift is accelerating downwards:

Acceleration of the person = a

Net force on the person F = mq

e, ma=mg—R

Or R=mg-ma=m(g-a)

Thus R < mg

Apparent weight of the person becomes less than the actual weight, when the lift is
accelerating downwards, Shown in figure (4).

(5) In free fall of a body under gravityi.e.,a = g
Acceleration of the person=g
Net force on the person F = mg

i, mg=mg-~R
Or R=mg—mg=m(g-g)=0
Thus R=0

Apparent weight of the person becomes zero, or the body becomes weightless. Shown in
figure (5).




e~

(6) When the downward acceleration is greater than g [ T A
Acceleration of the person=a Y

Net force on the person F = ma N p
ie., ma=mg-R | | AN v;'); oy '
Or R=mg-ma=m(g—a) Y ‘W""
Thus R<0

Apparent weight of the person becomes negative. In that event, the person will rise from the
floor of the lift and stick to the ceiling of the lift. Shown in figure (6).

Principle of conservation of linear momentum: If no external force acts on a system, the
total momentum of the system remains constant.

: : ﬁl : ﬁz . ﬁll : ): F_:Il ( ) g‘t o ﬁz
my L) m my ’ my ity
(B @ 3)

Consider the collision of two balls of masses m, and m, as shown in the figure. Before
collision, their respective velocities are % and #, . After collision, the velocities of m, and m,
are v,and v, respectively.
Impulse experienced by m, will be F,At = m. ¥, - m,i,
Impulse experienced by m, will be F, At = m,%, — m,ii,
Here Atis the time of contact of the two balls.
According to Newton's third law, 7, = —F,,
Or F,At=-F,Ar

Or m¥, ~mii, = ~(m,%, — m,il,)

Or mp, - mii, = ~m,v, + m,i,

Or myi, + my, = my, + m,v,

Total momentum before collision = Total momentum after collision
Thus the total momentum of the two balls is conserved.

Note:

(1) Momentum gained by one ball is lost by the other ball.

(2) The law of conservation of momentum is true for any number of objects in a system.
(3) Momentum is a vector quantity.

Equilibrium of concurrent forces: The forces which are acting at a point are called
concurrent forces. These forces are said to be in equilibrium, when their resultant is zero.
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A+B+C=0

Or A+B=-C
It means that the Resultant force of 4 and B is equal in magnitude and opposite in direction
to the force C .

Lami's theorem: When three concurrent forces are in equilibrium, then according to Lami's
theorem,

B _C
sina  sinf  siny

Note: sin(180° —a) =sina, sin(180° - #)=sin §, sin(180° — ) =siny
Friction: Friction is a force directed opposite to the direction of motion or attempted motion.
The frictional force is always parallel to the surfaces in contact.

Types of friction:
(1) Internal friction: Internal friction arises on account of relative motion between two

layers of a liquid. Internal friction is also referred to as viscosity of the liquid.

{2) External friction: External friction arises when two bodies in contact with each other, try
to move, or there is an actual relative motion between the two. The external friction is also
called contact friction. External friction is of three types.

(1) Static friction

(i1} Limiting friction

(iit) Kinetic friction

Static friction( f; ): The opposing force that comes into play when one body tends to move
over the surface of another, but the actual motion has yet not started is called static friction.

Limiting friction( /, }: The maximum force of static friction which comes into play when
one body is just at the verge of moving over the surface of the other body.

Kinetic friction( f, }: Kinetic friction or dynamic friction is the opposing force that comes
into play when one body is actually moving over the surface of another body.

The kinetic friction or dynamic friction is of two types viz

(1} Sliding friction

(i) Rolling friction

When a flat block moves over the flat surface of a floor, the opposing force is the sliding
friction. When a wheel rolls over a surface, the opposing force is the rolling friction,

Note: Rolling friction is quite small compared to sliding friction.

- . . ... o . ]
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Hlustration of Friction

—_—

Force of friction
222

R Continuvesto slide (o > 0}
F=6N

)

Applied force F

Je=35N

k Continuesto slide

R _Continuesto slide (@ > )
@0 rosn

F=TN

Je=5N

mg mg

Note:
(1) The maximum static friction is called the limiting friction i.e., f5 = f,

(2) The kinetic friction f, remains constant even if the applied force increases. Here the body

accelerates.
(3} To maintain the speed, i.¢., for the body to move with constant velocity,  must equal to

Jx.

(4) Friction arises only when body is actually sliding/rolling over the surface of another body
or the body is simply trying to slide/roll over the surface of the other. Further, static friction

alone is a self adjusting force.
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Causes of rolling friction:

—— g™ P
O s () prseae __ Q=

! i
Depression Depression i
(M @ i

Rolling friction is minimum in figure (1) and maximum in figure (3).

Experiments show that the force of rolling friction f; is directly proportional to the normal
reaction R and inversely proportional to the radius » of the rolling cylinder or wheel. Thus

R
Jr=p—
Where 4, s coefficient of rolling friction. It would have the dimensions of length and would
be measured in meter.

Note: The velocity of the point of contact of the wheel with respect to the floor remains zero
all the time, although the centre of the wheel moves forward.

The laws of friction:

First Law: The magnitude of the frictional force (kinetic and static) is directly proportional
to the perpendicular force (normal reaction R) between the two surfaces in contact.

Second Law: The frictional force (static as well as kinetic) always acts parallel to the
surfaces in contact and its direction is opposite to the motion or attempted motion.

Third Law: The frictional force (static as well as kinetic) is independent of the area of
contact of the two surfaces.

Fourth Law: The frictional force (static as well as kinetic) depends on the nature of the two
surfaces in contact and their state of roughness.

Fifth Law: The frictional force is independent of the speed (applicable to kinetic friction
only) of one surface relative to other surface.

Magnitude of limiting friction:
(1) According to the first law of limiting friction R Aboutto slide

fs<R
Or fs=psR
1, is called coefficient of static friction. Its value
depends upon the nature and condition of the surfaces in contact.
_ Js _ Limiting friction
" R Normalreaction
#i has no unit and no dimensional formula i.¢., 1t is a pure number.

8




(2) According to the first law of limiting friction
Js <R

Or fy=puR -
Or f,=pumgcosé

Magnitude of kinetic friction:
When the body is actually moving over the surface of another body, we replace f; by f;, the
kinetic friction and y by 4, . Thus
Jx xR
Or fe=uR
1y is called coefficient of kinetic friction between two surfaces in contact. Its value depends

upon the nature and condition of the surfaces in contact.
f¢ _ Kinetic friction

R Normal reaction
1, has no unit and no dimensional formula i.e., it is a pure number.

Hyg =

Angle of friction: The angle of friction between two surfaces B c

in contact is defined as the angle which the resultant of the
force of limiting friction f and normal reaction R makes with

Al

the direction of the normal reaction R, It is represented by &.

In AOBC, mg
BC fs _

tan@ =
oc R

Angle of repose or angle of sliding: Angle of repose or angle of sliding is defined as the
minimum angle of inclination of a plane with the horizontal, such that a body placed on the
plane just begins to slide down. 1t is represented by a. Its value depends on the material and
nature of the surfaces in contact.

The various forces involved are:

(1) weight, mg of the body, acting vertically downwards
(it} normal reaction R acting perpendicular to BC

{iii) force of friction fs acting up the plane BC

Now mg can be resolved into two rectangular
components, mg cosa opposite to R and myg sina
opposite 1o f5. In equilibrium,

fo=mgsing
R=mgcosa
Js _mgsina _
R mgcosa B
Or u;=tanca
Hence coefficient of limiting friction between any two surfaces in contact is equal to the
tangent of the angle of repose between them.

fana
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Note:
Angle of friction is u; = tand
Angle of repose is j = tana
s tanf = tano =>8=a
i.e., angle of friction is equal to angle of repose.

Acceleration of a body down a rough inclined plane:
When a plane is inclined to the horizontal at an angle 6,
which is more than the angle of repose, the body placed

on the inclined plane slides down with an acceleration a.

The net force down the inclined plane is
f=mgsind-f,
ma=mgsiné- u, R
ma = mgsing — u, mgcosd
Lome siné — i, mgcos@

m
a=g{sinf - u, cosb)
Note:

mg sin §

(1) As the body is sliding down, mgsind > f, , so the net force f'is in the direction of

mgsiné .

(2) It is clear that g < g i.e., acceleration of a body down a rough inclined plane is always less

than acceleration due to gravity (g).

(3) If the block slides at constant velocity down the inclined plane, then @ = 0. Therfore

0= g (sin@ - u, cosb)
siné = 1, cosé

siné _
cosfd Hx
tand =y,

(4) If 8 < @, then the minimum force required to move the body up the inclined plane is
Jf,=mgsinfB+ f, =mgsinf+ u,mgcosf =mg (sinf + u, cosb)

(5) The minimum force required to push the body down the inclined plane is
Sy = fi ~mgsinB = y,mgcosf -mgsin b =mg (1, cosé —sing)
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Work done in moving a body over a rough horizental surface:

To move a body on a level track, we have to apply a force F which is atleast equal to the
force of friction.
As work done = Force x Displacement
W=Fx§
W=f;xS
W=pnRxS

W=pumgxS§

Work done in moving a body up a rough inclined plane:
R F

Again As work done = Force x Displacement
W=FxS§
W = mg(sin@+ u; cosf)x S
Note: Friction is a non-conservative force i.e., work done against friction is path dependent.
In the presence of friction, some energy is always lost in the form of heat etc. Thus
mechanical energy is not conserved.

Advantages of friction:

(1) Walking will not be possible without friction. Qur foot pressing the ground will only slip.
(2) No two bodies will stick to each other if there is no friction.

(3) Brakes of the vehicles will not work without friction.

(4) Nuts and bolts for holding the parts of machinery together will not work.

(5) Writing on black board or on paper will also not be possible without friction.

(6) Adhesives will lose their purpose.

{7) Cleaning with sand paper will not be possible without friction.

Disadvantages of friction: =

(1) Friction causes wear and tear of the parts of machinery in contact. Thus their life time
reduces.

(2) Frictional forces result in the production of heat, which causes damage to the machinery.
(3) Since energy due to friction is converted into heat, it lowers the efficiency of every
machinery.

Methods of reducing friction:

(1) By polishing

(2) By lubrication

(3) By proper selection of materials
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(4) By streamlining
(5) By using ball bearings

Rounding 2 level curved surface: If the mass of the car is m and it is moving with a speed v
on a circular tract of radius r, then the external forces acting on the car are

{1) Weight of the car mg

(2) Normal contact force R an R»
(3) Frictional force f5; and fs3.

Obviously,
R+R,=mg
Ss1= #sR,
Ss2 = R,
Ssi+ fsa = BBy + pio Ry = pt (R ARy ) = pugmg
When the car is moving in 2 circular tract, for save turn we must
have

2
y
m_r"g(fm + fs2)
2
m— < png
r

v’ SHsrg

v<psrg

Hence, if a car takes a turn with a velocity greater than v it will skid outward.

Note: When a car moves at a steady speed around an unbanked curve, the centrifugal force
keeping the car on the curve comes from the static friction between the road and the tyres. It
is static rather than kinetic friction because the tyres are not slipping with respect to the radial
direction.

Banking of roads: The outer edge of a curved road is raised more than the inner edge of the
road to facilitate vehicles to turn without slipping. This is known as banking of road.
If v is the velocity of the vehicle over the banked road of radius r, then centrifugal force

required is
2

F.= m
r
In equilibrium, R cosé balances the weight i.e.,
Rcos@=mg———~~~ (1
and R sin@ provides the necessary centrifugal force i.e.
Rsin@=F_
v2
Rsing = m—;— —————— (2)

Dividing equation {2) by equation (1) we get
Rsind _ mv*
Rcos@ rmg




Or v=.rgtand

OB = OA* — AB?
OB=+b* i’

OB_ sz‘*‘hz

As h << b, therefore i* is negligibly small compared to b%. So

From the figure, we have

h
tané = —b' —————— (4)
Equating equation(3) and (4) we have
tan @ = Jf—— = A
rg b
Note:
(1) When the vehicle is stationary:
In figure (1):
N =N,= '1‘ mg
2 AR
N +N,=mg J b
The weight mg of the vehicle is annY
perpendicular to the ground,
and it is also equal and Yamg mg Vamg
opposite to Ny + Nz. So the
vehicle is stable. Here the
resultant force is zero. o @
In figure (2): The forces or the pressures exerted by the two tyres are not the same, and

L>1
The Resultant force between N and mg acts sideway i.e., the vehicle is not stable when it is
standing still in a bank road.
(2) When the vehicle is
moving:
In figure (1): The Resultant
force of the weight mg of the
vehicle and the centrifugal
force F¢ is not perpendicular to
the ground, so the vehicle is
not stable while turning.

In figure (2): The Resultant
force of the weight mg of the
vehicle and the centrifugal N )

force F¢ is perpendicular to the

ground, and is also equal and opposite to N. So the vehicle is stable while turning in a bank
road.
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WORK ENERGY AND POWER

Work: Work is said to be done by a force acting on a body, if the body is displaced in any
direction except in the direction perpendicular to the direction of the force.

Work done: Work done on an object by a force is defined as the product of the component of
the force in the direction of motion and the displacement undergone by the object. Thus

Work done = Component of force # in the direction of motion x Object's displacement

(1) @
Infigure (1) W=F S
Infigure (2) W=-F §
: Or

Work done is defined as the dot product of the force vector F and the displacement vector §
ie,

W=FS

W =F Scosf

Where 8 is the angle between the force F and the displacement S .
Work done is a scalar quantity, its SI unit is joule (J) and the dimensional formula is [ML*T]

Definition of joule: One joule is defined as the work done by a force of one newton when its
point of application moves by one metre along the line of action of the force,

Note:

{1) Here F,= F cos@

(1) If 8 <90°, cos@ is positive so that work done is positive.
(2) If & > 90° cos@ is negative so that work done is negative.
(3) If @ = 90°, cos@ is zero so work done is zero.

(4) In cgs system, the unit of Work done is erg. 1 joule = 107 erg

Work done by a constant force: When the force 7 acting on a body has a constant
magnitude and acts at a constant angle & from the straight line path of the particle as shown in
the figure then,

Y
F [ A de B
>
8
/) X &
Ok_w»\ﬂ_) =
Sl ﬁ | x
" 5 5 a -.-? s,
a5
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dW =F.d§
Or dW = FdScos@ = Area of a small element abed.
QOr dW =FcosfdS

The total work done when the body moves from 5 to S5 is

Or W= choseczs Fcosé jds

$
Or W =Foos8[SE
Or W =Fcosé[S, -]
The grabhical representation of work done by a constant force is W = Area $1ABS;

Work done by a variable force: If the body is subjected to a varying force F and displaced
along X axis as shown in the figure, then Work Y
done is '
dw =F .48

Or dW = FdScos@ = Area of a small element
abed.
The total work dong when the body moves from 8
0.5, is

8,
W= deScose = Area S|ABS;

Power: It is defined as the rate at which work is done.
Work done
time

Or P:?

Power =

Power is a scalar quantity. Its unit is wart (Js~') and dimensional formula is [ML? 77].

Definition of power: Power is said to be one watt, when one joule of work is said to be
done in one second.

Note:
(1) The power P of an agent can also be expressed in terms of the force applied /" and the
velocity ¥ of the body. :

W FS g8
4 { i
Or P=F.¥
If @ is the angle between F and ¥, then
P=Fvcosé
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Q) 1kwW=10°W

(3) IMW = 10° W
@IW=1s"=10"ergs”
(5) 1 horse power (hp) =746 W

Average power consumption in some common activities

Activity Power (watt)
1. Heart beat 1.2
2. Sleeping 75
3. Slow walking 200
4, Bicycling 500

Energy: The energy of a body is defined as the capacity or ability of the body to do work.

Note:
(1) When a body is capable of doing more work, it is said to possess more energy. The

reverse is also true.

(2) Since energy is a stored work, so energy is also a scalar quantity.

(3) Energy is measured in the same units as work i.e., joule, erg etc,

(4) The dimensional formula of energy is [ML*T?] i.e., the same as for work.

Some practical units of energy

S.No Unit Symbol Equivalence in (J)
1. erg erg 10~
2. calorie cal 4.2
3 Kilowatt-hour kW-h 3.6 x 10°
4, electron volt eV 1.6x 107"

Mechanical energy: Mechanical energy is the energy associated with the motion and
position of mechanical system. The mechanical energy of a body consists of kinetic energy

and potential energy.

The energy possessed by an object because of motion is known as kinetic energy

The energy possessed by an object because of position or configuration (shape or size) is
known as potential energy.

Note: Energy refers to the total amount of work a body can do, while power determines the
rate of doing work. Thus, in power, time taken to complete the work is significant, but in
energy, time is irrelevant.

Kinetic energy: The energy possessed 'by a body by virtue of its motion is called kinetic
energy.

Expression for Kinetic energy: Consider a body of mass m moving with a velocity vin a
straight line as shown in the figure. Suppose a constant force F resisting the motion of the
body which produces a retardation a. Then




. Force = mass x retardation

Or F=-—ma
Let dx be the displacement of the body before it comes to rest. So
_dy _dv_dx_dv

= = — Y e =
dt de dt dx
dv
SR =em—xy=—myx—
dx

Hence the work done in bringing the body to rest is giVen by,

Q dV 4]
W:IF—dx:—!mvx—&x—-dx:-m!vdv

2 4]
Or We-ml-| = ——lvm[O—vz]= lmv2
2 2 2
This work done is equal to kinetic energy of the body. Hence

;’(E.'=-1Fm1-'2
2

Note:
(1) The kinetic energy is a scalar quantity.
(2) The kinetic energy of a moving body depends on its speed.

{3) The expression KE = %mv2 holds even when the force applied varies in magnitude or in

direction or in both,

{4) The kinetic energy of the body is always positive. It can never be negative. (Because m
and v* are both positive).

{5) The kinetic energy of the body depends upon the frame of reference. For example, the KE

. . ook .
of a person of mass m sitting in a train moving with velocity v !3-2— mv” with respect to a

person in the frame of earth. The KE of the same person is zero with respect to a person in the
frame of the train.

Relation between Kinetic energy and Linear momentum: Let m be the mass of the body
and v be its velocity. Then the Linear momentum is

p=my
KE:lva
2
Or KE=-—m*?
m
p




Note:

(1) If p is constant, then KE « 1
. m

(2} If KE is constant, then p « m
(3) If m is constant, then p < v KE

Work- Energy theorem: The work done by the net force on a body is equal to the change in

its kinetic energy.
[f the applied force increases the velocity of the body from v, to v, then work done W is

W =m jvdv
2 ¥
Or W=m[v—}
2 "
2 2
Or W=m Y %
2 2

or W=Lmy —lmvg
2 2
i.e., Net work done = Change in Kinetic energy.

Note: This theorem can be applied to non-inertial frames also. In a non-inertial frames it can

be written as
Work done by all forces including the Pseudo force = Change in Kinetic energy in non-

inertial frame.

Potential energy: The energy possessed by a body by virtue of its position or configuration
is called potential energy.

Expression for Potential energy: Let us consider a body of mass m, F
which is at rest at a height /# above the ground as shown in the figure.
The work done in raising the body from the ground to the height /4 is
stored in the body as its potential energy. +

Work done = Force x displacement mg
W=Fxh
Or W=mgxh
This work done is stored as potential energy in the body. Hence
PE=mgh

Note:

(1) Although there is a single universal formula for the kinetic energy of a particie i.e., %mvz

there is no single formula for potential energy ( eg Elastic potential energy, Electric potential
energy). The mathematical form of potential energy depends on the force or forces involved.
(2) The potential energy is defined only for conservative forces. It does not exist for non

conservative forces.




(3) Potential energy depends upon frame of reference. It may be positive or negative,
(4) A body in motion may or may not have potential energy.

Conservative force: If the work done by a force in moving a body between two positions is
independent of the path followed by the body, then such a force is called as a conservative
force.

Examples: force due to gravity, spring force and elastic force.

Note:

{1) The work done by the conservative forces depends only upon the initial and final position
of the body.

(2) The work done by a conservative force around a closed path is zero i.e. cjﬁ -dr=0.

Non conservative force: Non-conservative force is the force, which can perform some
resultant work along an arbitrary closed path of its point of application.
Examples: Frictional force, viscous force, ete.

Note: The work done by the non-conservative force depends upon the path of the
displacement of the body i.e., 4 E-dFz0

Law of conservation of mechanical energy: If a body is under the action of conservative
force or forces alone, the total mechanical energy of the body remains constant.

To show that the total mechanical energy (KE + PE) of the body at any point during its
downward journey is constant. Let a body of mass m fall from a height # above the ground.

KE =0, PE=mgh

Y

M, KE=mgx, PE=mg(h-x)

KE=mgh, PE=0

At point A; The body starts its downward motion with initial velocity v equal to zero.
KE=0;, PE=mgh
Total mechanical energy = KE + PE = 0 + mgh =mgh

At point B: Suppose at point B the body has velocity v,

vi-vi=2gx
vi-0=2gx )
v} =2gx

KE = %mvf = %m(Ing) = mgx

PE =mg(h—x)
Total mechanical energy = KE + PE = mgx + mg(h — x) = mgh




At point C: Suppose at point C just before the body touches the ground, its velocity is v,

vi~vl=2gh
vi-0=2gh
vi =2gh
KE = -;—mvg - %m(Zgh) = mgh
PE=mgx0=0

Total mechanical energy = KE + PE = mgh + 0 = mgh

Potential energy of a spring: Potential energy of a spring is the energy associated with the

state of compression or expansion of an elastic spring.
Expression for potential energy of a spring: For a small stretch or comprcssmn spring

obeys Hooke's law, i.e., for a spring t

Restoring force « stretch or compression f" * "';
.

Or -Fekx P

Or F=-kx v

i

Where £ is a constant of the spring called spring
constant.
Let the body be displaced further through a small
distance dx, against the restoring force. So the small
amount of work done is

AW = Fdx = ~ (~k x)dx = k xdx

The total work done is

e -
W= j’kxdx kj,mtx k[z} =k[52——5}

x=0 x=0 1=

Or W= %k x?
This work done is stored in the spring as potential energy.
o PE = 1 k x*
2

Note:
(1) The SI unit of spring constant k is Nm™', the dimensional formuia is [M'L°T?).

ES

Energy

: Tota) energy

Distance C  Distance

Restoring Force O} Applied Force

(1}

193]
(2) The variation of PE and KE with distance is shown in figure (1). Variation of restoring
force with displacement is shown in figure (2).
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(3) Spring force is conservative i.e., the work done (by the spring) to stretch a spring from
ong point to another is ¥, = ~F - Ax and the work done (by the spring) to return back to the

first point is#, = F . Ax. The total work done isW =W, +W, = ~F -Ax+ F-Ax=0

Collision: A collision is a short-time event and is said to have occurred if two or more
particles physically collide against each other.

- Types of collision:
(1} Elastic collision
(2) Inelastic collision

Note: ;
Perfectly inelastic collision: A collision in which the two objects stick together after the
collision is called a perfectly inelastic coilision.

(1) Elastic collision: A collision in which kinetic energy is conserved is called an elastic
collision.

The basic characteristics of an elastic collision are

(i) The linear momentum is conserved

(ii) Total energy of the system is conserved

(iit) The kinetic energy is conserved

(iv) The forces involved during elastic collisions must be conservative forces.

(2) Inelastic collision: A collision in which kinetic energy is not conserved is called inelastic
collision,

The basic characteristics of inelastic collision are
(i) The linear momentum is conserved
(ii) Total energy of the system is conserved
(iti) The kinetic energy is not conserved
- {iv) Some or all of the forces involved during inelastic collision may be non conservative in
nature.

Collision in one dimension (1D):

{A-1D) Elastic collision or perfectly elastic collision: Let m; and m; are the two masses
moving in the same direction with velocity »; and u; respectively. After collision, they
continue to move in the same direction with velocity v; and v; as shown in the figure.

m m, m s L ny
. . u; . ﬂ;; “ . \’I . Vz
Before collision (x; > u) During collision After collision (v; < vy}

From the law of conservation of momentum, we have
mu, + U, = my, + v,
mu, - my, =V, ~ i,
(= v, )= My (v, =y }-m=ee ()
From the law of conservation of kinetic energy, we have
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1 2.1 2 2,1
~2"m|lt] ‘?‘*-2*??!2“2 =-2+mlvl +—2-m2v2
mul +mu; = my] +my?:
mu ~my; = myv; ~myu;
11 2 2
m(u; — v ) = my(vy ~uy ) weeeeee (2)
Dividing equation (2) by equation (1), we have

SN I B
u =V _ V)i

u-v, v,-u
{(u, +v1)(u| "v|) = (v +uz)(""2 '”uz)
u ~v, v, ~#,

u +v, =V, +u,

U~y =¥, -V
) — uy is the relative velocity of approach of the two masses m; and m..
vz — v is the relative velocity of separation of the two masses m; and m;.

Thus, for perfectly elastic collision, the relative velocity of approach before collision is equal
to the relative velocity of separation after collision.

Velocities after collision: After collision, the velocities of masses m; and m; are v and v,
VU Uy =V =
Vo = Up — Uy Yy mrmmee (1)
Again  Cmu, + mu, = my, +my, - (2}
Putting the value of v; in equation (2) we have
MU, +myu, = my, +my (u, — 4, +v))
MU, + My, = MY+ MU, — My, + My,
mu, + myly, = v, (my o+ my)+ myte, —myu,
mu, + mu, — mu, + myt, = v (m +m,)
w{my — my)+ 2mpuy = vi(my + m,)

v = ———2= e + U Mz IR (R (3)
1 1 2
m +m, m, +n,

Putting the value of v; in equation (1) we have

m, —m, 2m,
V, = U — U, U ——— [+ Uy ———
m, +m, m, + m,

m, —n 2m
vy =l [+ g ]
m, +m, m, +m,
p
m, +m, + m, — m, 2m, ~(m, + my)
+u,
m, +m,

m,+m2+m,~m2]+u (Zmz—mlwsz
2

\ m, +m

( 2m, m, —m,
V, = U] ———— |+ Uy ——
\ m, +m, m, +m,

r d Power




m,—m 2
vy ity A || e (4)
: m, +m, m, +m,
Different cases:

(I) When the target body i.e., m; is initially at rest: In this case u; = 0.

m, — m 2m
v = 1 2, z
m, +m, m, +m,

(i) When the twa bodies are of equal masses i.e., m; = my=m (say) and m; is at rest:

m; My my My m 7]
“ - Atrest Atrest -: Ve
Before collision During collision After collision (v, = u;)

m, —m,
VY E Y
m, +m,
V) =¥
' m+m

0
(3]

v =0
2m
Also v, =¥ '
\m|+m2
2m
v, =1,
m+m
- ’.Zm}
2 i\zm
v, = ¥,

m m e,

b .:12 . @ h
v, ¥
U N Atrest !

Before collision (m; >> m;) During collision After collision (v, = ;) and (v; = 2uy)




p _
Also v, =y 2m, }

(iii) When m; <<m; and m; is at rest:

"y b iz
*—— e
L] ¥y .
- Atrest Atzest Atrest
Before collision (m; << my) During colliston After collision (v, =~ &)

m —m,
Y S| ———+
m, +m,

s
Also v, =u,{ 2m, )
m, + m,
v, Fuy| —
m,
Ly, =0

(II} When the two bodies are of equal masses i.e., # = m, = m (say):

ml Mz ml mZ m’ mI
*— O g = o——
Before collision (1) > ;) During collision After collision (v, = u,) and (v; = ;)

m —-m, 2m,
SRS +u,

m-m 2m
v, = i, +u,
m+m m+m
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m,-m 2m
Also v, =i, 22— |+, .
m, +m, m, +m,

SV =,
Note: This result is made use of, for slowing down neutrons in a nuclear reactor.

(B-1D) Inelastic collision: In an inelastic collision, the momentum is conserved but some of
the kinetic energy is lost. Let m and m; are the two masses moving in the same direction
with velocity 1) and u; respectively, After collision, they continue to move in the same
direction with velocity v; and v, as shown in the figure.

ml m: ml m2 okl m?.
' H i ' ] “ . pl’ o vy
Before collision {(x, > u,)} During collision After collision (v; < vy)

From the law of conservation of momentum, we have
U, My, = Y, +myY,
U, — My, = m,v, ~ myu,
my (e, —v,) = my (v, —u,)
(C-1D) Perfecily inelastic collision: Let m, and m; are the two masses moving in the same

direction with velocity u( and u; respectively. Afier collision, they stick together and continue
to move in the same direction with the same velocity v as shown in the figure.

i m, M m, ™ m,
o — o @e @ —
Before collision {, > u,) Dwring collision Adfter collision

From the law of conservation of momentum, we have
mu, +myu, =(m, +m,)v
p = Tty + Moty
m, + m,
Coefficient of restitution: The coefficient of restitution is defined as the ratio of the velocity
of separation to the velocity of approach of the colliding particles. It is denoted by e.
_ velocity of separation

velocity of approach

n m; i m;

. ul g u2 . Vl’ e Vz\

Before collision After collision




Velocity of approach of the two masses »2, and mz = u; — #z
Velocity of separation of the two masses m7; and my = v2 — v;

So e=22"U
Uy =uy
(1) For elastic collision, u, —u, =v, —v,
ce=22"N o
W —u,
(2) For perfectly ineiastic collision, v, —v, =0
=N o 0 =0

U —u, MU
(3) For inelastic collision, u, —u, >v, ~v, >0 .
s0<ex]
1
Collision in two dimension (2D):
{A-2D) Elastic collision or perfectly elastic collision: Let my and m» are the masses of two
bodies moving initially along X axis with velocities #; and u; respectively. After collision, let
v and v; be the velocities of the two bodies as shown in the figure.
Y
A
: v, 8in @, -
t et \'1 (=] 61
i m 9,

m
. 3 L[] "':-_ _.____.__._.____.___“-.px
uw @ u; ,)-92

I
I
1
I
l
!
l
l

vy 08 0
m2 92 1 2
. ; v
¥ v, 8in 8, 2
Before collision (i; > ) During collision After collision

From the law of conservation of momentum, we have
(1) Along X axis:

mu, +myu, =my, cosd, +m,v, cosd,
(2) Along Y axis:

0 =my, sind, —m,,sing,
From the law of conservation of kinetic energy, we have
-;—m,uf +%m2u§ = %m,v,1 +%m2v§
mul +mul = mvl + myv;

Note: In perfectly elastic collision, if m = m; = m and m; is at rest, then in this case #; = 0.
After collision, 8 + &, = 90°,

(B-2D) Inetastic collision: Let m; and m- are the masses of two bodies moving initially along
X axis with velocities #; and u respectively. After collision, let v, and v; be the velocities of
the two bodies as shown in the figure. '
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¥ sin 01
¥y

v, cos &,
1

- _,___)’<

P

mi'

m
n 32 e e e e e o
@ o ‘e je;" TX

vy cos 8
mz?{@ 2 2
1) "’2

,:, .
' v,y 8in &5
Y 2SI O y

Before collision (1, > u,) During collision After collision

From the law of conservation of momentum, we have
(1) Along X axis:
mu, + myu, =myv, cosf, +m,v, cost,
(2) Along Y axis: _
0 =my,sin§, — m,v,sing,
If we know the masses {m;,my), initial velocities (u1,4;) and 8 and &5, we can find v; and va.

Note: For inelastic colliston, if m; = my = m and m; s at rest, then afier collision,
g+ 6, <90°

(C-2D) Perfectly inelastic collision: Let »; and m- are the two masses moving initially

along X axis with velocities u; and u; respectively. After collision, they stick together and
continue to move with the same velocity v as shown in the figure.

my
. L

o =

Y?
Before collision {u, > u,} During collision After collision

From the law of conservation of momentum, we have
(1) Along X axis:
' mu, + myu, = (m, +m,)vcosd
(2) Along Y axis:
0=(m, +m,)vsing

e e ]
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MOTION OF SYSTEM OF PARTICLES AND RIGID BODY

Centre of mass: A point in the systen;t at which the whole mass of the body is supposed to be
concentrated is calied centre of mass of the body.

?‘ T ; . Q
“ [t}
Note:

(1) The position of the centre of mass depends upon the shape , the size and the density of the
body.

(2) The centre of mass of the body lies within or outside the body.

(3) In symmetrical bodies having uniform density, the centre of mass coincides with the

geometrical centre of the body.
{4) The position of the centre of mass of a body changes in translatory motion but remains

unchanged in rotatory motion.

Centre of mass of two particles system: et us consider a system consisting of two particles
of masses m; and m; as shown in the diagram.

2=
The force that acts at m; is 7y, + f, = m, ‘; ———=(l)
And the force that acts at mj is
= 7 d’r
Fo+ f=m d£22 ~~——(2)

Where F,, and F, are the internal forces. They are equal

and opposite. f, and f,are the external forces. 7 and 7,

are the position vectors of the two particles.
Adding equation (1) and equation (2) gives

2= 2=
= = r d°r
fi"‘fz_mtdzl z_dt_zz_
- 2
Fo =F(msa +myFy ) ————— 3)

Muitipiy and divide the RHS of equation (3) by (m; + m;) we have
_(m1 +m2}d [m i +m2?‘2]

dar*l m +m,
- d? -
F = (m, + mZ)EF(RCM) _____ (4y
= mpr, +mfF, . oy
Where R, = M5 T3 s the position vector of the centre of mass.

Equation (4) can also be written as
F,, ={m, +m,)dc, =M G,

-

= where M is the mass of the two particles and a,,, is the acceleration of the centre
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Case -1 *
RCM = A+ Moy Y1
m, +m,
In component form we can write as ¥
5y = I D, =TI MY
m, + m, m, +m2 5 X % > X
Case - II
If R, =0 wehave v
o F M, |
m+m, y m, ) m,

: M
- - - X
Or mF +mE =0 ( . 5 O 7

Or my#, =-m,r,

- omy
OI’ r] = """_‘3""2
m,
If m, >m,, 7 >F, thus the centre of mass (CM) lies closer to the heavier particle.

Case - III
Ifm=m=m
R :m,ﬁ+m2i‘2zmﬁ+m?;=m(ﬁ+?2)=ﬁ+i‘2
M m4m, m-+m 2m - 2
- mxy +myx, _mx b mx, m(xntx) X tx
M m, + m, m+m 2m 2
y _mytmy, my t+my, :m(yl'*”)’z):yi*'h
M m, +m, m+m 2m 2
Note:

(1) In a two particle system, if the particles of masses m; and m; moving with velocities ¥,
and ¥, respectively, then the velocity of the centre of mass is
- myv, +m,v,
Vap = o
nty +m, _
{2) If the accelerations of the particles are g and &, respectively, then the acceleration of the
centre of mass is |
- ma, +m,a,
Aoy =
m +m,
(3) Centre of mass of an isolated system has a constant velocity i.e., isolated system will
remain at rest if it is initially at rest or will move with the same velocity if it is initially in
motion,

Centre of mass of a body consisting of 'n' particles: For » particles, the position vector of
the centre of mass (CM) is




irn i=r
oy P Smi
_ ml.*‘] +m2r2 +...m”rn — =l =

RCM - izp
m +m, +..m, M
xm,

i=|
Where M is the mass of all the n particles. In component form, we can write

i=p img

2omx, Y omx,
_omx Fmx, famx, 4 5

xCM o - i=n M
mo+m,+.m s
!

i={

[t f=pt

domy, D.my,
Ve, = my +my,+.m,y, o e
oM T = =
m, + My +..0m, ’i M
mi

i=]

Momentum of a system of 'n' particles: The external force for the system of » particles is
2
= Zx"z'(ml’-'; +myry +.m,r,)

exl

d, . - -
F, = E(mz"l +mV, +..m,9,)
= 4, . d &
Fo,=—{p+p,+.0,)=—"). P

ext df (pl p2 pn) dt ;p
- d '

F:m = }—)
dt

Ma., = % where M is the total mass of all the » particles and P is the total momentum

Case - |
If £ =0 ie., no external force acts on the system, then
Py
dr

. Pis constant. This is the conservation of linear momentum.

Example for the motion of centre of mass: The motion of the centre of mass of the body is
not affected by the internal forces. If a hammer is tossed in the air, the motion of most part of
the hammer is quite complex, but the motion of the centre of mass follow a simple parabolic

path.
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Centre of gravity: The centre of gravity of a body is the point at
which the resultant of the weights of all the particles of the body
acts, whatever may be the orientation or position of the body
provided that its size and shape remain unaltered

Rigid body: A rigid body is defined as that body which does not

undergo any change in shape or volume when external forces are Wa
applied on it. wWow, W,
Rotational motion: A rigid body is said to have pure rotational motion, if - D

every particle of the body moves in a circle, whose centres lies on a
straight line called the axis of rotation.

Equation of rotational metion:
(i) Prove that o =, + &

Let a particle starts rotating with angular velocity @, and angular
acceleration «r. At any instant £, let® be the angular velocity of the
particle.

.+ angular acceleration = change in angular velocity

time taken
-,
!
-, =a Do=0,+d

{ii) Prove that 8 = @ + %mz

Let a particle starts rotating with angular velocity @, and angular acceleration o . At any

instant 7, letw be the angular velocity of the particle and #be the angular displacement
produced by the particle.

. @+
The average angular velocity <@ >= 2%

Total angular displacement = average angular velocity x time taken

g2 @ a>0+ar+a)0]xr=(2a)o+ar Wy
2 2 2

ot T,
6= +— Ix{ = =@ t+—at
(a)o 2))( TS

(iii) Prove that ©* =] + 206
Let a particle starts rotating with angular velocity @, and angular acceleration . At any

instant ¢, letw be the angular velocity of the particle and &be the angular displacement
produced by the particle.
_w-ay o - w,
Tt a
Also 8= <w>t

g2+ a)—wo}= @’ - wg
2 a 2a

o’ —al =2a0 = o' =] +2a6
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Moment of inertia: The inability of the body to change its state of rest or uniform rotational
motion by itself until and unless some external torque acts on it to change that state, is called
the moment of inertia.

Rotational Kinetic energy and the moment of inertia of a rigid body: Consider the
particles of masses m,,m,,...m, situated at distances #,r,,...r, respectively from the axis of

. rotation as shown in the diagram.
The kinetic energy of the 1* particle is %

1 1 1
Ey = Emlvlz :Enﬁ (rh)’ z"é"mlrlza’2

The kinetic energy of the 2™ particle is

Eg = %mzvg = »-;-mz (r,w)’ = %mzrzzmz and so on
Adding the above equations, give the rotational kinetic energy of the rigid body

Eg+E,+. By = ;a) (m,rl +m2r2+ mr, )

1 i<,
— a) [Z J =]
i=]

Where = mr? is the moment of inertia of a rigid body.

ia]
Thus the moment of inertia of a rigid body about the given axis of rotation is the sum of the
products of the masses of its particles and the squares of their respective perpendicular
distances from the axis of rotation.

Its unit is kg-m? and its dimensional formula is [MLA.

Note: The moment of inertia of a body depends upon the position of the axis of rotation, the
orientation of the axis of rotation, the shape and size of the body and the distribution of mass
of the body about the axis of rotation.

Radius of Gyration: The radius of gyration is equal to the root mean square distances of the

particles from the axis of rotation of the body.
The radius of gyration can also be defined as the perpendlcular distance between the axis of
rotation and the point where the whole weight of the body is to be concentrated.

T =mptemyrd +m,r)
Ifm=m,=.=m =m
sT=m(rt+nl v
Divide and multiply the RHS of the above equation by n (the total number of particles) we
have

n

2 2 2
Izmn(m]z K

Where M = mn is the mass of all the particles and
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Theorems of moment of inerfia:
(i) Parallel axes theorem % %
Statement:

The moment of inertia of a body about any axis is equal to the sum of Sl

its moment of inertia about a parallel axis through its centre of gravity < 6
and the product of the mass of the body and the square of the distance

between the two axes. T
1, =1, + Mx? b &
(ii) Perpendicular axes theorem 2
Statement: P
The moment of inertia of a plane laminar body about an 7&
axis perpendicular to the plane is equal to the sum of the ) /; Ny

moments of inertia about two mutually perpendicular axes k“ J

in the plane of the lamina such that the three mutually

perpendicular axes have a common point of intersection.
IZ=IX+L "

by’

Note: Theorem of parallel axes is applicable for any type of rigid body whether it is a two or
three dimensional, while the theorem of perpendicular axes is applicable for laminar type or
two dimensional bodies only.

Torque or moment of a force: The turning effect of a force
about a fixed point or axis is known as the moment of force or
torque.

Let us consider a force F acting at the point P on the body as AR
shown in the diagram. Then, the moment of the force F about the (
point O is

7= Fx04= Frsing
In vector form we can write
F=FxF
By convention, an anticlockwise moment is taken as positive and a clockwise moment as

negative. Its SI unit is 'newton-metre’ and its dimension is
(ML*T . F

Axis of
Irotation

Couple and moment of a couple: Two equal and opposite forces
whose lines of action do not coincide are said to constitute a couple
in mechanics.
The moment of the couple is
T, =Fx2r=2Fr

Work done by a couple: Suppose two equal and opposite forces F
act tangentially to a wheel S, and rotate it through an angle 6.
Then the work done by each force = Force x distance

w=Fxr8
Total workdone W = Fr@+ Fré=2Frf
But 7, = 2Fr
S W=r8
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Angular momentum of a particle: The angular momentum of a particle is defined as the
moment of linear momentum: of the particle.
The angular momentum L of the particle about an axis
passing through O perpendicular to XY plane is defined as
the cross product of 7 and p

ie, L=Fxp
Its magnitude is given by L = rpsing
The unit of angular momentum 1s kg m* s and its
dimensional formula is (M E* T

Angular momentum of a rigid body: Let us consider a system of » particles of masses m,,
ms ,... my situated at distances ry, ry,..., respectively from the axis of rotation. Let vy,v3,... vy
be the linear velocities of the particies respectively.
The linear momentum of the 1 particle is

o =my =m(he) X
So angular momentum of the 1* particle is
Li=np = m!rlzm
The linear momentum of the 2" particle is
Py = My, = my(no)
Also angular momentum of the 2™ particle is
L, =r,p, =m,r;® and so on
The total angular momentum of the rigid bedy is

X’

L=l +L+.L,
L=a(mp} +mypr +.mirl)= w(Zmr ]
S L=l

where [ = i m.r? is the moment of inertia of the rotating rigid body.

izl

Relation between torque and angular acceleration: Let us consider a rigid body rotating

about a fixed axis XOX' with angular velocity o. The force acting on a particle of mass n;

situated at A, at a distance ry, from the axis of rotation is
av, a’(rl @) _ do

d(de d’e
E=mt——i=mh—
dt\ dt dt

The torque acting on m, about the axis of rotation is
2

aé
T, =1k :m,nzﬁ and so on.
!

Thus the total torque on all the particles in the body is
r=r 4+, 4.0,
aé

T =(mrt ) m ) )
| 212 dfz
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i=nt 2
T= [Z m,.rjz J %?“

i=]

r=la

Relation between torque and angular momentum: The angular momentum of a rotating

rigid body 1s
L=1o
Differentiating the above equation with respect to time, we have
dl.  do
= f—=Ja=T
ar dt
_dL
dt
Conservation of angular moni_entum: The angular momentum of a rotating rigid body is
L=Ia
The torque acting on a rigid body is
LodL
dt
When no external torque acts on the body
7=0 m%:() Or L = constant

ie., Jo=L= constant.
Total angular momentum of the body = constant

when no external torque acts on the body, the net angular momentum of a rotating rigid body
remains constant. This is known as law of conservation of angular momentum.

Geometrical meaning of angular momentum:

Z

3

O

Let a particle of mass m at P moves to Q in time At with velocity ¥ and momentum p. The

position vector of P and Q be 7 and 7 + AF respectively. Therefore the displacement
PO = AF .
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The components of ¥ are V,and ¥, perpendicular to F and along 7, aiso the components of
pare py,and p, perpendicular to 7 and along 7 respectively. Thus
PR=vy,At
The angular momentum L=r p, =rmv,

Or ry, = L aeeme {1)
m

In A OPQ, the area AA is given by

A4 -"—%OPXPR

Or M=—;-rxv9At

A4 1 L
Or — =—-— by using equation {1
A3 g Yusingeq (H)
Or L=2m-£‘i
At

Where % is called areal velocity and may be defined as the rate of sweeping out of area by

radius vector from Q.
.. Angular momentum = 2m x Areal velocity.
This is the geometrical significance of angular momentum for two dimensional motion.

In vector-form, IL=2mx %

Hlustration of conservation of angular momentum: When no external iorque acts on the -
body

=0 :>£=
dt

ie., lo=L=mr'ow =constant.

0 Or L = constant

T
.

Example for conservation of angular momentum

Mass (m) kg Separation of the two | Angular frequency | Angular momentum
masses (r)° m* (@) rev/s (L) kg m’s" or Js
50 i I 50
50 (172 4 50
50 (1/4) 16 50
50 (1/100)° 10,000 50
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Equilibrium of bodies and types of equilibrium: A rigid body is said to be in equilibrium if
the vector sum of the forces acting on the body is zero and the net torque acting on it is also
zero. There are three types of equilibrium.

(i) Stable equilibrium: A body is in stable equilibrium if it returns to \—.}
its equilibrium position after it has been displaced slightly. For stable

equilibrium, the potential energy is minimum. Stable cquilibrium
(ii) Unstable equilibrium: A body is in unstable equilibrium if it

does not return to its equilibrium position and does not remain in the

displaced position after it has been displaced slightly. For unstable

equilibrium, the potential energy is maximum, Unstable equilibrium

(iif) Neutral equilibrium: A body is in neutral equilibrium if it stays
in the displaced position after it has been displaced slightly. For
neutral equilibrium, the potential energy is constant.

® __O

Neutral equilibrium

Moment of inertia of different bodies:

Body Axis of Rotation Moment of Inertia
Axis passing through its 1 .., _
centre of gravity and EM M= mass
Thin Uniform Rod perpendicular to its length I = length
Axis passing throughtheend | 1 N
and perpendicular to its EMI M = mass
length. ! = length
Body Axis of Rotation Moment of Inertia
Axis passing through its MR? M= mass
centre and perpendicular to R = radius
its plane. .
Axis passing through its 1 ) _
Thin Circular Ring diameter 9 MR M= mass
R=radius
Axis passing through a 3., _
tangent ) MR M= mass
R= radius
Body Axis of Rotation Moment of Inertia
Axis passing through its 1 5 _
centre and perpendicular to P MR M= mass
its plane. R= radius
Axis passing through its 1
Circular Disc diamep;er 5 & m MR’ M = mass
R= radius
Axis passing through a 5, 02 _
tangent ZMR M= mass
R= radius
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Body Axis of Rotation Moment of Inertia
Axis passing through its 2., _
diameter 3 MR M= mass
Solid Sphere R= radius
Axis passing through a 7 . ..3 _
tangent E MR M = mass
R=radius
Body Axis of Rotation Moment of Inertia
Its own axis
: —;-MR*‘ M = mass
_ ‘ R= radius
Solid Cylinder Axis passing through its R P
centre and perpendicularto | M IR M= mass
its length _
R=radius
/= length




GRAVITATION

Gravity: The gravitational pull of the earth is called gravity.

Acceleration due to gravity: The acceleration that results in an object due to earth's gravity
is called acceleration due to gravity. It is denoted by g. At a given place, the value ot g 1¢ ihe
same for all bodies irrespective of their masses.

The value of g at sea-level is taken as the standard i.e., g = 9.8 m s7*. It always acts
downward, towards the centre of the earth. It is a vector quantity.

Note:

(1) Acceleration due to gravity g is considered to be constant within a distance of 10krs shewve
the surface of the earth,

(2) The value of g varies slightly from place to place on the surface of the earth.

(3) Since W = mg or g = Wim. Therefore g can also be expressed as Nkg.

{4) The value of g on the moon is about one sixth of that on the earth and on the sun iz = 6t
27 times of that on the earth.

Vertical motion under gravity: For upward motion, g is negative and for downward motion
g is positive.

Upward motion Downward motion
1 1
h=ut-~ gt h=ut+—gt’
2% 2*
v=u-—gt v=u-+ gl
v =u? ~2gh v =ul+2gh
h,=u-£2n-1 h,=u+E@n-1
| 2( ) i 2 (2n=1) —

- Universal law of gravitation: The Law states that every body in the universe attracts vvery
other body with a force which is directly proportional to the product of their masses and
inversely proportional to the square of the distance between their centres. The force acts
along the line joining the centres of the two bodies.

Consider two bodies of masses m and m;, with their centres separated by a distance ». The
gravitational force between them is

Focmm,
F« 1 m, /,:\
re * [
- Fo mm, U
o —2
r .
Or F=Gc22
r

Where G is the universal gravitational constant.
The value of G is 6.67 x 107" N m® kg™? and its dimensional formula is (M' L* 77,

Note:
(1) The gravitational force F between the two bodies is always attracted.
(2) The gravitational force F between the two bodies is not altered by the presence of other

b ]
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bodies,

{3) The value of G does not depend on the nature and size of the masses,

(4) The universal gravitational constant G is measured experimentally.

(5) The universal gravitational constant G is equai to the force of attraction between two
bodies each of unit mass placed unit distance (centre-to-centre) apart i.e., G = F.

(6) This law fails if the distance between the objects is less than 107° m i.e., of the order of
intermolecular distances.

(7) Newton's law of gravitation is valid for point masses. However it can be used for real
objects whose centre of masses are at a distance r apart.

(8) Gravitational force is a central as well as conservative force.

(9) It is the weakest force in nature.

(10) It is about 10 times smaller than the electrostatic force and about 10°® times smalier
than the nuclear force.

Vector form of Newton's law of gravitation:
The force on mass m; due to mass m; is

=-G Ry =-G—=2F
(rlz)z N r’ . m, is Fixed
m;
nmy N
The force on mass m; due to mass mo is Q—J e Fy
VR Ul W L Ui - h2
. (F )2 & "2 # 1y is Fixed
21
.o'F ='-F m
i2 21 . . 2
mm, . . - 1 < .
Thus F:.?i - _G 2 (_rZI) F12 r!l
= mim, . 7,
Or i, =G—517, a
r
Fp ==Fy

Acceleration due to gravity at the surface of the earth: Consider a body of mass m on the
surface of the Earth as shown in the Figure. Its distance

from the centre of the Earth is R (radius of the Earth). m

The gravitational force experienced by the body is

F= G@ where M is the mass of the Earth.

R?
From Newton’s second law of motion, Force F = mg.
Equating the above equations, we have
M
mg=G—s- > g=0— e
This equation shows that g is independent of the mass of the body m. But, it varies with the
distance from the centre of the Earth.

Mass of the earth:
M
g= GF-
2 6
Or M = gR (9 8)(6. 38x1l{3 )
G 6.67x10
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M =598x10%kg

Density of the earth:
Mass

Volume
&R’

* Density =

Orp= 2 3(9'? ~—kgm™
47RG  4(3.14)(6.37x10°X6.67x107")
S p=55x10kg m™ _
Density of the Earth = 5.5 x Density of water

Variation of 'g' with altitude: Let P be a point on the surface of the Earth and { be a point
at an altitude h. Let the mass of the Earth be M and its radius be R. o
The acceleration due to gravity at P is

GM h

Dividing equation (2) by equation (1) we have \

GM ‘
8 _(R+h}  GM sz __F )
g GM  (R+hy GM (R+h)

Rl
g},_ R2 _ R2
?” h 7= h:
{R[H—J} R’[l+-}
R R
& _ 1
g ( hT
- | T+=
R .
Or g, =g l

Case -
~ If h=R
- 1 N 1 _8
g"”g[ RJI_g(ln)’ 4
1 14—
R

Gravitation



Case - 11

If h<<R
k =2
8 =g(1+‘§}
erd-3)
g R

Variation of 'g' with depth: Consider the Earth to be a homogeneous sphere with uniform
density of radius R and mass M.
Let P be a point on the surface of the Earth and Q be a point at a depth 4 from the surface.

The acceleration due to gravity at P is

GM
g= R

If p be the density, then, the mass of the Earth is
M= %m‘i3 p

ng=—35—=GoaRp————- M

The acceleration due to gravity at Q is
— GM g
ga' - ( R _ d)l"
where M is the mass of the inner sphere of the Earth of radius (R- 4).

M, =§7r(R—d)3p

G % 2(R-dY p
=G—a(R-dyp————- 2
(R—d) ; F(R=-d)p )
Dividing equation (2) by equation (1) we have

S8 =

4
GEH(R_d)p=R"d=1_i

R R

8q .
g G%Jer

o)
848 R

The value of acceleration due to gravity decreases with increase of depth.

Variation of 'g' with 'r': At the surface of the earth,
GM

8= = GM =gk’
Outside the earth:
At a distance r (r > R) from the centre of the earth, the acceleration due to gravity is
i GM 1 2 ¥ i
8= = 887 = gx—
r r r
Inside the earth:

At a distance r {r < R) from the centre of the earth, the acceleration due to gravity is
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g=—75" N
rz g
i
: TArp 3 3 8.8 ms?
Now£=72————.—;-—r—3 = M’=MxL3— "
M S Rp R R
3
R € r r s T r
g-r—z(M"F}GMF‘gR ® R BN S ’
= gler

Gravitational field: The gravitational field is defined as the space around a mass in which it
can exert gravitational force on other mass.

Gravitational field intensity: Gravitational field intensity or strength at a point is defined as
the force experienced by a unit mass placed at that point. It is denoted by E. It is a vector
quantity. Its unit is N kg".
Consider a body of mass M placed at a point Q and another g
body of mass m placed at P at a distance r from Q. P
The force experience by m due to M is @ . @
F=mE————- 1
The gravitational force of attraction between the masses m and M is
F=G % ————— {2)
Equating equation (1) and equation (2) gives

mE=GM—§n ::wE=G'24r
r r

Gravitational field intensity E is the measure of gravitational field.

Gravitational potential: Gravitational potential at a point is defined as the amount of work
done in moving a unit mass from the point in the field to infinity against the gravitational
field,

It is a scalar quantity, its unit is N m kg™

Expreésion for gravitational potential at a point: Consider a body of mass M at the point
C, and let P be a point at a distance r from C. To calculate the gravitational potential at P. We

consider two points 4 and B in the field where 4 is at
a distance x from C. @

The gravitational field at 4 is % S
X .
Work done by the gravitational force in moving a unit mass from 4 to B is
aﬁv-—-—Fdx-:—de:-G?dx {*"m=1}
x

Work done by the gravitational force in moving a unit mass from P to infinity is

W =-GM !32 = —GM[—}-} = _GM[_l+l} __GM
;X

X o Fr

r




Or Vz_._q_“'i
¥

Gravitational potential difference: Gravitational potential difference between two points is

defined as the amount of work done in moving a unit mass from one point to another point

against the gravitational force of attraction. L

B

The gravitational potential at a distance r; from the centre of the earth is
GM

Vl = 3
" .
The gravitational potential at a distance r, from the centre of the earth is

)

Potential difference is
v =¥, -om| L1 :GM[LHL] |
5 o h nj M

Gravitational potential energy: Gravitational potential energy at a point is defined as the
amount of work done in moving a body of M

mass m from a point in the field to infinity
against the gravitational field.

Consider a body of mass m be placed at a r
point 4 at a distance x from the centre of the

earth. Let M be the mass of the earth.

The gravitational force on m due to M is

g8

L
n

*m
>P JTQE

o

£ t L3

Fe Gﬁfm
x
The work done by the gravitational force in moving the mass m from 4 to B is
dw = ~Fdx = - IM™ 4
X

The work done by the gravitational force in moving the mass m from P to infinity is

W = -GMm j i‘; = —G‘Mm[~ i]
X

x r
W=—GMm[--!-+l]=—-GMm
[+ oI ¢ r
Or UzﬁGMm
r

Gravitational potentiai energy is zero at infinity and decreases as the distance decreases.

Change in gravitational potential energy: The gravitational potential energy of mass m at a
distance r, from the centre of the earth is
_ GMm
h
The gravitational potential energy of mass m at a distance r; from the centre of the earth is
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GMm

U, =-
2 " , .
Change in gravitational potential energy is
LA
1 I 3 1 I Y
AGPE=U, -U,=GMm - —~| ~— | |=GMm — ——
rz rI J rI rZ ry
i
1 1]
=GM|—-—|m=({,-V)m
N L
¥ Lw
M

Gravitational potential energy near the surface of the earth: Let the mass of the Earth be
M and its radius be R. Consider a point 4 on the surface of the Earth and another point Bata
height & above the surface of the Earth. ' B

The gravitational potential energy of a body of mass m at 4 on the h

surface of the earth is

U, =t
R

The gravitational potential energy of a body of mass m at B, a height &
from the surface of the earth is
U, =- GMm
R+h
Change in gravitational potential energy is

AGPE=U, U, GMm|:~—~ ! }

R R+h
AGPE = GMm B AR | L oppm—
R(R+h) R(R+h)
If h << Rthen
AGPE = GMm
R
GM
'.'g=-}?— = GM=gR2
, h
AGPE = gR m-k;-;
. AGPE = mgh

Inertial mass: Inertial mass of a body is a measure of the ability of a body to oppose the
production of acceleration in it by an external force.

Gravitational mass: Gravitational mass is the mass of a body which determines the
magnitude of gravitational pull between the body and the Earth.

Orbital velocity: The horizontal velocity that has to be imparted to a satellite at the
determined height so that it makes a circular orbit around the planet is called orbital velocity.




Let us assume that a satetlite of mass m moves around the
Earth in a circular orbit of radius » with uniform speed v,
Let the satellite be at a height 4 from the surface of the
Earth. Hence, » = R+h, where R is the radius of the Earth.
The centrifugal force required to keep the satellite in

circular orbit is v,
F= myy _ mv,
r R+h
The gravitational force between the Earth and the satellite is
GMm  GMm
F = 3 = 3
r (R+ M)
For the stable orbital motion
mv:  GMm
R+h (R+h)’
» GM GM
v, = = v, = —
° R+h ¢ R+h
* GM = gR?

2
.‘.v0=1’gR
R+h

The orbital velocity of a satellite is independent of the mass of the satellite and depends only
upoen its height 4 above the earth's surface.
If the satellite is at a height of few hundred kilometres, (R+#) could be replaced by R.

2
.‘.vo=1’%— = v, =./gR

The orbital velocity for Earth is 8 knz 5

Note: If v is the speed of the satellite in its orbit and v, is the orbital velocity to move in the

orbit, then
(1) If v = vy, then the satellite revolves in a circular path around the earth.
(if) If v < vy, then the satellite will move on a parabolic path and finally falls back to earth.

(iil) If v > vq, then the satellite will revolve around the earth in elliptical orbit.

Time period of a satellite: Time taken by the satellite to complete one revolution round the
Earth is called time period.
circumference of the orbit
orbital velocity

2w 27n(R+h)

Time period =

T

3
Rk _, [(R+h) 2,




If the satellite orbits very close to the Earth, then A << R

3
T=2x —5—;=27r 5
gR g

. (R+hy
te: Since 7 =27€,]———
Note: Sinc Y
The mass of the earth M is volume x density i.e.,
3
M=im'€3xp=47:R P
3 3
_'2” (R+h) _ {3x47*(R+hY _ [3m(R+hY
' Gx47rR3p_ Gx47Rp GpR®

3

If the satellite is very closed to the earth, then R >> k
7o 37 R _ 3z
h GpR® \Gp

Height of the satellite above the earth surface: The time period of the satellite is given by

7 =oq |RE hy’
gk’
Squaring both sides gives
7o 4’ (R+hy
gr’*
R’T?
R+ny =8""_
(R+h) 4r’
2 h _ gR2T2 /Ié
4t
%
[ gR'T?
; _( 47’ R

Geo-stationary satellites: Satellites which appear to remain in fixed positions at a specified
height above the equator are called synchronous satellites or geo-stationary satellites.
The speed of the satellite in its orbit is

v circumference of the orbit

time period
2mr )
v="mo
T
The centrifugal force is
2
F="
_ r
. 2 2
.'.F=£(2mr) _ 4m7§ r
r\ T T




The gravitational force on the satellite due to the Earth is

Fo Gﬂfm
r
For the stable orbital motion
dmn’r GMm s GMT?
T! = r? == 4’
“GM = ng
P = —-ngsz

4’
The orbital radius of the geo- stationary satellite is

gRITZ }é

r =[ py ] This orbit is called parking orbit of the satellite.
” -

Note: The distance of the satellite from the surface of the earth is 36000km, the radius of the

orbit is 42400km, the time period is 24h, the orbital velocity is 3.1km/s and the angular

velocity is 2z =Z radih
24 12

Polar satellite: The polar satellites revolve around the Earth in a north-south orbit passing
over the poles as the Earth spins about its north-south axis.

The polar satellites positioned nearly 900 km above the earth, travels pole to pole in about 84
minutes with and orbital velocity of 8km/s. The polar orbit remains fixed in space as the earth
rotates inside the orbit. As a result, most of the earth’s surface crosses the satellite in a polar
orbit.

Energy of an orbiting satellite: A satellite revolving in a circular orbit round the Earth
possesses both potential energy and kinetic energy. If A is the height of the satellite above the
Earth’s surface and R is the radius of the Earth, then the radius of the orbit of satellite is
r=R+h
If m is the mass of the satellite, its potential energy is
GMm GMm
E P = — = -
r R+h
The orbital velocity of the satellite is

v=}£&£
? R+h

Hence, its kinetic energy is
1, 1 ( GM ) GMm
EK = — mvo =—m =
2 2 \R+h; 2(R+h)
The total energy of the satellite is, E = Ep + Ex
_GMm + GMm
R+h 2(R+h)

GMm

T 2R+h)
The negative value of the total energy indicates that the satellite is bound to the Earth.




Escape speed from energy principle: The escape speed is the minimum speed with which a
body must be projected in order that it may escape from the gravitational pull of the planet.
Consider a body of mass m placed on the Earth’s surface.

The gravitational potential energy is £, = - _(%
If the body is projected up with a speed v,, the kinetic energy is E, = % mvf
.".the initial total energy of the body is E, = % mv,2 - %
If the body reaches a height 4 above the Earth’s surface,
o , . GMm
The gravitational potential energy is E, = — Rk

Let the speed of the body at the height 4 is v, then its kinetic energy is E, = —;E,'nv2

-+ The final total energy of the body is £, = .;_ my? — (;ﬁjr:

1, GMm 1, GMm
So=my, my -
2 R 2 R+h
The body will escape from the Earth’s gravity at a height where the gravitational field is zero.
i.e., h =0, At the height # = oo, the speed v of the body is zero.
GMm

Thus —l—mvf -———=0
2" TR

Or i 2OM o, GM
* R ¢ R

Again v GM = gR?

2
ve=“2;~2§—'— = ve=\J2gR

The escape speed for Earthis 11.2 km 5™

Note: The relation between the escape velocity and the orbital velocity of the satellite is
v, =V, V2
If the velocity of projection v is equal to the escape velocity ve, then the satellite will escape

away following a parabolic path, If the velocity of projection v is greater than the escape
velocity v, then the satellite will escape away following a hyperbolic path.

Kepler's law of planetary motion:

(i) The law of orbits: A
Each planet moves in an elliptical orbit with the Sun oe mf P %mu
at one focus. sun

(if) The law of areas:
The line joining the Sun and the planet (i.¢., radius vector) sweeps out equal areas in equal
interval of times. '
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ie a4 constant A ~=2 Speea
€ o T
dt G, ﬁ{__;-;v «“\\\\\\\\\\\\‘\\\\\\ S,

gher g
Proof for the law of areas:
Consider a planet moving from A to B. The radius vector O4 sweeps a small angle 49 at the
centre in a small interval of time dt. From the Figure, 4B = rd 8. The small area d4 swept by

the radius is

dA=%rx(AB) :>dA=-;-rxrd9
Dividing both sides by dr we have B
ﬁ:lrzxiq ﬁﬁr=._1_r2xw .‘@
dar 2 dt o 2

“L=mrow :>rzg)=£

m
Hence a1l
t 2 m

Axis

Since the line of action of gravitational force passes through )
the axis, the external torque is zero. Hence, the angular

momentum is conserved.
d4
.. — = constant

i.e., the area swept by the radius vector in unit time is the same.

(iii) The law of periods:
The square of the period of revolution of a planet around the Sun is directly proportional to
the cube of the mean distance between the planet and the Sun.

2

le., — = constant

y

Proof for the law of periods:
Let us consider a planet of mass m moving with the velocity v around the Sun of mass Min a

circular orbit of radius 7.

- ‘ . Mi
The gravitational force of attraction of the Sun on the planetis F = G—;’- ————— )
r
The centripetal force is F = 22— ———— (2)
r
Equating equation (1) and equation (2) gives
2
mv° Gﬁfm — e GM 3)
r r r
If T be the period of revolution of the planet around the Sun, then
y= 2 Lpdrr (4)
T T? ':
. : 4z’r’ T? 2
Equating équatlon (3) and equation (4) we have G—f{ = ;; ; = = (4;4
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2
The quantity -g;;r— is a constant that depends only on the mass M of the central body about

which the planet orbits.
2 2
23_ A7
rr GM
Az’ 4z’ 1
Note: k=——=—-x—
GM G M
Y X3 L

Derivation of Newton's law of gravitation from Kepler's third law: Let us consider a
planet of mass m moving with the velocity v around the Sun of mass M in a circular orbit of
radius #, and T is the time period.

2z

T
47%r?

Or v'= -

The centripetal force between the Sun and the planet is £ and is given by
2 2.2
Fomo_m 4r 2r
r r T

According to Kepler's third law we have

7=k,
2.2 2
.'.F=ﬂx4x§ =4L>~:£2
r kr k r
2
i’.r,_xM
k
2
or ¥ _6m
k
F=GM2m
r

Which is the Newton's law of gravitation.
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PROPERTIES OF BULK MATTER

Elasticity: The property of a material to beormine o
regain its original state when the i L O
deforming force is removed is called ‘—@T

oy N uedfo Rernovingthe
;If?OS;:llg‘ li);anglpl:tscqm fiber, “99 = Restoring forces deforming forces

Plasticity: The inability the of a material to regain its original state when the deforming force
is removed is called plasticity. Examples plastic, bakelite, etc.

Stress: The internal restoring force acting per unit area of the deformed body is called stress.

restoring force F
Stress = i g =—
area A

The dimensional formula is [ML'T?]

Types of stress:

TANGENTIAL
1.

FLONEH’UDM [ VOLUMETRIC |
!

(1) Normal stress (2) Tangential or shearing stress

(1) Normal stress: When the restoring force or the deforming force acts perpendicular to the
cross-sectional area of the body, the stress is called Normal stress. Normal stress are of two
types. Longitudinal and volumetric, Longttudmal stress again has two types, Tensile siress
and compressive stress.

(a) Tensile stress: When there is an increase in the length {

of an elastic body in the direction of the deforming force, I l
4 I+ Al L

—

the stress set up is called Tensile stress.

(b) Compressive stress: When there is a decrease in the
length of an elastic body due to the deforming force, the
stress set up is called Compressive stress.

(c) Volumetric stress: When there is a change in the volume of an
elastic body in the direction of the deforming force, the stress set up is
called Volumetric or Hydraulic stress.

Deforming forces

(2) Tangential or shearing stress: The restoring force per unit area developed in an elastic

body due to the applied tangential force is known as Tangential or shearing stress.
tangential force  F

Tangential stress = =— Tangential
area A force / Z

Strain: Strain produced in a body is defined as the ratio of
change in dimension of a body to the original dimension.
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. changeindi 1
Strain = 2 g : men?lon
original dimension
Strain is the ratio of two similar quantities. Therefore it has no unit.

Types of strain:
(i} Longitudinal strain (ii) Shearing strain (1i1) Volumetric strain

(i) Longitudinal strain: If the deforming force acting on an elastic body
produces a change in length only, then the change in length per unit original
length of the body is known as longitudinal strain. ¢
o7
l

changein length AL

Longitudinal Strain = ~—— =
original length L

(ii) Shearing strain: Shearing strain can be defined as the ratio of the
displacement of a surface under a tangential force to the perpendicular distance of the
displaced surface from the fixed surface. i )

. AL H T *Tangential
Shearing strain = T =tanf =~ & L-Z -0; force

#is measured in radian

(iif) Volumetric strain: If the deforming force acting on an elastic rginal
body produces a change in volume per unit original volume of the (o
body, is known as Volumetric strain.

changein volume AV

original volume ¥V

volume
~ ,

Volumetric Strain =

Peforming forces

Elastic limit: The limit beyond which permanent deformation occurs is called the elastic
Jlimit.

Hooke's law: According to Hooke’s law, within the elastic limit, strain produced in a body is
directly proportional to the stress that produces it.
1.e., stress « strain = stress = k strain
Stress _ i
Strain
Where k is known as modulus of elasticity .Its unitis N m™2 and its dimensional formula
is [ML™'T).

Study of stress-strain relationship: Let a wire be suspended from a rigid support. At the
free end of the wire, a weight hanger is provided on which
weights could be added to study the behaviour of the wire
under different load conditions. The extension of the wire . .
is suitably measured and a stress-strain graph is plotted as

shown in the figure. -

(1) In the figure the region OP is linear. Within a normal

Stress, strain is proportional to the applied stress. Here

Hooke’s law is obeyed. Upto P, when the load is removed . "/

the wire regains its original length along PO. The point P ’ sawta
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represents the elastic limit, PO represents the elastic range of the material and OB is the

elastic strength,

(ii) Beyond P, the graph is not linear. In the region PQ, the material is partly elastic and partly
plastic. From Q, if we start decreasing the load, the graph does not ¢ome to O via P, but
traces a straight line QA. Thus a permanent strain OA is produced in the wire. This is called

permanent set.
(iii) Beyond Q addition of even a very small foad causes enormous strain. This point Q is

called the yield point. The region QR is the plastic range.

(iv) Beyond R, the wire loses its shape and becomes thinner and thinner in diameter and
ultimately breaks, say at S. Therefore S is the breaking pomt The stress corresponding to S is
called breaking stress.

Elastic after-effect or Elastic relaxation time: Elastic after-effect is the temporary delay in
regaining the original configuration by an elastic object when all the deforming forces acting

on the object are removed.

Elastic fatigue: The property of an elastic body due to which its behaviour becomes less
elastic under the action of répeated alternating deforming forces is called elastic fatigue.

Elastic moduli: The ratio of the stress to the corresponding strain produced in a body within
the elastic limit is called modulus of elasticity or coefficient of elasticity.
There are three different types of modulus of elasticity. They are Young’s modulus, Bulk

modulus and Rigidity modulus

Young's modulus: The ratio of longitudinal stress to the longitudinal strain within the elastic

limits is called Young’s modulus of elasticity. It is denoted by Y.
Consider a wire of length L and cross sectional area A stretched by a deforming force F acting

along its length. Let AL be the extension produced.
Longitudin al stress = deforming force £
area A
Longitudinal strain = change in length —— o £
original length L
L
Young’s modulus = longftud?nal stre?s 4 _F « L . I :.n‘:
. longitudinalstrain AL 4 AL X
; |
_FL d
AAL

Its SI unit is N/m? or pascal and its dimensional formula is [ML™'T7?.

Bulk modulus: The ratio of normal stress to the volumetric strain produced in the body

within the elastic limits is called Bulk modulus of Original
elasticity. It is denoted by X. : Changein _ Volume=V/
Consider a sphere of volume V and surface area 4 is Volume = AV

reduced by the deforming force F acting normally
everywhere on the surface of the sphere. Let the decrease

in volume be AV.
deforming force F

Bulk stress = =
area A

m
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changein volume AV

Bulk strain = —= = -
onginal volume 14

| il

Bulk modulus = Bulkstress _ __4 = £ __FV

Bulkstrain AV 4 AV A4AV
_ |4

,'.K=...£Z_ ) -'.P=£.
- AV 4

Its ST unit is N/m” or pascal and its dimensional formula is [ML™'T™2].

Compressibility: The compressibility of the material is a measure of how easy the materia]
can be compressed. In other words, compressibility is just the reciprocal of Bulk modulus i.e.,

Compressibility =-:_~;2-
Tts ST unit is N"'m” and cgs unit is dyne™'em’,
Note: Steel is more eiastic than rubber. Solid are more elastic and gasses are least elastic.

Rigidity modulus or shear modulus: The ratio of tangential stress to the tangential strain
produced in the body within the elastic limits is known as — -7

Shear modulus or rigidity modulus, It is denoted by . o v s
Let us apply a force F tangential to the top surface of a ; t?/ ’

-
-

block whose bottom AB is fixed. Under the action of this Uy
tangential force, the body suffers a slight change in shape, H "
its ' ol ) 7
volume remaining unchanged. The side AD of the block is Sk g
sheared through an angle @ to the position AD'. If the area of the top surface is 4 then

, tangential force F
Tangential stress or Shear stress = g — = ~

Tangential strain or Shear strain = %I—' =tanf =4

F
Shearstress 4 F

Rigidi dulus = — = = —

gidity modufus Shearstrain 8 A8
_F _FL
=46 AaL

Its SI unit is N/m? or pascal and its dimensional formula is [ML™'T].

Note: Young's modulus ¥ and modulus of rigidity # are possessed materials only.

Poisson's ratio: The ratio of the lateral strain to the longitudinal strain is called the Poisson's

ratio. It is denoted by o. . . .
Let L and D are the original length and diameter of the wire respectively, AL is a small

increase in the length and AD is a small decrease in the diameter.

W
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Longitudinal strain = %L_

Lateral strain = ~£
D

e Lateral strain
Poisson's ratio = — :

Longitudinal strain

_AD
D AD L LAD

T = e S i K e B —————
AL D AL DAL .

L

Theoretically the value of & lies between -1 and +0.5 for all substances. However practically
it lies between 0 and +0.5.

Elastic potential energy in a stretched wire: When a wire is stretched, the deforming force
does some work against the internal restoring forces acting between the various particles of
the wire. This work done is stored in the form of potential energy in the wire and is known as
elastic potential energy.

Let L is the length of the wire and A is the area of cross-section. F is the deforming force,
produces an increase AL in the length of the wire.

When the wire is stretched, the deforming force increases from 0 to F.

_ 0+ F F
.~.the average force = Ty
Work done = Average force x increase in length
W= E x AL
2
Or U= %i AL
Multiplying and dividing the RHS of the above equation by 4L we have
U=EarxiL |
2 AL
= 1F X AL x AL
2 4

U= %— x Stress x Strain x Yolume of the wire

The elastic potential energy per unit volume of the wire is

1 ;
= -2- x Stress x Strain

Fluids: A fluid is a substance that can flow when external force is applied on it. Liquid and
gases are fluids.

Density: The ratio of mass of a substance to the volume occupied by the substance is known
as density. It is denoted by p

Relative density: The ratio of the density of a substance to the density of water at 4°Cis
known as relative density
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density of substance
density of water at 4°C
_ weight of the substance in air
. lost of weight in water
Relative density is also known as specific gravity and has no unit and dimension.

Relative density =

Pressure: The force acting normally on a unit area of the surface is called pressure i.e.,
F

Thrust: The total force exerted normally on the surface is called Thrust. Since thrust is a
force, its SI unit is newton M)

Pressure due to-a liquid co’lumn Let h be the height of the liquid column in a cylinder of
cross sectional area 4. If p is the density of the liquid, then weight of the liquid column is
given by

W =mg=(4hp)g
Weight of liquid column
Area of cross - section

+ Pressure =

.-.P=£‘5h—j~)_§=pgh

Atmospheric pressure: The pressure exerted by the atmosphere on the surface of the earth is
calted atmospheric pressure. It is about 10° N/m?.

Note: At sea level, atmospheric pressure is equal to 76 cm of mercury column. Then
atmospheric pressure is pgh = 13.6 x 980 x 76 dyne/cm’.

Pascal's law: Pascal’s law states that if the effect of gravity can be neglected
then the pressure in a fluid in equilibrium is the same everywhere.

Effect of gravity in fluid pressure: When gravity is taken into account, Pascal’s law is to be
modified. Consider a cylindrical liquid column of height &, density p and
area of cross-section of the tircular face is 4 as shown in the figure, If the
effect of gravity is neglected, then pressure at M will be equal to pressure
at N. But, if force due to gravity is taken into consideration, then they are
not equal. At equilibrium

(i) Force P4 acting vertically down on the top surface.

(if) Weight mg of the liquid column acting vertically downwards

(iil) Force P,4 acting vertically upwards.

Where P, and P, are the pressures at the top and bottom faces, and m is
the mass of the cylindrical liquid column. :

m
S Pd=PA+mg =P =P+ Ag
g=g+£§f—jﬂ-g—=g+pgh =P =F +pgh

This equation proves that, if g is zero, the pressure Py is equal to the pressure P;.
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Pascal's principle: Any change in the pressure applied to a completely enclosed fluid is
transmitted undiminished to all parts of the fluid and the enclosing walls.

Demonstrating Pascal's principle: Let a tall cylinder
containing an incompressible liquid fitted with a piston on
which the container of lead shots rest on it is shown in the
. figure. The atmosphere, container and the lead shots exert a
pressure Pgy, on the piston and thus on the liquid.
The pressure P at a point Q in the liquid is
P=P  + pgh

If we add little more lead shots to the container to increase Pey by an amount APy, the total
pressure P will increase by AP i.e.,

P+AP=1 axf +ﬁ'Pex: +pgh= Apm‘ +(Pe.ﬂ +;9gh)

P+AP=AP_+P

exf
AP =AP,,
"' p, g and A remain unchanged.

~This results in another statement of Pascal’s law which can be stated as, change in pressure at
any point in an enclosed fluid at rest is transmitted undiminished to all points in the fluid and
act in all directions.

Example

As shown in the figure,

In equilibrium, Point S Point @ | Point T
Total pressure P 40 50 60
External pressure Pey ' 10

pgh 30 | 40 | 50

If we add little more lead shots to the container to increase Peq by an amount APy = 5, the
change in pressure at S is 3, the change in pressure at Q is 5 and the change in pressure at T is
also 5. In all the cases p g A is constant in all the points. So the distribution of pressure is the

same everywhere to all the points in the fluid.

Hydraulic lift: An important application of Pascal’s law is F
the hydraulic lift used to lift heavy objects. A schematic
diagram of a hydraulic lift is shown in the figure. It consists
of a liquid container which has pistons fitted into the small
and large opening cylinders. If a; and a; are the
areas of the pistons A and B respectively, F is the force
applied on A and W is the load on B, then

Ll = L —w=2F

a &4 aQ,
This is the load that can be lifted by applying a force F on 4.
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Hydraulic brakes: When a driver applies
a little force by his foot on the brake
paddle to stop the vehicle, the pressure so
applied gets transmitted through the brake
oil, to the piston of slave cylinders,
which, in turn, pushes the break shoes
against the break drum in all four wheels,
simultaneously. The wheels stop rotating
at the same time and the vehicle comes to
stop instantaneously.

Gauge pressure: The difference between
the total or absolute pressure at a point inside a liquid and the atmospheric pressure is known
as gauge pressure at that particular point i.e.,
P el ‘P - Pam
“ P = Pa:m + pgh
PG =Pam +iothPmm

o Py = pgh

Viscosity: Viscosity is the property of the fluid by virtue of which it opposes the relative
motion between its different layers. Both liquids and gases exhibit viscosity but liquids are
much more viscous than gases.

Importance of viscosity:

(i) Blood circulation through arteries depends upon the viscosity of blood

(ii) Oil used as lubricant should have proper value of viscosity

(iii} The viscosity of blood depends upon the concentration of red blood corpuscles.

Co-efficient of viscosity: Conéider a liquid flows steadily through a pipe as shown in the

figure. The layers of the liquid which are in contact with Pox ey
the walls of the pipe have zero velocity. As we move A —— e e
towards the axis, the velocity of the liquid layer increases P e
and the layer at the centre has the maximum velocity v. ;
Consider any two layers P and Q separated by a distance ‘l‘\ ;'; : '1\ )

dx. Let dv be the difference in velocity between the two
layers. The viscous force F acting tangentially between the two layers of the liquid is
proportional to

(i) area 4 of the layers in contact

(ii) velocity gradient % perpendicular to the flow of liquid.

dv dv
Focd— = F=nd—
where 7 is the coefficient of viscosity of the liquid. It is defined as the tangential viscous drag
acting per unit area between two parallel liquid layers moving with unit velocity gradient.
This is also known as Newton’s law of viscous flow in fluids. The unitof 7is N s m™. Tts

dimensional formula is [ML™'T™'].
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Streamline flow: The fiow of a liquid is said to be
steady, streamline or laminar if every particle of
the liquid follows exactly the path of its preceding
particle and has the same velocity of its preceding
particle at every point.

Critical velocity: Critical velocity of a liquid can be defined as the maximum velocity upto
which the flow is streamlined, and above it the flow becomes turbulent.

-
Turbulent flow: The motion of particles of a liquid becomes disorderly or irregular when the
liquid moves with velocity greater than the critical velocity. Such a flow of liquid is known as_

turbulent flow.

Reynolds number: Reynolds number is a pure number which determines the nature of flow
of a liquid through a pipe. It is denoted by Np.
v, =2¥2
n
where v is the average velocity of the liquid, p is the density, #.is the co-efficient of viscosity

of the liquid and D is the diameter of the pipe. If N lies between 0 and 2000, the flow of a
liquid is said to be streamline. If the value of N is above 3000, the ﬂow’ is turbulent. If Ny

lies between 2000 and 3000, the flow becomes unsteady.

Stokes' law: When a body falls through a highly viscous liquid, it experiences a viscous
force which acts in the direction opposite to the direction of motion of the body.
According to Stokes’ law, viscous force F acting on the sphere varies directly with
(1) the coefficient of viscosity 5 of the fluid,
(2) velocity v of the spherical body,
(3) radius r of the spherical body.

Mathematically F=6xnrv

Proof
LetF=kn®rtve
[MLT?] = [ML“T JOLYIETY
[MLT?] = [M L5 T
Equating the indices of M, L and T en both sides, we have

a=1,
-g~c=-2 Or ~] —¢=-2 Or —c=-1 Orc=1
-a+b+c=1 Or~-l1+b+1=1 Orb=1 .
Or F=knrv '
The value of k was found to be 6= in case of small sphere
S F=6n prv '

Importance of Stoke's law:

(i) This law is account for the formation of clouds.
(ii) This law is used in the determination of electronic charge by M:lhkan in his oil drop

experiment.
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Terminal velocity: The constant velocity, acquired by a freely falling body in a viscous
medium, is known as terminal velocity.
If a sphere of density pis falling under gravity in a fluid of density g, the =
forces acting on it are its weight W, the upthrust U and the viscous drag FF  E=iE=s
as shown in the figure. The net downward force is W - (U + F). As the Effif—%f‘
velocity of the sphere increases, the viscous drag F is also increases, Ata EEE’EEEZ
certain stage, the net force on the sphere becomes zero, and therefore it
moves with constant velocity. This constant maximum velocity of the
sphere is called terminal velocity (vr). <
ie, W-(U+F=0 : TminiiiIi
Or W=U+F i
Or F=W-U

The viscous force F=6rnrv

The weight of the sphere W = g— aripg
The upthrust or the buoyant force U = %x r'ecg
6ﬁnrv=§‘}rr3pg~%7tr3o’g

67tqrv:§;rr3(p—-a)g

4 5
L3 (p_"v-)g=4frr’.(p*0)g=g r’p-olg
érnr Ixbznpr. 9 n
L. _2rp-0o)g
..VT=“9--W—

Note: The terminal VCIOCIty of a skydiver is about 54 ms™, for a feather it may be as small as
0.1 ms™, for a raindrop of 2 mm diameter, the terminal veiocny is about 7 ms™

Cohesive force: Cohesive force is the force of attraction between the molecules of the same
substance. This cohesive force is very strong in solids, weak in liquids and extremely weak in
gases.

Adhesive force: Adhesive force is the force of attraction between the molecules of two
different substances.

Water wets glass because the cohesive force between water molecules is less than the
adhesive force between water and glass molecules. Whereas, mercury does not wet glass
because the cohesive force between mercury molecules i is greater than the adhesive force
between mercury and glass molecules.

Molecular range: Molecular range is the maximum distance up to whxch a molecule can
exert force of attraction on another molecule. It is of the order of 107 m for solids and
liquids, -
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_____

Sphere of influence: Sphere of influence is a sphere ot P .

drawn around a particular molecule as centre and ey \<
molecular range as radius. The central molecule | ‘3& ' ;
exerts a force of attraction on all the molecules lying
within the sphere of influence. et '

“““““

Surface tension of a liquid: Surface tension is the property of the free

- surface of a liquid at rest to behave like a stretched membrane in order to
acquire minimum surface area.
Surface tension is defined as the force per unit length acting perpendicular
on an imaginary line drawn on the liquid surface, tending to pull the
surface apart along the line.

r-£
;

Its unit is ¥ m™' and dimensional formula is [MT™).

Molecular theory of surface tension: Consider two molecules P and Q as shown in the
figure. A sphere of influence is drawn around them. The molecule P is attracted in all
directions equally by neighbouring molecules. Therefore the net force Q
acting on P is zero. The molecule Q is on the free surface of the liquid. It N
experiences a net downward force because the number of molecules in :
the lower half of the sphere is more and that on the upper half. Therefore
all the molecules lying on the surface of a liquid experience only a net
downward force.

If a molecule from the interior is to be brought to the surface of the
liquid, work has to be done against this downward force. This work done
on the molecule is stored as potential energy. Thus we can conclude that
the surface of the liquid has potential energy. Greater the number of molecules on the surface,
greater is the potential energy of the surface. To attain stable equilibrium, the surface of the
liquid has to have minimum potential energy so the number of molecules in the surface is
minimum. Since the thickness of the free surface is fixed, the surface of the liquid tends to
assume minimum surface area by contracting and remains in a state of tension like a stretched

elastic membrane.

EN

Surface energy: Surface energy is defined as the ratio of the

work done in increasing the surface area to the increase in — X ey
surface area. | T )
o . L| i |H—Feam
Work done in increasing the surface area |
Surface energy = - - “1:
increase in surface area ey el
W
G =—
AS
o= FxAx  2(TxL)xAx
AS 2(L x Ax)
Where the number 2 indicates the two free surfaces of the film and T is the surface tension.
Lo=T

The surface energy is numerically equal to surface tension.




Formation of drops and bubbles: A liquid drop or a soap-bubble is spherical because the
gravitational force acting on it is extremely small and the spherical shape of the liquid is
mainly due to the surface tension.

Angle of contact: The angle between the tangent to the
liquid surface at the point of contact of the liquid with the
solid and the solid surface inside the liquid is called angle of
contact.

The angle of contact depends on the nature of liquid and
solid in contact. For water and glass, 6 lies between 8° and =
18°. For pure water and clean glass, it is very small and For water
hence it is taken as zero. The angle of contact of mercury with glass is 138°.

Pressure difference across a liquid surface: There is always an excess of pressure on the
concave side of a curved liquid surface over the pressure on its convex side due to surface
tension.

(i) If the free surface of a liquid is plane, then the surface iension acts horizontally. As a
result, there is no pressure difference between the liquid side and the vapour side.

EXDess presiure

T LT 1 T
oy et ; 4 R

(i) If the surface of the liquid is concave, then the resultant force R due to surface tension
acts vertically upwards, and it will cease when the free surface becomes plane. To balance
this, an excess of pressure acting downward on the concave side is necessary.

(iii) If the surface of the liquid is convex, the resultant force R due to surface tension acts
downwards, and there must be an excess of pressure on the concave side acting upwards.

Excess pressure inside a liquid drop or excess pressure inside an
air bubble inside a liquid: Let the drop be divided into two equal
halves. Considering the equilibrium of the upper hemisphere of the
drop, the upward force on the plane face ABCD due to excess
pressuwre Pis P (nr )
If T is the surface tension of the liquid, the force due to surface tension acting downward
along the circumference of the circle ABCD is T (2nr).

At equlhbnum P@rd)=T(Qnr)

?.T

r

Excess pressure inside a soap bubble: A soap bubble has two liquid surfaces in contact
with air, one inside the bubble and the other outside the bubble.
The force due to surface tension=2 x T (2nr)
The force due to excess pressure = Par?
At equilibrium, Pmr?=2 x T (2nr)
4T

Properties Of Bulk Matter i Page 107



Note: The excess of pressure inside a drop is inversely proponionél to its radius i.e., Poc 1 .
r

As P« ! ,the pressure needed to form a very small bubble is high. This explains why one
r -

needs to blow hard to start a balloon growing. Once the balloon has grown, less air pressure
is needed to make it expand more.

Capillarity: The rise of a liquid in a capillary tube is known as.capillarity. The height 4
indicates the capillary rise (for water) or capillary fall (for mercury).

[Hustrations of capillarity: I_J
(i) A blotting paper absorbs ink by capillary action. The pores | ‘l,:
in the blotting paper act as capillaries, b
(ii) The oil in a lamp rises up the wick through the narrow
spaces between the threads of the wick.

(iii) A sponge retains water due to capillary action,

(iv) Walls get damped in rainy season due to absorption of water by bricks.

For ieercury

“Rise of liquid in a capillary tube: Let us consider a capillary tube of uniform bore dipped
vertically in a beaker containing water. Due to surface tension, water rises to a height /4 in the
capillary tube as shown in the figure. The surface tension T of the water acts inwards and the
reaction of the tube R outwards. R is equal to T in magnitude but opposite in direction. This
reaction R can be resolved into two rectangular components, Rsin & and Rcos 6.

The horizontal component Rsin & acting all along the circumference of the tube cancel each
other whereas the vertical component Rcos £ balances the
weight of water column in the tube.

Total upward force = Rcos @x 2xr=2mr x Tcos 8----~(1)

Total downward force = m’hog + [m’zr - % %ﬂ?' ? )Pg

= m’hpg + nr{l —%]pg

Equating (1) and (2) gives

mzhpg+%m3pg=2mxTcosé’ i =/

wlhpg =2mxTcos€—a;—nr3pg

3

_2mxT0059_§m r8

h 2 2
g w08
2Tcosé 1
Sh= -
rpg 3

Factors affecting surface tension: Impurities present in a liquid appreciably affect surface
tension. A highly soluble substance like salt increases the surface tension whereas sparingly
soluble substances like soap decreases the surface tension.
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Critical temperature of the liquid: The surface tension decreases with the rise in
temperature. The temperature at which the surface tension of a liguid becomes zero is cailed
critical temperature.

Applications of surface tension:

(1) During stormy weather, oil is poured into the sea around the ship. As the surface tension
of oil is less than that of water, it spreads on water surface. Due to the decrease in surface
tension, the velocity of the waves decreases. This reduces the wrath of the waves on the ship.
(it} Lubricating oils spread easily to all parts because of their low surface tension.

(iii) Dirty clothes cannot be washed with water unless some detergent is added to water.
When detergent is added to water, one end of the hairpin shaped molecules of the detergent
get attracted to water and the other end, to molecules of the dirt. Thus the dirt is suspended
surrounded by detergent molecules and this can be easily removed. This detergent action is
due to the reduction of surface tension of water when soap or detergent is added to water.
{iv) Cotton dresses are preferred in summer because cotton dresses have fine pores which act
as capiliaries for the sweat.

Total energy of a liguid: A liquid in motion possesses pressure energy, kinetic energy and
potential energy.

(i) Pressure Energy: It is the energy possessed by a liquid by
virtue of its pressure.
Consider a liquid of density p contained in a wide tank having a
side tube near the bottom of the tank as shown in the figure. A
frictionless piston of cross sectional area ‘@’ is fitted to the stde
tube. If x is the distance through which the piston is pushed
inwards, then work done or the pressure energy in pushing the
liquid of mass axpis

Work done = Force x displacement = (Prcssure x area}x displacement

Or pressureenergy = (Pxa)x x = Pax

Pressure energy per unit mass of the liquid = Pax = P

axp p
{ii) Kinetic Energy: It is the energy possessed by a liquid by virtue of its motion.
If m is the mass of the liquid moving with a velocity v,

the kinetic energy of the liquid is %mv2 '

_ —mv "
Kinetic energy per unit mass = 2 = Py
m

(iii) Potential Energy: It is the energy possessed by a liquid by virtue of its height above the
ground level.

If m is the mass of the liquid at a height A from the ground level,

the potential energy of the liquid is mgh

Potential energy per unit mass = meh _ = gh
' m

2

- Total energy of a liquid is L + 12— +gh
P
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Equation of continuity: Consider 2 non-viscous liquid in streamline flow through a tube AB
of varying cross section as shown in the figure. Let a; and a2 be -
the area of cross section, v; and v, be the velocity of flow of the
liquid at A and B respectively.
If p is the density of the liquid,
then mass of liquid entering per second at A = ayvp.
Similarly, mass of liquid leaving per second at B = ayvap.
If there is no loss of liguid in the tube and the flow is steady, then
mass of liquid entering per second at A = mass of liquid leaving per second at B

Le., a\vip = ayvip or aiv| = amw

i.e., av = constant

This is called as the equation of continuity. From this equation v« —~
a

i.e., the larger the area of cross section the smaller will be the velocity of flow of liquid and
vige-versa. '

Bernoulli's principle: Bernoulli’s Principle states that where the velocity of a fluid is high,
the pressure is low and where the velocity of the fluid is low, pressure 1s high.

Bernoulli's theorem: According to Bernoulli’s theorem, for the streamline flow of a non-
viscous and incompressible liquid, the sum of the pressure energy, kinetic energy and

potential energy per unit mass is a constant. i.e.,
2

v
— + ~—+ gh = constant
P) _
This equation is known as Bernoulli’s equation.

Bernoulli's equation: If a volume AV of a liquid has a kinetic energy %( PAV W (p density,

v, velocity) at a point where the tube cross-section is 4, and the kinetic energy %( PAV W]

(v; velocity) at another point where the cross-section is 4,

then the difference AW, = é—(pAV)v,z - % (pAV)v] must iy
originate from the pressure difference and the difference of
the potential energies.
Change in pressure energy is AW, = FAV — F,AV and the
s k!

change in potential energy is AW, = (AVp)gh —(AVp)gh,
{h\, h are the corresponding heights).

i 1
Gk —5<pAV)v3 =(AVp)gh ~(AVp)gh, + AV - P,AV

v§ v? P P

..____|= _ h ..|.._5..,._2_
23 gh —gh, o p
7 2
.'.v—2+gh2+§=3'—+gh]+£'-
2 g 2

2
or 2+ gh+ L = constant
2 Jo




In this equation, all the three terms carry the dimensions of energy per unit mass, If the above
equation is divided by g, we get

v? P
——+h+— = constant
2g P8
In this equation, all the three terms carry the dimensions of length. For this reason,
2,
;—is called velocity head, #is the elevation (gravitational) head and L is called the
g Pg

pressure head. If 2 =0, then

|
7P v} + P = constant

P is called the static pressure and %p v* is called the dynamic pressure.

Applications of Bernoulli's theorem:

(i) Flow meter or Venturimeter: It is a device used to measure the rate of flow of liquids
through pipes. The device is inserted in the flow pipe, as shown in the figure.

A

P .

Mainpipe| ... |-

It consists of a manometer, whose two limbs are connected to a tube having two different
cross-sectional areas say 4, and 4, at A and B, respectively. Suppose the main pipe is
horizontal above the ground. Then applying Bernoulli’s theorem for the steady flow of liquid
through the venturimeter at A and B, we can write

Total Energy at A = Total Energy at B
v P v; 5
4 L= "2

2 p 2 p
2
R_h_v v =p-p=L(i-y)=L21|(n]
p p 2 2 B R T

It shows that if P, > P, thenv, >v,. Thisis called Venturi’s Principle.

For steady flow through the ventrurimeter,
volume of liquid entering per second at A = volume of liquid leaving per second at B.

AIV]:szz
oA
v 4,
2 2 —
p-p=PulA] _, or vi=—2A=h)
2 4,
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If 2 denotes level difference between the two limbs of the venturimeter, then
Pi—-Py=pgh

and v, = _ 2pgh _ 2gh

A -

From this we note that v, < Vi since all other parameters are constant for a given
venturimeter. Thus v, = K+ where K is a constant.
The volume of liquid flowing per second is givenby ¥V = 4y, = 4 x K N/

(ii) Lift of an Aircraft wing: A section of an. ,

) . h . High velncitv, Low pressure
aircraft wing and the flow lines are shown inthe . gow
figure. The orientation of the wing relative to the
flow direction causes the flow lines to crowd
together above the wing. This corresponds to s e
increased velocity in this region and hence the %w
pressure is reduced. But below the wing, the
pressure is nearly equal to the atmospheric pressure. As a result of this, the upward force on
the underside of the wing is greater than the downward force on the topside. Thus there is a

net upward force or lift.

Low velocity: High pressure

(iii) Blowing of roofs: During a storm, the roofs of . 4

huts or tinned roofs are blown off without any D A

damage to other parts of the hut. The blowing wind p
creates a low pressure Py on top of the roof. The

NN /

pressure P, under the roof is however greater than F I /

Py. Due to this pressure difference, the roof is lifted I ] T %

and blown off with the wind. Hgr g%/% Z
Pressure .

(iv) Atomiser or sprayer; When the piston is moved in, it blows
the air out of the narrow hole ‘O’ with large velocity creating a
region of low pressure in its neighbourhood. The liquid (e.g.
insecticide) is sucked through the narrow tube attached to the
vessel end having its opening

just below Q. The liquid on reaching the end gets sprayed by
out blown air from the piston.
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(v) Bunser burner: In a Bunsen burner, the gas comes out of the nozzle

with high velocity. Due to this the pressure in the stem of the burner %
decreases. So, air from the atmosphere rushes into the burner. !
(vi) Motion of two parallel boats: When two boats separated by a small = Gas
distance row parallel to each other along the same direction, the velocity

of water between the boats becomes very large compared to that on the

outer sides. Because of this, the pressure in between the two boats gets reduced. The high
pressure on the outer side pushes the boats inwards, As a result of this, the boats come closer
and may even collide.

Heat: Heat is a form of energy called thermal energy.

The ST unit of heat is joule (J).

When mechanical energy (work) is converted into heat, the ratio of work done (¥) to the
amount of heat prodiiced (@) is always a constant, represented by J, i.e.,

Y_J7 o w=Jo

0

Where J is called Joule's mechanical equivalent of heat.
Note: Jisnota phi;sica! quantity, but a conversion factor whose value is 4.186 joule/calorie

Calorie: The amount of heat required to raise the temperature of 1g of water by 1°Ci.e., from
14.5°C 10 15.5°C is known as one calorie.
1 keal = 10° cal.
Also 1cal=4.18]

Temperature: Temperature of a body is the degree of hotness or coldness of the body.
Heat flows from a body at high temperature to a body at low temperature when they are in
contact with each other.

The ST unit of temperature is kelvin (K) where as degree celsius (°C) is a commonly used
unit of temperature.

Different scales of temperature: Three scales of measurement of temperature are used.
(1) Centigrade or Celsius scale

{ii) Fahrenheit scale

{ii}) Reaumur scale.

Absolute temperature scale and its relation with celsius, fahrenheit and reaumur scales:

The Absolute scale of temperature Al B -
begms at -273.15°C and is calied 0K — CP C 100“ celsius
(kelvin). The unit of temperature in this 20 E :212¢ fahrenheit
scale is identical with the centigrade r : 80° reaumur
scale, 273.15 K 373.15 kelvin
According to Celsius scale A8 = %
According to Fahrenheit scale 4B _ F-32

AD 180

Properties Of Bulk Matter ' o Page 113



According to Reaumur scale % R0

80
According to Kelvin scale AB _K-273.15
AD 100

4B C F-32 R _ K-273.15

'AD 100 180 80 100

C F-32 R K-27315
Or —_—__ 0 ———_—
5 9 4 5

Triple point of water: Triple point of water is the
temperature at which the three phases of water (ice, water
and water vapour) are all equally stable and co-exist in
equilibrium. This temperature is taken to be 273.16K and
the corresponding pressure is 4.58 mm of mercury or
0.006 arm.

Thermal expansion in solids: Thermal expansion of a 2316 T —

solid is defined as the increase in dimension of the solid due to increase in its temperature.
Increase in length is called linear expansion

Increase in area is called area expansion

Increase in volume is called volume expansion

Coefficient of linear expansion (@): It is defined as the increase in length per unit length per
degree rise in temperature,
Let /| = original length of the solid bar at temperature 7

{, = length of the bar at temperature 7+AT, then
- !
Lok Or I, -1, = a(l, AT) ik
I AT :
w1 =1 (1+a AT) Fa- 1y
The unit of & is (1/°C) or (1/K). The value of o depends upon the nature of the material of the
solid.

T T+aAT

Coefficient of area (superficial) expansion {(5): It is defined as the increase in area per unit
area per degree rise in temperature.

Let Ay = original surface area at temperature 7 T‘T
A3 = surface area at temperature 7+A7, then '
A, - 4
f=— 4 AT Or 4, - A4, = (A4, AT)

~ A, =4 (1+ B AT)
The unit of Bis (1/°C) or (1/K). The value of B depends upon the nature of the material.

Relation between fand a: Consider a square of area /| at temperature T, and at
temperature 7 + AT its area is /7.

A, -4 zj -1 i)

A AT 1IAT 1IAT
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ﬁ=(12+‘l’)a L~
A LAT
If we consider that /, ~/,, we have
| B=2a

Coefficient of volume (cubical) expansion ()t It is defined as the increase in volume per

unit volume per degree rise in temperature.

Let V', = original surface area at temperature 7
V> = surface area at temperature 7+AT, then

Or V, -V, =y(V, AT)

oV, =V, (1+yAT)
The unit of yis (1/°C) or (1/K). The value of £ depends upon the nature of the material.

Relation between yand ar Consider a cube of volume ' at temperature T, and at
temperature 7 + AT its volume is /.
_nh-v_ L~k _L-LY 300, 1)

V,AT ~ AT AT
Or y=it, -1y & ~1) 4304 ) =1 Gy 1)t 430,
to I’AT LAT i
y=alh "’*’ﬁ + 3L}, gl
I, : LAT
If we consider that /, =/, we have
¥ =3x
Relation between a, fand y:
wph=2a =« =—§—
Up
, B /) »
Also 7 =3a Da =% ‘Atom Atomn
ca=f t
2 3
Molecular explanation of 0 r

thermal expansion: Two atoms

are separated by adistance r. If r
= w, the force of attraction

between them is zero, and the U
potential energy is also zero. In the
diagram, Up = 0. As r decreases, :
the force between them starts o s
increases i.e., attractive and U,
become maximum and then with
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further decreases of r, the force starts decreases i.e., repulsive, becomes zero and then
positive as shown in the figure.

(i) At temperature 7o =0K, the atoms have only potential energy ~Us. In this case, r = ro and
the atoms are at fixed lattice point. They are unable to vibrate and no other value of r is
allowed.

(ii} At temperature 7', the atoms gain vibrational energy —~U), and as a result, the atoms
vibrate between points 4; and B) i.e., about . In this case the average distance between the
atoms is #;, where ry > rg. As a result of this the solid expands.

(iil) At temperature T, the energy of the atoms further increases by an amount -U,.
Consequently, the atoms vibrate between the points 4; and B; i.e., about O;. In this case the
average distance between the atoms is r,, where r; > r|. As a result of this the solid has
expanded further. So with rise in temperature, solids expand.

Practical applications of thermal expansion of solids:

(i) When rails are laid down on the ground, space is left between the end of two rails.

(i1) The iron rim to be put on a cart wheel is always of slightly smaller diameter than that of
the wheel. '

(iif) The transmission cables are not tightly fixed to the poles.

(iv) A glass stopper jammed in the neck of a glass bottle can be taken out by warming the
neck of the bottle.

Expansion of solids: In liquids only expansion in volume takes place on heating.

(i) Apparent expansion of liguid: When expansion of the container containing liquid, on
heating is not taken into account, then observed expansion is called apparent expansion of
liquids. Coefficient of apparent expansion of a iiquid

apparent increase in volume

“  original volume x rise in temperature

(ii) Real expansion of liquid: When expansion of the container containing liquid, on heating
is also taken into account, then observed expansion is called real expansion of liquids.
Coefficient of real expansion of a liquid

B real increase in volume

Yo = s
" original volume x rise in temperature

Both 7, and y, are measured in °C™".

Note: It can be shown that y, =y, +7,
where y, and y, are coefficient of apparent and real expansion of a liquids and y,is
coefficient of cubical expansion of the container.
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Volume of liquid in the container Expausion of the container  Resl expansion of the liquid

‘-'_A

. Apparent expangion
-

. Expansion of the container
—

Anamalous expansion of water: When temperature of water is increased from 0°C, then its
volume decreases upto 4°C, becomes minimum at 4°C and then increases. This behaviour of
water around 4°C is called anamalous expansion of water,

p(kﬁim‘)
Volume of 1006} kg of water (m?)
1.0000
1.04343 0.9998
1.00013
0.9994
1.00000 -+ : : 0.5992 .
. b ¢ () : » 1 ("
0'za 6 100 {0 3 i 68 1(°C)

Note: Water is an exception as its density is greatest at 4°C and less for both higher and lower
temperatures.

Expansion of gases: There are two types of coefficient of expansion in gases.

(i) Volume coefficient (7, }: At constant pressure, the change in volume per unit volume per
degree celsius is called volume coefficient.
Vz - K
Yy =
Vo(: 2 "";)
where Vy, V; and V; are volumes of the gas at 0°C, ,°C and 1,°C.

(i}) Pressure coefficient { ¥, ): At constant volume, the change in pressure per unit pressure
per degree celsius is called pressure coefficient.
h-A
Yp=po——7
F oty 1 1)
where Py, P; and P, are volumes of the gas at 0°C, £,°C and 1,°C.
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Methods of heat transmission: There are three method of heat transmission.

(i) Conduction : Heat is transmitted through the solids by the process of conduction only.
When one end of the solid is heated, the atoms or molecules of the solid at the hotter end
becomes more strongly agitated and start vibrating with greater amplitude. The disturbance is
transferred to the neighbouring moiecules.

Applications : (i) The houses of Eskimos are made up of double walled blocks of ice. Air
enclosed in between the double walls prevents transmission of heat from the house to the
coldest surroundings. (ii) Birds often swell their feathers in winter to enclose air between
their body and the feathers. Air prevents the loss of heat from the body of the bird to the cold
surroundings. (iii) Ice is packed in gunny bags or sawdust because, air trapped in the saw dust
prevents the transfer of heat from the surroundings to the ice. Hence ice does not melt.

(ii) Convection : It is a phenomenon of transfer of heat in a fluid with the actual movement

of the particles of the fluid.

When a fluid is heated, the hot part expands and becomes less dense. It rises and upper colder
. part replaces it. This again gets heated, rises up replaced by the colder part of the fluid. This
process goes on. This mode of heat transfer is different from conduction where energy
transfer takes place without the actual movement of the molecules.

Application : It plays an important role in ventilation and in heating and cooling system of
the houses,

(iii) Radiation : It is the phenomenon of transfer of heat without any material mediwm.
Such a process of heat transfer in which no material medium takes part is known as radiation.

Thermal radiation: The energy emitted by a body in the form of radiation on account of its
temperature is called thermal radiation. It depends on, (i) temperature of the body (ii) nature
of the radiating body

Note: The wavelength of thermal radiation ranges from 8 x 107 m to 4 x 10 m. They bclong
to infra-red region of the electromagnetic spectrum.

Properties of thermal radiations

(1) Thermal radiations can travel through vacuum.
(ii) They travel along straight lines with the speed of light.
(iii) They can be reflected and refracted. They exhibit the phenomenon of interference and

diffraction.
(iv) They do not heat the intervening medium through which they pass,
(v) They obey inverse square law.

Steady state: The state of a conducting rod in which no part of the rod absorbs heat is called
the steady state.

Temperature gradient: The rate of change of temperature with distance between two
1sothermal surfaces is called temperature gradient. — > Heat flow
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) Change in temperature ~ A@
rature gradient = =T
Tempe ) Perpendicular distance  Ax

fts SI unit is °C per meter and dimension is [L™'K].
The negative sign indicates that heat flows in the direction of decreasing temperature.

Loefficient of thermal conductivity: The amount of heat flow in the conducting rod is

0 A‘(i&):
Or 'Q"_IcA(Aé')r
X

where £ is the coefﬁcxent of thermal conductivity, 4 is the area of cross-section' x is the
length of the £od, AQ is the temperature difference between the ends of the rod and ¢ is the
time.
The SI unitof kisJJs m™ K. Since J 57 is watt (W), the unit of & can also be expressed as
W K ! Its dimension is [MLT ]
. dg de

in calculus, the above equation can be written as y = —kA =
Hence the coefficient of thermal conductivity of the material may be defined as the rate of
flow of heat per unit area per unit temperature gradient when the heat flow is perpendicular to
the isothermal surfaces. b

Thermal (heat) capacity: Heat capacxtg of any body is equal to the amount of heat energy
required to increase its temperature to 1°C. It is denoted-by C, and its SI unit is Jouie/kclvm

(JIK) or (JPC)

Specific heat: The amount of heat required to raise the temperature of unit mass of the
substance through 1°C is called its specific heat. It is denoted by s.

Its SI unit is joule/kelvin-kg (Jhkg™' K Yor (J kg™ %¢Y, and its dimension is [L2T2K").

Note: :
(i) The heat capacity per unit mass is called specific heat s.
C
§=-— =>C=ms
m

(ii) The specific heat of water is 4200 J kg™' K 'which is high compared with most other
substances.

(ii1) Gases have two types of specific heat. The specific heat capacity at constant volume (Cy)
and the specific heat capacity at constant pressure {(Cp).

The specific heat capacity at constant pressure (Cp) is greater than the specific heat capacity
at constant volume (Cy) ie., Cp> Cy. -

(iv) For molar specific heats Cp— Cy = R
where R is called gas constant, and this relation is called Mayer's formula.

{v) The ratio of two principéi specific heats of a gas is represented by ».
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The value of ydepends on atomicity of the gas.

(vi) Amount of heat energy required to change the temperature of any substance is given by
Q = msA8

where m is the mass of the substance, s is the specific heat of the substance and A& is the

change tn temperature.

Molar specific heat: The amount of heat required to raise the temperature of one mole of a
substance through a unit degree is called the molar specific heat of the substance. It is
denoted by C".

Note: 1 mol = 6.02 x 10* elementary units

Relation between the molar specific heat (C’) and the ordinary specific heat (s): Amount
of heat energy O required to raise the temperature of & mole of a substance through a
temperature change A€ is

Q=ul' A6
wp=tt
M

where m is the mass of the substance, and M is the mass of 1 mol (molar mass) of that
substance.
m 1
o0 W C'A8
“Also @ =msAb
Equating the above two equations we have
A0 =msAd
M
<
M
Hence the molar specific heat equals the specific heat times the mass M of | mol
(molar mass).

= § =C'= Ms

where m is the molecular mass, N, is the Avogadro number and M = mN,

Speclfic heat of water: The specific heat of water varies by only about | percent from 0°C to
100°C at a pressure of 1 atm. We can usually neglect this variation and take the specific heat

of water to be 4.184 kJ/kg K.

Thermal equilibrium: When there is no transfer of heat between two bodies in centact, then
the bodies are said to be in thermal equilibrium.

Water equivalent: [t is the quantity of water whose thermal capacity is same as the heat
capacity of the body. It is denoted by w.

w = ms = Heat capacity of the body
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In order to raise the temperature of m grams of the body through A8, the amount of heat
required is

O =msA8
where s is the specific heat of the body. Now if the same amount of heat is supplied to
w grams of water which has specific heat s =1 cal/gm.’C, such that the temperature of the
'water rises by Ag, then

0 = wsAf = wAf ['-s=1cal/ gm°C}
Equating the above two equations , we have

wAd = msAG =S w=ms

Latent heat: The heat energy absorbed or released at constant temperature per unit mass for
change of state is called latent heat i.c.,

r=¢
m
Or Q=mlL

where m is the mass of the substance and L is the latent heat. _
The SI unit of latent heat is cal/gm or J/kg and its dimension is [L2 772).

For water at its normal boiling point or condensation temperature (100°C), the latent heat of
vaporisation is ' ' )

L = 540 cal/gm
L = 40.8 kJ/mol
L =2260 kl/kg
For water at its normal freezing temperature or melting point (6°C), the latent heat of fusion
is
L =80 cal/gm
L = 60 kJ/mol

L=336kl/kg

Note: _ '

(i) It is more painful to get burn by steam rather than by boiling water at 100°C . At 100°C,
steamn gets converted to water then it gives out 536 cal of heat. So it is clear that steam at
100°C has more heat than water at 100°C.

(ii) There is more shivering effect of ice cream on teeth as compared to that of water
(obtained from ice). This is because when ice cream melts down, it absorbs large amount of
heat from teeth.

Principle of calorimetry: When a hot body is mixed with a cold body, then heat lost by hot
body is equal to heat gained by cold body.
Heat lost = Heat gain.

Absorptive power: Absorptive power of a body for a given wavelengih and temperature is
defined as the ratio of the radiant energy absorbed per unit area per unit time to the total
energy incident on it per unit area per unit time, Tt is denoted by a;.

Emissive power: Emissive power of a body at a given temperature is the amount of energy
emitted per unit time per unit area of the surface for 4 given wavelength. It is denoted by e;.

Its unit is W m™2,
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Perfectly black body: A perfect black body is the one which absorbs completely the heat
radiations of all wave-lengths which fall on it and emits heat radiations of all wavelengths
when heated. Since a perfect black bady neither reflects nor transmits any radiation, the
absorptive power of a perfectly black body is unity.

Kirchoff's law: According to this law, the ratio of emissive power to the absorptive power
corresponding to a particular wavelength and at a given temperature is 2lways a constant for
all bodies. This constant is equal to the emissive power of a perfectly black body at the same
temperature and the same wavelength. Mathematically

e
—4 =constant = £
a;

Note: If a body absorbs radiation of certain wavelength strongly then it will also strongly
emit the radiation of same wavelength. In other words, good absorbers of heat are good
emitters also.

Stefan's law: Stefan’s iaw states that the total amount of heat energy radiated per second per
unit area of a perfectly black body is directly proportional to the fourth power of its absolute
temperature i.€., '

EaT
or £E=¢6T
where ¢ is called the Stefan’s constant. Its value is 5.67 x 10 Wm? K. Itis also called
Stefan - Boltzmann law.

Newton's law of cooling: Newton’s law of cooling states that the rate of cooling of a body is
directly proportional to the temperature difference between the body and the surroundings.

i.e.,

dar
= B o (T~ T
7 o ( )

where T and T are the temperatures of the body and the surroundings.

The law holds good 6nly for a small difference of temperature. Loss of heat by radiation
depends on the nature of the surface and the area of the exposed surface.

Derivation of Newton's law of cooling from Stefan's law: Stefan's law is applicable for ail
temperatures of a hot body. But Newton's law is applicable when the difference of
temperature between the hot body and the surrounding is small. Consider a hot body at a
temperature T is placed in a surrounding of uniform temperature 7. According to Stefan's

law,
E=eo(T*-T})
where e is the emissivity of the surface of the hot body.

E=eal(TY ~ (T )= (T + TN ~T5)
Or E=ea(T’+TINT+T YT -T,)
Or E=ec(T~T)T +TH(T +T,)* -27TT,)
For a small difference of temperature, i.e., 7~ T, we have
E=eo(T~TXT +TY(T +T) ~27TT]
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Or E=eo(T-T)2T)AT? - 2T?] = ea(T ~ T,)(2T)(2T?)
Or E=4eoT’(T-T,)
Taking 4ecT’ =k, then
E=KT-T,)
Or Ex(T-T)

This equation represents Newton's law of cooling and is true when the difference of
temperature is small, ' "
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THERMODYNAMICS

Heat: Heat is a form of energy called thermal energy. Rubbing our hands against each other
~. produces heat, Joule’s paddle wheel experiment led to the production of heat by friction.

| 1 keal = 10 cal.
Also 1 cal=4.18]

Calorie: The amount of heat required to raise the temperature of 1g of water by 1°C i.e., from
14.5°C to 15.5°C is known as one calorie.

- Positive and negative heat: Heat is positive Environment (7] Environment {7}
when energy is transferred to the system from m—

the environment i.e., heat is absorbed by the *

system. Heat is negative when energy is Q Q

transferred to the environment from the system 00 HTs*: iT‘ " 0<0 HT s :’.T € ati
. . , Iieal 158 S1ve <, Heat s nepative
i.e., heat is lost by the system. ke bt

Temperature: Temperature of a body is the property which determines whether or not it is in
thermal equilibrium with other bodies.

Energy exchange between a glass of cold water and its surroundings continues until thermal
equilibrium was reached. All bodies in thermal equilibrium have a common property, called

temperature, whose value is same for ali of them.
Or

Temperature of a body is the degree of hotness or coldness of the body.
Heat flows from a body at high temperature to a body at low temperature when they are in

contact with each other.

Thermodynamical System: An assembly of an extremely large number of particles whose
state can be expressed in terms of pressure, volume and temperature, is called thermodynamic

system.
Thermodynamic system is classified into the following three systems.
(i) Open system: System that exchange both energy and matter with the surrounding is called

open system.
(ii) Closed system: System that exchange only energy (not matter) with the surrounding is

called closed system.
(iii) Isolated system: System that exchange neither energy nor matter with the surrounding is

called isolated system.

Thermodynamic Parameters or Coordinates or Variables: The state of thermodynamic
system can be described by specifying pressure, volume, temperature, internal energy,
number of moles, etc. These are called thermodynamic parameters or coordinates or
variables.

Equation of state: The general relationship between pressure, volume and temperature for
the given mass of the system (eg gas) is called equation of state. Thus for #» moles of an ideal

gas, the equation of state is
PV =nRT
where R is called gas constant




Note: At very low pressures, the forces of intermolecular attraction are negligible
at low pressures only, a real gas obeys the equation PV = RT

Work done by the thermodynamic system: Work done by the thermodynamic syst
given by :

W=pxAV
where p = pressure and AY = change in volume.
- Work done by the thermodynamic system is equal to the area enclosed between the p-V curve
- and the volume axis.

Work done in process A-B = area ABCDA

d

T : External External
Al A p-Vamve Movement ssure
5 4 pressure of the piston pre
Internal | ] ovement
o} c SSure of

Volume (7) —— @) thepiston

Note: Work done by the thermodynamic system depends not only upon the initial and final
states of the system but also depend upon the path followed in the process.

In figure (1), W.D by the thermodynamic system (internal pressure) is positive, and W.D by
external pressure is negative.

In figure (2), W.D by the thermodynamic system (internal pressure) is negative, and W.D by
external pressure is positive.

Internal energy: The total energy possessed by any system due to molecular motion and
molecular configuration, is called its internal energy.

Note: Internal energy of an ideal gas depends on temperature only i.e., U= f(T). Whereas
for a real gas the internal energy is a function of any two of the thermodynamic variables
pressure, volume and temperature i.e., U= f(P,T), U= f(V,T) and U = f(P,V).

Zeroth law of ther:ﬁodynamics: Zeroth law of thermodynamics states that, if two systems
which are individually in thermal equilibrium with the third system, they are aiso in thermal
equilibrium with each other.

If two systems A and B are separately in thermal equilibrium with a third system C, then the
three systems are in thermal equilibrium with each other.

Note: This Zeroth Jaw was stated by Flower much later than both first and second laws of
thermodynamics. This law helps us to define temperaturt in a more rigorous maner.

First law of therm odynamics: The first law of thermodynamics states that the amount of
heat energy supplied to a system is equal to the sum of the change in internal energy of the
System and the work done by the system. i.e.,

AQ =AU+ AW

Note: This law is in accordance with the law of conservation of energy.
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Thermodynamic processes:
(1) Isothermal process: A process taking place in a thermodynamic system at constant
temperature is called an isothermal process. Isothermal process are very slow processes.
These process follows Boyle's law, according to which

pV = constant.

Example: Melting process is an isothermal change, because temperature of a substance
remains constant during melting.

Note: In isothermal process, change in internal energy is zero (AU =0) i.e.,

AQ =AU+ AW
AQ =0+ AW
LAQ =AW

(2) Adiabatic process: A process taking place in a thermodynamic system for which there is
no exchange of heat between the system and its surroundings. Adiabatic processes are very
fast processes. These processes follows Poisson's law, according to which

4
pVi =TV = *Z;:; = constant.
P

Examples: -
(1) Sudden compression or expansion of a gas in a container with perfectly non-conducting

wall.,
(i1} Sudden bursting of the tube of a bicycle tyre.

Note: In adiabatic process, no exchange of heat takes place, i.e., AQ=0 i.e.,

AQ =AU+ AW
0=AU+ AW
s AU = -AW

In adiabatic process, if gas expands, its internal energy and hence its temperature decreases
and vice-versa.

Isobaric process: A process taking place in a thermodynamic system at constant pressure is
called an isobaric process.

Isacheric process: A process taking place in.a thermodynamic system at constant volume is
called an isochoric process.

Cyelic process: When a thermodynamic system returns to its initial state after passing
through several states, then the process is called a cyclic process.

Specific heat capacity of a gas: Specific heat capacity of a gas may have any value between
- and +w depending upon the way in which heat energy is given.
Let m be the mass of a gas and C its specific heat capacity. Then
AQ=m x C x AT
where AQ is the amount of heat absorbed and AT is the corresponding rise in temperature 1.€.,

aAQ

mx AT




Case (i)
If the gas is insulated from its surroundings and is suddenly compressed, it will be heated up,
and there is rise in temperature, even though no heat is supplied from outside i.e.,

AQ=0
- 0

= =1
mx AT mxAT

Case (ii)
If the gas is allowed to expand slowly, in order to-keep the temperature constant (AT = 0), an
amount of heat AQ is supplied from outside, then

C = AQ = AQ = 400
mxAT mx0
"' AQ is positive as heat is supplied from outside.

Case (iii)
If the gas is compressed gradually and the heat generated AQ is conducted away so that
temperature remains constant, then
C= AQ =-AQ=HOO
mx AT mx0
" AQ is negative as heat is supplied by the system

Hence, in order to find the value of specific heat capacity of a gas, either the pressure or the
volume of the gas should be kept constant. Consequently a gas has two specific heat
capacities (1) Specific heat capacity at constant volume (ii) Specific heat capacity at constant
pressure.

Specific heat capacity of a gas at constant volume: Specific heat capacity of a gas at
constant volume Cy is defined as the quantity of heat required to raise the temperature of unit
mass of a gas through 1°C, keeping its volume constant i.e.,

()
AT ),

Specific heat capacity of a gas at constant pressure: Specific heat capacity of a gas at
constant pressure C,, is defined as the quantity of heat required to raise the temperature of unit
mass of a gas through 1°C, keeping its pressure constant i.e.,

()

Cris greater than CV:: When a gas is heated at constant volume, ng work is done, and hence
whole of the heat supplied is used to raise its temperature through 1°C. However more heat is
required to raise its temperature through 1°C at constant pressure. Hence Cp > Cy.

Relation between Cpand Cy (Meyer’s relation): Let us consider one mole of an ideal gas
enclosed in a cylinder provided with a frictionless piston of area 4. Let P, Vand T be the
pressure, volume and absolute temperature of gas respectively.

A quantity of heat d() is supplied to the gas at constant volume and this heat energy is used
to increase the internal energy dU of the gas. Let the increase in temperature of the gas is d7,
but the gas does not do any work (dW = 0).
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"dQ=dU =1xC, xdT =C, xdT
Now let dQ' be the quantity of heat supplied to the same gas at constant pressure 1o increase
its temperature to d7.
S dQ=dU+dW =dU + PdV -—---- (1)
Since the expansion takes place at constant pressure,
L dQ' =1xC,xdl =C, xdT
Equation (1) becomes
CpxdT =C, xdT + PAV - 2
The equation of state of one mole of an ideal gas is
PV =RT where R is called gas constant,
Differentiating both sides gives
PdV = RAT ------- (3)
Substituting equation (3) in equation (2) gives
C,xdT =C, xdT + RdT
Or C,=C,+R
L Cp=Cy =R
This equation is known as Meyer’s relation

Reversible process: A process that can be reversed without the loss of energy form the
system is called reversible process.

Condition for reversible process
(i) The process must be infinitely slow.
(i) The system should remain in thermal equilibrium i.c., system and surrounding should

remain at the same temperature.

Examptes
(a) Let a gas be compressed isothermally so that heat generated is conducted away to the

surrounding. When it is allowed to expand in the same small equal steps, the temperature
falls but the system takes up the heat from the surrounding and maintains its temperature.
(b) Electrolysis can be regarded as reversible process, provided there is no internal resistance.

Irreversible process: A process that cannot reverse both the system and the surrounding to
their original conditions is called Irreversible process.

Examples: diffusion of gases and liquids, passage of electric current through a wire, and heat
energy lost due to friction. As an irreversible process is generally a very rapid one,
temperature adjustments are not possible. Most of the chemical reactions are irreversible.

Second law of thermodynamics: Different scientists have stated this law in different ways to
bring out its salient features.

(i) Kelvin’s statement; It is impossible to obtain a continuous supply of work from a body
by cooling it t0 a temperature below the coldest of its surroundings.

(ii) Clausius statement: It is impossible to transfer heat from a lower temperature body to a
higher temperature body without the use of an external agency.
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(iii) Kelvin - Planck’s statement: It is impossible to construct a heat engine that will convert
heat completely into work.

Entropy: Entropy is a measure of the disorder of a system.

Note:
(1) Entropy is a physical quantity that remains constant during a reversible adiabatic change.

Change in entropy is given by 4S5 = _JTQ

where & is the heat supplied to the system and T is the absolute temperature. Entropy of a
system never decreases, i.e., dS 2 0. '

(2) In any natural process, the entropy increases i.e., some energy becomes unavailable to do
useful work.

Heat engine: A heat engine is a device which converts heat energy into mechanical energy.
Heat engine consists of three parts
(i) Source of heat at higher temperature
(i) Working substance
(iii) Sink of heat at lower temperature.
Thermal efficiency of a heat engine is given by
work done/cycle

total amount of heat absorbed/cycle
Ql _Q2 =1_&=1_-Z_2_
g ¢ T

where () is the heat absorbed from the source, 0 is the heat reject to the sink and 7' and 7
are temperatures of spurce and sink.

n:

U=

Carnot's cycle: Carnot devised an ideal cycie of operation for a heat engine, called Carnot's
cycle,

A Carnot's cycle contains the following four processes
(i) Isothermal expansion (AB)

(ii) Adiabatic expansion (BC)

(iii) Isothermal compression (CD)

(iv) Adiabatic compression (DA)

The net work done per cycle by the engine is
numerically equal to the area of the loop representing
the Carnot's cycle.

Pressure (p)——

: : T ' :
The efficiency of the cycleis p =1~ Volume (7)
. i .
Note: Efficiency of Carnot engine is maximum for given temperatures 7; and 7.

Refrigerator or Heat pump: A Refrigerator or heat pump is a device used for cooling
things. It absorbs heat from the sink at lower temperature and reject a large amount of heat to
the source at higher temperature.

Coefficient of performance of refrigerator is given by

0_ 0 _ T
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where (J; is the heat absorbed from the sink, O, is the heat rejected to the source and 7 and
T are temperatures of source and sink.

Relation between efficiency (7) and coefficient of performance ()

1-
p=—1
n
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BEHAVIOUR OF PERFECT GAS AND KINETIC THEORY

Boyle's law: At a constant temperature the volume of a given mass of a gas is inversely
proportional to its pressure i.e.,

V«mcl
P

Or V= k% where £ is a constant of proportionality.

Or PV = constant
For a given gas AV, = AV,

Charles’ law: At a constant pressure the volume of a given mass of a gas is directly
proportional to its absolute temperature i.e.,
VT
Or V=kT wherekisaconstant of proportionality.

Or —?— = constant

For a given gas LA _h
L T

Equation of state of a perfect gas or an ideal gas:

In figure (a)

Initial volume of the gas in a container =V,

Initial temperature of the gas = T, P,

Initial pressure of the gas = P;
- Infigure (6) et SERE

Final volume of the gas in & container = V'

Final temperature of the gas = T, (here Tz > T})
Final pressure of the gas = Py {constant) (@)

From Charles' law V «« T  at constant Pressure
= % = k (constant)

A/

- TZ TI

AL S—TY
Vi

T,

Again in figure (b)

Initial volume of the gas in a container = V"
Initial temperature of the gas = T

Initial pressure of the gas = P,

In figure (¢)

Final volume of the gas in a container = V;

Final temperature of the gas = T, (constant)

Final pressure of the gas = P, (here P, <Py)
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From Boyles' law V % at constant Temperature

=>VP = k (constant)

S V,P, =V'P,
vV, P
Or —% = Lo 2
V' P @
Multiplying equation (1} and equation (2) we have
y.un nL b
v, V T P
v, _ TR
vV, TP
or PVa _BY,
L T
PV
.~ —— = constant
PV .
Or Kl R (Universal gas constant)
: Or PV =RT
For n mole of the gas,
PV = nRT

This is the equation of state. The value of R = 8.31J mol” K/

Unit of the Universal gas constant R:

PV =nRT
Or szy_
- nT
-2 1
OrR-:Nm xm Nm

' molx K i moix K
.. The unit of R is fmol ' K™

Numerical value of the Universal gas constant R:

For 1 mole of a gas at STP,

V =224 litre = 22.4 x107

P = 760 mm of mercury = pgh = (13600) x (9.8) x (760 x 107} = 1.013 x 10° Nm"?
T=273.15K.

PV (1.013x10°)x(22.4x10°

SR=— )z8.3I.)",'nc:;u’"'x‘('I
T 273.15

Postulates of Kinetic theory of gases:
(1) A gas consists of a very large number of molecules. Each one is a perfectly identical

elastic sphere.
(2) The molecules of a gas are in a state of continuous and random motion. They move in all

directions with all possible velocities.

U prees P ————— T ———— p 2



(3) The size of each molecule is very small as compared to the distance between them.
Hence, the volume occupied by the molecule is negligible in comparison to the volume of the
gas.

(4) There is no force of attraction or repulsion between the molecules and the walls of the
container.

(5) The colisions of the molecules among themselves and with the walls of the container are
perfectly elastic. Therefore, momentum and kinetic energy of the molecules are conserved
during collisions.

(6) A molecule moves along a straight line between two successive collisions and the average
distance travelled between two sﬁccessive collisions is called the mean free path of the
molecules.

(7) The collisions are almost instantaneous i.e., the time of collision of two molecules is
negligible as compared to the time interval between two successive collisions.

Avogadro number N

Avogadro number is defined as the number of molecules prescnt in one mole of a substance.
It is constant for all the substances. Its value is 6.023 x 10% '

Pressure exerted by an ideal gas:
Consider a cubic container of side / containing N molecules of perfect gas moving with
velocities Cy, Cy, C; ... Cn. A molecule moving with a velocity C), will have velocities u;, v,
and w, as components along the X, Y and Z axes respectively. Similarly uj, v, and wy are the
velocity components of the second molecule and so on.

SO =ul v e w!

_C2=ul +vZ+w?andsoon,
The momentum of the first molecule moving along the positive X-axis, before striking the
face II (shown in the figure) is mv; and reflected back with the momentum ~mv,.
Change in the momentum of the molecule = Final momentum ~ Initial momentum

= My - My = ~-2muy

During each successive collision on face | the molecule must travel a distance 2/ i.e., from
face I to face II and back to face 1.
Time taken between two successive collisions is A

= 3{ second
v 1

change in momentum

~. Rate of change of momentum =

time taken > X
~2mu, u
=t = 2mu, x
2 a2l ]
u,
u?
i.e., Force exerted on the molecule = ~ -—!
According to Newton’s third law of motion,
2
mu mu
Force exerted by the molecule = — (~ *7—‘—] —TL

Force exerted by all the » molecules is
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{ / ! I
Pressure exerted by the molecules is
pof_ L my; mul mu?  mul
4 P I { !
:;—I}(u +uj+ul+ u;‘;)

Similarly, pressure exerted by the molecules along Y and Z axes are

P, ) (v,+v2+v3+ v’)

P = ;T:(w +wlewla, wN)

Since the gas exerts the same pressure on all the walls of the container, then

P,=P =P =P
P +P +P =P+P+P=3P
or pfithth
=
Pzé ;—I}[(u +ul4+ul+. uN)+(v,2+v§+v§+...vii)+(wf+w§+w§_+...wi)]
P:% %[(u, 4V +wi)+(u§+v§+w§)+(u§+v§+w§)+...(u§+v§+wi)]
P= %%[C2+C2+C2+ ]
le_mN(cf+c§+c§+...c;]
3 r N
P=%-mVNC2 (1)

2 2 2 2
Where C = \/ Ci+G 1?3 *-Cn is called the root mean square (RMS) velocity, which is

defined as the square root of the mean value of the squares of velocities of individual

molecules.

Equation (1) is the expression for the pre‘ssure exerted by the gas. Equation (1) can also be

written as
) 1"=~;:‘-—";~/~/{-C2 where m N = M is the mass of the gas
: ] 2 M ; .
2y P= 3 o & where 7= p is the density of the gas
(3)P=l-f’£c2 - PV =1 MC?
IV 3

(4) PV = —(— - MC? ] = ;-_—é where K.E is the average kinetic energy of the gas.
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Average kinetic energy of one mole of the gas:
Let us consider one mole of gas of mass M and volume V.

PVx-;»-MCZ
From gas equation, PV = RT
RTz%MC’

Or S RT =~3~(-1—MC2]
T2 213

Or ERT =lA4C2
2 2

i.e., Average Kinetic energy of one mole of the gas is equal to %RT

Note:
(1) The root mean square velocity of the gas is given by

c- KL _ [V _ [P
M oV yo,
(2) For a given gas C < /T

1
3) For different gases C o« ~—
® gses Co g

Average Kinetic energy per molecule of the gas:
Since one mole of the gas contains N4 number of atoms where N, is the Avogadro number.

Spr=tun o
277
3R, o
N, T2

3

~kyT = lmCZ where &y = —R—is the Boltzmann constant.
2 2 N,

Its value is 1.38 x 102 J K™
.- Average kinetic energy per molecule of the gas is equal to —;—kBT

Another form of Perfect gas equation:
Let N is the number of molecules in the gas and '#' is the number of moles
1 mole of a gas = N, molecules (N4 = Avogadro number)
.n moles of the gas = nN, molecules.
Again let N = nN;
N

S —
N,

2 PV =nRT
PV:(E—]RT = N(i}": Nk,T
N N

A A

The above equation gives the perfect gas equation in térms of the number of molecules
present in the gas.
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Molecular interpretation of temperature:

".' Average kinetic energy per molecule of the gas is equal to %k sl

1, 3
Or +mC? =2 k.T
Fom E Rk

o1r-;»mc2 < T

Thus the Kinetic energy of a gas molecules is directly proportional to the absolute
temperature of the gas.

Note: At absolute zero i.e., 0K or ~273.15° C, the kinetic energy of a gas molecule is zero.
No gas molecule can have kinetic energy less than zero so no temperature can be lower than

-273.15°C.

Real gases: Real gases deviate slightly from an ideal gas because in a real gas, the
intermolecular forces are not zero and therefore, a definite amount of work has to be done in
changing the distance between the molecules. Also real gas molecules occupy a finite
volume.

Degrees of freedom:
The number of degrees of freedom of a dynamical system is defined as the total number of
co-ordinates or independent variables required to describe the position and configuration of
the system.

Or
The degrees of freedom mean the number of independent ways the molecules can possess
energy.

Monoatomic molecule:

A monoatomic molecule consists of only a single atom of point

mass, it has three degrees of freedom of transiatory motion along

the three co-ordinate axes as shown in the figure. x

Examples: molecules of rare gases like helium, argon, etc.

Diatomic molecule: z

A diatomic molecule has two degrees of freedom of

rotational motion, and three degrees of freedom of

translational motion along the three axes. So, a diatomic

molecule has five degrees of freedom. " X

Exampiles: molecules of Oy, Ny, CO, Ch, etc.

Triatomic molecule (Linear type): z

In the case of triatomic molecule of linear type, the centre

of mass lies at the central atom. It therefore, behaves like a

diatomic molecule with three degrees of freedom of

translation and two degrees of freedom of rotation, totally it  x X
has five degrees of freedom.
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Examples: molecules of CO,, CS;, etc.

Triatomic molecule (Non-linear type):

A triatomic non-linear molecule may rotate, about the z

three mutually perpendicular axes. Therefore, it possesses

three degrees of freedom of rotation in addition to three

degrees of freedom of translation along the three co-

ordinate axes. Hence it has six degrees of freedom. X X

Examples: molecules of H,0, SO, etc,

Note: The degrees of freedom of the system is given by:
f=3N-k
Where f = degrees of freedom
N = number of particles in the system
k = independent relations among the particles

(i} For monoatomic molecule, N=1and &= 0
S f=3N-k=31)~0=3

(ii) For diatomic molecule, N=2 and k= 1
L f=3N-k=3(2)~1=5

(iii) For triatomic molecule of linear type, N = Sandk 2
S f=3N-k=3(3)-2=7

(iv) For triatomic molecule of non-linear type, N=3 and k=3
S f=3N-k=3(3)-3=6

Note: At very high temperatures (above 5000K), a gas molecule possesses vibratory motion
also in addition to translatory and rotatory motion.

Law of equipartition of energy:

Law of equipartition of energy states that for a dynamical system in thermal equilibrium the
total energy of the system is shared equally by all the degrees of freedom (translational as
well as rotational). The energy associated with each degree of freedom per molecule is

1 .
:-Z-kBT , where &, is the Boltzmann’s constant.

L .3 , .

Note: For a monoatomic molecule, the average kinetic energy is E—k 51 . This energy is
shared equally by all the degrees of freedom, and each degree of freedom has an energy
]
“ikBT .

3 1 1 1

ok T =k, T+ — kT 4+ —kgT

2 B 2 B 2 R 2 B

Thus a monoatomic molecule has three degrees of freedom.
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Concept of mean free path:

The mean free path A is the average distance covered by a molecule between two successive
collisions. If the total distance covered after N collisions is S, then the mean free path A is
given by

S48, +8,+8, +8, +8,+5, +.5,

In the figure, the mean free pathis A=

8
(-'-Molcculc
S ¥ O
i r = ®

A ¢ I
o -

o A Era—

Sphere of influence * ”

of molecule A

Let the average velocity of the molecule A be v and the number of molecules per unit volume
be n. Then in 1 second a molecule A will collide with all the molecules whose centres lies in
the cylinder of radius 27 and length / as shown in the figure.

Length of the cylinder /= vt =y x] =v
Volume of the cylinder V=n (:Zr)2 xv = 47rly
Number of molecules in the cylinder = 477’y xn
Number of collisions made by the molecule A in I second = 4nr’y xn

. One collision will take place in every 12 second
4rrvn

. ) .. 1
So the time interval between two successive collisions = = second
' mrvn.

. , ; ‘. 1 ]
The distance travelied between the two successive collisions = vx = ;
dmrevn 4dnron

~mean free path 4 =—;
wrtn
This is Clausius' expression for the mean free path.

Note: All the n molecules are considered to be at rest in Clausius' expression. But if the
motion of the # molecules are taken into consideration, the corrected formula for the mean

1
W2wrin :
This is the Maxwell's expression for the mean free path.

free pathis A =
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OSCILLATIONS AND WAVES

Periodic motion: Any motion that repeats itself after regular interval of time is called
periodic motion. Examples are the motion of planets around the Sun, motion of the hands of
clock etce.

1t

Oscillatory motion: if a body moves back and forth repeatedly about the mean position, it is
said to possess oscillatory motion. Examples are the motion of a pendulum bob, oscillation of
mass suspended from a spring.

Note: All oscillatory motions are periodic but all periodic motion are not oscillatory. Motion
of the Earth round the Sun is periodic but not oscillatory.

Vibratory motion: When the variable parameter is displacement, an oscillation is called
vibration. Example is the vibration of a stretched string etc.

Time period: The smallest interval of time after which the motion is repeated is called Time
period of the motion and is denoted by T. Its unit is second s.

Or
The time taken by a body to complete one oscillation is called time period.

Frequency: The number of complete oscillation or periodic motion executed by a body per
second is called frequency. It is denoted by fand is expressed in s or hertz or Hz.
2 t=1s

AN ANEA "-:
PAAY

@ ' (b)
The relation between time period T and frequency v is

}
/77

In figure (), the time beriod T= %S = f=
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In figure (&), the time period T:'}fs ::>f=-—:~—=1><~;-‘-=4Hz

Displacement as a function of time: Displacement of a body executing a periodic motion
can be expressed by a sine or cosine function of time,
or by their linear combination.
Let a particle starts from the point A on the X axis, and
move along the circumference of a circle of radius a to C
the point B with uniform angular velocity «. Let ¢ be N B
the time taken by the particle to reach the point B, so of
the angular displacement is wf. BM and BN are 4 {
dropped perpendicular to the X and Y axis respectively, P M A
The position of the particle at B along the X and Y axis L'_Yx_)
is represented by the point M and N, and the
displacement of the particle at B along the X and Y axis
IsOM=yan ON =x.
As the particle moves from A to C, the point M moves from A to O, while the point N moves
from O to C. For a complete motion of the particle from point A, to the point A again along
the circumference, the point M moves from A to D and back to A, while the point N moves
from O to C, C to E and E to O. So we see that the motion of the point M and N are
oscillatory motion while the motion of the particle is periodic motion. Along the X axis, the
displacement starts from the extreme position A, but along the Y axis , the displacement
starts from the mean position O. In the figure, the displacement y = a sin a¥, and the
displacement x =g cos ax. Their linear combination is
E=ytx=asinof +acos of
or &=aqa(sin of + cos ax)

Periodic function: The functions which are used to represent periodic motions are known as

periodic functions.
In a periodic motion, displacement can be represented by a simple periodic function as

f(t)= Asinwt = Asin%fﬁr
g2()=Bcoswt = BCOSZTEI

Since the time period of the periodic function is 7 = ~2—£
If the variable ¢ is changed to t+ T, we have
f+T)= Asm-—-—-(t+T)*— Asm[-——t +27r]z Asm—-r
=fU+T)= 1)
g@t+T)= Bcos«-——(: +T) Bcos[mt + 27;) = Bcos«—-r
=g(t+7)=g()

The periodic function can also be expressed as a linear combination of sine and cosine
function as
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Uiwe

&(t) = Asinaxt + Beosart
Now taking 4 = Dcos¢ and B = Dsing then
¢(t) = Dcosgsinax + Dsingeosan
&(f) = D{cosgsinwt +singcosar)
() = Dsin(af + ¢)
To find D and ¢, we use the relation

A= Dcos¢ or 4* = D* cos? (1)
B = Dsing or B> = D*sin’ ¢ --(2)
Adding (1) and (2) we have -

D?cos® ¢+ D*sin® ¢ = A* + B?
D*(cos? p+sin’ )= 4% + B?

D= A"+ B = D=+A4*+ B?

Again -§»=D8m¢=tan¢
A Dcosg
B 4 B
tan g = — =fan | —
o=2  spmmr(Z)

Simple harmonic motion (SHM): A special type of periodic motion in which a particle
moves to and fro repeatedly about a mean position under the influence of a restoring force is
known as simple harmonic motion.

This restoring force is always directed toward the mean position and its magnitude at any
instant is directly proportional to the displacement of the particle from the mean position at
that instant.

The characteristic of a simple harmonic motion are:-

(1) It is periodic motion

(i1} It is to-and fro-motion

{ii1) it is a linear motion

(iv) The value of the acceleration at any moment is proportional to the displacement from the
mean position of rest.

Analysis of SHM in terms of uniform circular motion: (i) Let the particle starts from the
point A at time ¢ = 0, and moves to points BCDEFGA in counter-clockwise direction along
the circumference of a circle of radius a as shown in the figure. Let the motion be periodic,
and moves with uniform angular velocity . Then from the figure we see that
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{v) Let the particle starts from the point H and time ¢ = 0,

In the above examples, we see that particle starting from point C, leads the particle that starts
from B and A. Also particle starting from’point B, leads the particle that starts from point A.
Particle starting from A and E are out of phase, and particle starting from H lags behind the
particle that starts from A,

Some relations relating to vibration:

(i) Displacement in SHM: The distance travelled by the vibrating particle at any instant of
time 7 from its mean position is known as displacement.

..............................

oA AL.,;

¥

The displacement of the vibrating particle is y = a sin ¢

(ii) Amplitude: The amplitude of the vibrating particle is defined as its maximum
displacement from the mean position. In the dlsplacement equation y = a sin @, the
amplitude is 'a'.

(iii) Time period: The time taken by a body to complete one oscillation is called time period.
 y=asinax = asin{wt +27)
Also y=gsinat =asino(t+T)

Latv2n=wt+ ol T ==
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(iv) Freq uency: The number of complete osciilation or periodic motion executed by a body
per second is called frequency. It can also be define as the recxprocal of time period. It is

denoted by fand is expressed in s or hertz.
@

1
f“T"zx

@=2x f is called angular frequency. It is expressed in rad s™'.

(v) Phase: The phase of the vibrating particle denotes the
state of motion of the particle at any instant. The state of

"r

motion at any instant means the velocity, acceleration, __ N = !
force etc of the body at that instant. In the equation y =g y{ “ “’A
=0

sin wt the term w7 is known as the phase of the vibrating 5
particle. Note that if the phase is ©, the particle starts
from the mean position i.e., the initial phase is zero.

(vi) Epoch: The phase of the vibrating particle at the commencement of its motion is called

epoch or initial phase.
Let the particie is at the point B at time ¢ = 0, and

moves to point C with uniform angular velocity o, in c .,

time 7 as shown in the figure. L R & B

So the time-displacement equation for the vibrating ¥y L ! ; 0
A

particle is 5
y=asin 6
"0 =wt+ ¢ isthe phase \
sLy=asin(wt+ g)

Hence the particle leads the position of zero phase by ¢ The initial phase or epoch is ¢

Let the particle is at the point H at time ¢ = 0, and
moves to point C with uniform angular velocity @, in
time ¢ as shown in the figure.
So the time-displacement equation for the vibrating y
particle is
y=asin @
“"8=qf- ¢ isthe phase

sLy=asin{at-¢)

Hence the particle lags behind the position of zero phase by ¢ The initial phase or epoch is -¢

(vii) Phase difference:

(a) If two vibrating particles executing SHM having the same time period, and both cross
their respective mean positions at the same time in the same direction, they are said to be in

phase.

QOscillations and Waves
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(b) If the two vibrating particles cross their respective mean position at the same time but in
the opposite direction, they are said to be out of phase i.e., they have a phase difference of .

Jrra— R

1!

/\/\ r’ :; ..:‘l

Ly W

(c) If the vibrating motions are represented by equations
y=asinof and N
yr= b sin{of— ¢)

Then the phase difference between their phase angles
1s equal to the phase difference between the two
motions.

.".phase difference = (@ ~ ¢) ~ w1 = —¢ negative
sign indicates that the second motion lags behind the |
first.

(d) If the vibrating motions are represented by equations
yi=asinwt and

»=bsin(ot+ 4

Then the phase difference between their phase angles
is equal to the phase difference between the two
motions.

.. phase difference = (@f + ¢) ~ ot = +4 positive.
Here the second motion leads the first motion.

(viii) Velocity in SHM: The rate of change of
displacement is the velocity of the vibrating particle.
“y=asingy
dy

d, .
== y=—(asinat) = aw coswt
dt dt

z 7
v=aaVl-sin’ ot = ao I—[XJ :aw1/1—~-}%-
V' \a a
F
v:aa)Ja Y Sv=aya -y
a

(a) When the particle is at mean position, i.e., y = 0, velocity is aw and is maximum,
V=1 ga is called velocity amplitude.
(b) When the particle is in the extreme position, i.e., y = % a, the velocity is zero.

{ix) Acceleration in SHM: The rate of change of velocity is the acceleration of the vibrating
particle,
"y =asinal
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The negative sign indicates that the acceleration is always opposite to the direction of
displacement and is directed towards the centre.

saccel” = ~@'y

2
4y accel” = %(iasinw!] = g;(awcoswr): -aw’ sinwt

{a) When the particle is at the mean position i.e., y = 0, the acceleration is zero,
(b) When the particle is at the extreme position i.e., y = £ a, acceleration is F gw® which is
called as acceleration amplitude.

a'zy

(c) The differential equation of simple harmoni¢c motion is Z? +@'y=0

Using the above equations, the values of displacement, velocity and acceleration for the SHM

are given in the ta

ble below.

Table - Displacement, Velocity and Acceleration

Time ot Displacement Velocity Acceleration
y=asine! | v=aocosof | accel’=-y
t=10 0 0 amn 0
t=T/4 w2 +a 0 -amz
t=172 T 0 - Qw 0
t=3T/4 3n/2 —-q 0 aw’
t=T 2n 0 ) aw 0

{x) Graphical representation of SHM: Graphical representation of displacement, velocity
and acceleration of a particle vibrating simple harmonically with respect to time ¢ is shown in

the figure.

Displecement
=

Velooity
o

Acceleration
=y

Dynamics of SHM: Let us consider a body displaced from a mean position. The restoring
force brings the body to the mean position and is directly proportional to the displacement.

e,—Fay
or F=~ky

Where & is called the force constant or the spring constant. It is expressed in N m™,
From Newton’s second law, F = mxaccel”
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mxaccel” =~k y Or accel” = ~—£y ---------- (n
m

From definition of SHM, accel” = -o* y

.'.-a:’y-———iy »al=t ora)=JE
m m m

Therefore the period of SHM is

=% 29n ( inertial factor
spring ‘spring factor
From equation (1) we have by neglecting the negative sign

m_y
acce! "

Also T = 2,,\/:..2,,\/_‘ W
accel” acceleration

Horizontal oscillations of spring: Consider a mass m is attached to one end of a spring and
the other end is fixed to a support as shown in the figure. The body is placed on a smooth
horizontal surface. Let the body be displaced through a distance x towards right and released.

It will oscillate about its mean position. i
Restoring force F'= - k x. M *
From Newton’s second law, we know that F=ma
Sema=-kx ; n

k iR
a=—x
m
et
x

From definition of SHM, a = - o’x

tx=—Ky Sot=f Ora):\/z
m m m
Therefore the time period of SHM is
2z _2m oM
@ k k
m
The frequency is
1 1 1 |k
f = B
T m 2rx¥m
2 75_

Note: If we consider the displacement y = a sin a#,.then the velocity and acceleration will be

v=aw cos ox and accel” = o' y respectively.
If we consider the displacement x = a cos e, then the velocity and acceleration will be

V= —gwsin af and accel” = —af x respectively.

Vertical oscillations of spring: Figure (a) shows a light spring suspended vertically from a
rigid support in a relaxed position. When a mass ‘m’ is attached to the spring as in figure (b),
the spring is extended by a small length / such that the restoring force Fy exerted by the
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spring is equal to the weight mg. Since the mass m is in equilibrium, the sum of the forces on
it is zero i.e.,

~kl+mg=0
If the mass is displaced downward by a small distance y, then the restoring force exert by the
spring is F, = —(/ + y) as shown in figure (c). Now the net force on mass m is

F=—k(l+ )+ mg =-ki—ky+mg=—ky Cr—kl+mg=0)

If the mass is displaced upward by a small distance y, then the restoring force exert by the
spring is F, = k(! - y)as shown in figure (d). Now the net force on mass m is

F=k(l-y)+(-mg)=kl-ky-mg=-ky Co—ki+mg=0 Or ki-mg=0)
Here the net force is always proportional to the displacement of the body from its equilibrium
position and so the motion is simple harmonic.
According to Newton's second law, F = ma so that

ma=-ky
k
org=-—-=y
m
From definition of SHM, a=-w*y ¢ | . | RS S S
I-yl Z=k{-0
k k _ ---E -~
| 0’ 2 E=~k(*y) ¥
STy =3 = Mmn = — SR IhE W I
m m 2
Orw= \!:E
m
Therefore the time period of SHM is (@ @
T = -2ir- = 23’\/E
@ k
The frequency is
[ l 1 1k
[ e |
T m 2nym
2 ;

Springs in parallek: Two springs of spring factors & and k; are suspended from a rigid
support as shown in the figure. A load m is attached to the combination. Let y be the increase
in length for both the springs but their restoring forces are different.

If Fy and F; are the restoring forces i.e,,

K =-ky F,=-ky
.".Total restoring force = (Fy + F)=— (ki + k) y
So, time period of the body is given by ;.-1] I K
m
k, +k,
If k1 = ky = k then m

T=2n

ST =2 m
2k
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And Frequency f = EL\,.E
Y m

Springs in series: Two springs are connected in series in two different ways. This
arrangement is shown in figure (a) and (b).

In this system when the combination of two springs is displaced to a distance y, it produces
extension y) and y; in two springs of force constants k, and &,.

F==k y, F=-kyy
Where F is the restoring force,
Total extension y in the series combination is
1
y=y ';}F
2 k,
k +k,
o — 2 |F m
[ ik, ] K, k, k,
(a) (b}
So, time period of the body is given by
T=21 Or7 =25 |21 1 ko)
ki,

If 5y =k =k then

T=27r‘j2k§n =2 E’E
k k

And Frequency f = -LJ-]~C-»
27 \2m

Oscillations of a simple pendulum: A simple pendulum consists of massless and inelastic
thread whose one end is fixed to a rigid support and a small bob of mass m is suspended from
the other end of the thread. Let / be the length of the pendulum, When the Ay

bob is slightly displaced and released, it oscillates about its equilibrium o,
position. The figure shows the displaced position of the pendulum. 0
Suppose the thread makes an angle § with the vertical. The distance of the N
bob from the equilibrium position 4 is AB. At B, the weight mg acts Py
vertically downwards. This force is resolved into two components. 5

(i) The component mg cos 8 is balanced by the tension in the thread
acting along the length, towards the fixed point O.
(ii) mg sin @ which is unbalanced, acts perpendicular to the length of the
thread. This force tends to restore the bob to the mean position. If the
amplitude of oscillation is small, then the path of the bob is a straight line.
Restoring force F =-mgsind
If the angular displacement is small sin 6 = 6
F=-mg8
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But (?z-; F=—-mg'i;~
Comparing this equation with Newton’s second law, F = ma we get,
x x
ma=-mg~—l- Or az-*g—‘;

Negative sign indicates that the motion of simple pendulum is SHM.
We know that @ = ~w’x

.2 X :_& g
S X g — Oro =2 Oro=_IS
7 I .
.~ Time period is T=~2-£:27r L
@ g
Frequency is f—-i-——l— g
T 2zV1

Second’s pendulum: A simple pendulum whose time period is two seconds is called
second's pendulum. To find the length of the second's pendulum

2
'.'T=2zr\/z Or T*=dn? L ori=L%
g g 4rx
2
or 1=-2X08 1o 0.993m=99.3cm
4% (3.14)

Total energy in SHM: The total energy (E) of an oscHlating particle is equal to the sum of
its kinetic energy and potential energy if conservative force acts on it.

Kinetic Energy:
Kinetic energy of the particle of mass m is

ool ] ——
- E, =—;~mcoz(a2 ~y%)

Potential Energy:
From definition of SHM F=—ky
Work done by the restoring force during the smatl displacement dy is
dW = ~F.dy = ~(~ky) dy = ky dy
. Total work done for the displacement y is

R SO Bl A IS
r-foaespa{t] 7 i
ck=w'm

.'.W=—%mw’y'f :QEP:}ima)zyz




Total Energy:
E=E +E, =~—;—mca’(a’ -—y’)+%mw2y"
1

L E= Emcazaz
We know that & =27 f
Lk z%m(Zx ia or E=2mn’f?a

Graphical representation of energy: The variation of energy of an oscillating particle with
the displacement can be represented in a graph as shown in the figure. The values of Ex and
Ep in terms of E for different values of y

are given in the Table.

Fy Total energy

Table
¥ 0 |a2 | a| -a?2 | a
KineticEnergy | £ |34 | 0 | 3E4 | 0
Potential Energy | 0 | E/4 | E | EM | E

L

0
Displacement

Undamped oscillation: The oscillations whose amplitude remains constant with time are
called undamped oscillations.

Y

- .-ou--- ~~~~~~

afl Damped oscillations

Undamped oscillations <

Damped oscillations: The oscillations whose amplltude goes on decreasing with time are
called damped oscillations.

Free oscillations: When a body vibrates with its own natural frequency, it is said to execute
free ascillations.

Forced oscillations: When a vibrating body is maintained in the state of vibration by a
periodic force of frequency ( /) other than its natural frequency of the body, the vibrations are
called forced vibrations.
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Resonant oscillations: If the frequency of the external periodic force is equal to the natural
frequency of oscillation of the system, then the amplitude of oscillation will be large and this
is known as resonance.

Waves: The patterns, which move without the real physical transfer or flow of matter as a whole, an
called waves. For example, while we speak, the sound moves ontward from us, without any flow of
air from one part of the medium to another.

Wave motion: Wave motion is a form of disturbance which travels through a medium due tc
the repeated pertodic motion of the particles of the medium abous their mean position. The
motion is transferred continuously from one particle to its neighbouring particle.

Characteristics of wave motion:

(1) Wave motion is a form of disturbance travelling in the medium due to the periodic motio
of the particles about their mean position.

(2) It is necessary that the medium should possess elasticity and inertia.

(3) All the particles of the medium do not receive the disturbance at the same instant.

(4) The wave velocity is different from the particle velocity. The velocity of a wave is
constant for a given medium, whereas the velocity of the particles goes on changing and it
becomes maximum in their mean position and zero in their extreme positions.

(5) During the propagation of wave motion, there is transfer of energy from one particle to
another without any actual transfer of the particles of the medium,

(6) The waves undergo reflection, refraction, diffraction and interference.

Types of waves: There are mainly three types of waves
(1) Mechanical waves: Mechanical waves obey Newton’s laws and they exist in material

media.

(2) Electromagnetic waves: Unlike the mechanical waves, electromagnetic waves do not
require any medium for their propagation.

(3) Matter waves: The waves that are associated with moving electrons, protons, neutrons,
other particles, and even with atoms and molecules are called matter waves,

Mechanical wave motion: There are two types of mechanical wave motion

(1) transverse wave motion: When the constituents of a medium oscillate perpendicular to
the direction of wave propagation, thén the wave is called

transverse waves. Examples of transverse waves are waves | o Py
produced by plucked strings of guitar, violin and /\
electromagnetic waves.

Transverse waves travel in the form of crests and troughs. ' \

The maximum displacement of the particle in the positive
direction i.e., above its mean position is called crest and
maximum displacement of the particle in the negative direction i.e., below its mean position

is called trough.

trough
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(2) longitudinal wave motion: When the constituents of a medium oscillate along the direction of
wave propagation, then the wave is called
longitudinal wave. Example of longitudinal
waves are sound waves in fluids (liquids and ¢ R c R ¢
gases).

When a longitudinal wave travels through a medium, it produces compressions (C) and
rarefactions (R).

A

l___’"i—'_’_"_“”"\
Important terms used in wave motion: crest orest

(i) Wavelength (A): The distance travelled by a wave during /\ /\
which a particle of the medium completes one vibration is . .
called wavelength. \ / \

} Or trough trough
Wavelength may also be defined as the distance between two [
successive crests or troughs in transverse waves, or the distance between two successive

compressions or rarefactions in longitudinal waves.

{ii) Time period {T): The time period of a wave is the time taken by the wave to travel a
distance equal to its wavelength.

(iii) Frequency ( f): It is defined as the number of waves produced in one second. It can also
be defined as the reciprocal of the time period. t=1s

. i >
el =g AN ATAS
In the figure, the frequency /= 4. [ \/ \/ \/ \/

(iv) Velocity of the wave (v): The distance travelled by a wave in a medium in one second is
called the velocity of propagation of the wave in that medium. If v represents the velocity of
propagation of the wave, it is given by

p distance travelled by wave

time taken
A 1
m=—=di—= A
vepshp=ds

Or Wave velocity = Wavelength x Frequency

Comparison between transverse and longitudinal waves:

Transverse waves Longitudinal waves
The particles of the medium vibrate | The particles of the medium vibrate in
perpendicular to the direction in the same direction in which the wave
which the wave advances. advances.
It is formed of crests and troughs It is formed in a series of compressions

and rarefactions

It can propagate only in solids and at | It can propagate in all types of media
the surface of liquid (solid, liquid and gas)

Progressive wave: When a wave moves from one point of medium to another point, it is
cailed travelling or progressive wave.

VSRR —————A.—. O R S
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Displacement relation for a progressive wave: Let us assume that a progressive wave
travels from the origin O along the positive direction of X axis, i.e., from left to right.
The displacement of a particle at a given instant is
y = a sin of
where a is the amplitude of the vibration of the particle and © = 2x .
The displacement of the particle P at a distance x from O at a given instant is given by
y = asin{ot- ¢
If the two particles are separated by a distance 4, they will differ by a phase of 2z

ie, A=2m ¥

Or 1=_2_7;_
: o

Or x=—-£x *
A
2r

Or¢g=—x

¢ A

Or y=a sin(a)r -—%’Ex}

2y

co=2rf= 2::(%]-—-

Or y=a sin(-mf ~——2-£x]._
A A

Or y=a singf(vt ) L —
If the wave travels in opposite direction, i.e., from right to left, the equation becomes.

y=asin %{(v T ) m— )

. A
Again vz -—
& T
Equation {1) can be written as

y*asinz—x—(-)—'hxj
T

A
t x
Or =4 sin 2;r i | e mmm———— 3
¥ (T ).) 3
If the wave travels in opposite direction, i.e., from right to left, the equation becomes.
! x
=8N 24 — 4 = | emeememnnnnn 4
y (T ,J 4

Characteristics of progressive wave:

(1) Each particle of the medium executes vibration about its mean position. The disturbance
progresses onward from one particle to another.

(2) The particles of the medium vibrate with same amplitude about their mean positions.
(3) Each successive particle of the medium performs a motion similar to that of its
predecessor along the propagation of the wave, but later in time.

(4) The phase of every particle changes from 0 to 2x.

sgisavs " e RN R T o T



(5) No particle remains permanently at rest. Twice during each vibration, the particles are
momentarily at rest at extreme positions, different particles attain the position at different
time.

(6) Transverse progressive waves are characterised by crests and troughs. Longitudinal waves
are characterised by compressions and rarefactions.

(7) There is a transfer of energy across the medium in the direction of propagation of
progressive wave.

(8) All the particles have the same maximum velocity when they pass through the mean
position.

(9) The displacement, velocity and acceleration of the particle separated by m). are the same,
where m is an integer.

Variation of phase with time: The phase changes continuously with time at a constant
distance.

At a given distance x from O let ¢ and ¢, be the phase of a particie at time ¢, and £,
respectively.

4, ¢~2n%—2mﬁ *7*%V§§J/7
.
b=t =0t -1)

A¢=-2¢;-5m

This is the phase change A¢ of a particle in time interval As. If Az =T, Ag = 2x. This shows
that after a time period 7, the phase of a particle becomes the same.

Variation of phase with distance: At a given time  phase changes periodically with
distance x. Let ¢ and ¢, be the phase of two particles at distance x| and x; respectxvely from
the origin at a time ¢. ,

o LK Y LY
¢;—27r(T /J and ¢, 2’{?‘ /1]

¢2~¢a=—?i’—(xz~x.>

2::
A =—-—Ax
¢ A

The negative sign indicates that the forward points lag in phase when the wave travels from
left to right.

When Ax = 1, Ag = 2, the phase difference between two particies having a path difference A
is 27
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Reflection of transverse waves:
(i) Reflection at rigid support: When a transverse wave is reflected at the rigid support, a
phase change of 180° takes place in the displacement.

e —
— e
(ii) Reflection at free houndary: When a transverse wave is reflected at the fre¢ boundary,
no phase change takes place in the displacement.

EANS A S A S
Superposition principle: When two waves travel in a medium simulianeously in such a way

that each wave represents its separate motion, then the resultant displacement at any point at
any time is equal to the vector sum of the individual displacements of the waves.

If ‘17,} =q and |f’",| =q are the displacements at a point, then the resultant displacement is

given by ‘_
" V=% +7%, i .
Figure 1
I?l=|ﬁ +ﬁ|:|ﬁl+|ﬂ|=a+a=2a
Figure 2

o4 B ol - =[F| -] a0
The principle of superposition of waves is applied in wave phenomena such as interference,
beats and stationary waves.

(1 ()

Stationary (Standing) waves: When two progressive waves of same amplitude and
wavelength travelling along a straight line in opposite

directions superimpose on each other, stationary waves E<><><>§
are formed.
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1

Let us consider a progressive wave of amplitude @ and wavelength A travelling in the posntlve
direction of X axis.

o t x . \ .
v"'““s‘“"[rz) Wi e
This wave is reflected from a free end and it travels in the negative direction of X axis, then
_ { o x
Y,=a sm27r(? + E)
According to principle of superposition, the resultant displacement is
Y=Eh+,

. t x . t X
y=asm27r(-—-— +asin2z| —+—
T A r A

[27;: 27:x] .(2::! Zxx)
y=a|sin| — - +sin| —+
T A T A
: (27;:} (2xx]
y=a]2sin €Os|

T A
Or y=l:2a cos[-%ﬁ)]sin[mJ

A T

This is the equation of a stationary wave.

Each particle vibrates in a SHM with an amplitude

2aco{«2—7:1—{)?. The amplitudes are not

equal for all the particles. In particular, there are points where the amplitude

2a cos[ -%?]I =(. These points are calied nodes, and this will be the case when

Where » is an integer.

Again there are points where the amplitude is maximum i.e.,

2acos[-2%{] =2a. Such

points are called antinodes. This will be the case when

cos(zﬂ J i
A

=0,727,..=nn

A
Or x—n(a—)

2rx
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. . . . A .
The distance between any two successive antinodes or nodes is equal to 5- , and the distance

. . A
between an antinode and a node is 1— .

Vibration of a string fixed at both ends: Suppose a string of length L is kept fixed at the
endsx=0andx =L
Waves going to the positive direction of X interfere to give a resultant waves

v, = asin{kx—ot)
Waves going to the negative direction of X interfere to give a resultant waves
¥, = asin(kx + ot)
The resultant displacement of the particle is
y =y +y, =asin{kx - ot) + asin(kx + o)
y = alsin{kx ~ ot} + sin(kx + ox)]
y =2asinkcosax

Or y=2a sin(z—;- chos Wt

The boundary conditions are
DHatx=90, y=0
(idatx=L, y=0

L0=2a sin[gf- L} CcOS @f

Or sin—2—ﬂ-L=0
A

Or g—{r—L-:mr
A

Or sz—'?'—

2

First mode of vibration: The first mode of vibration occurs for n = 1, the corresponding
wavelength A| and frequency f; are given by

Ixé‘—-:L = A =2L
%) ;
‘_&_;

Note that the velocity v is the same for all wavelength.

S

Gy = i —-

m 2L

The frequency v; is called the fundamental frequency or first harmonic, T is the tension in t}
string and m is the mass per unit length of the string.
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Second mode of vibration: The second mode of vibration oceurs for n = 2, the
corresponding wavelength 2, and frequency £ are given by

2x(£’2—-]=L =i =1L

ey

The velocity v is the same for all wavelength.

..V=Jz ﬁf—-lﬁ—.ﬂz_.\jf
] m P LVm 2L\ m

The frequency f; is called the first overtone or second harmonic.

Third made of vibratien: The third mode of vibration occurs for n = 3, the corresponding

wavelength A; and frequency f; are given by

A 2L
Ixi ==L DA ==
X( 2 4=
v
fi= AE RPN
o 13 A
The velocity v is the same for all wavelength.
T 30T
V=, — ===
Y m % 2L m
=y =3,

The frequency f; is called the second overtone or third harmonic.
The frequency of »”™ harmonic is thus 1, =nf

Position of nodes:
In the first mode of vibration, the number of nodes = 0, L

L 2L
In the second mode of vibration, the number of nodes = 0, —2- «~2—
L 2L 3L
In the third mode of vibration, the number of nodes = 0, E -§— —?
L 2L 3L E‘E

In the n™ mode of vibration, the number of nodes =0, =, ==, 2= .

Position of antinodes:

. L
In the first mode of vibration, the number of antinodes = 5

1l

In the second mode of vibration, the number of antinodes

L
In the third mode of vibration. the number of antinodes = 5

L
1 == = RSt
n the »'™ mode of vibration, the number of nodes = 23" 2n 2n o
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Characteristics of stationary waves:

{1) The waveform remains stationary.
(2) Nodes and antinodles are formed alternately.
(3) The points where displacement is zero are called nodes and the points where the
displacement is manimury are ealled antinodes.
{4) Pressure changes are maximum at nodes and minimum at antinddes.
(5) All the particles except those at the nodes, execute simple harmonic motions of same
period.
(6) Amplitude of each particle is not the same, it is maximum at antinodes decreases
gradually and is zero at the nodes.
(7} The velocity of the particles at the nodes is zero. It increases gradually and is maximum a
the antinodes.
(8) There is no transfer of energy. All the particles of the medium pass through their mean
~ position simuitaneously twice during each vibration.

(9) Particles in the same segment vibrate in the same phase and between the neighbouring

segments, the particles vibrate in oposite phase.
Standing waves in a pipe closed at one end:

Modes of vibration: If the reference origin is taken at a node, the equation of the stationary
wave is given by :
y=2asinkxcesa!

o, (24 27
O '-"'.2 } —— Y _t
T y asm( ] xJGOSé T ]

At the closed end of the pipe, i.e., at x = 0, y = 0, sin kx = 0, a node is formed.
At an open end of the pipe of length L, y is maximum, sin kx is maximum, (i.c., 8in kx = 1},
an antinode is formed.
SoSinkl =1
or Zr-@n-nZ
A 2

4L

Or A=
2n-1

First mode of vibration: The first mode of vibration occurs for # = 1 and the corresponding
wavelength A; and frequency £ are given by

4L R = e =L
=3 _ 4 |
A= aah 4
s _Y_. Y
Y,

Where v is the velocity of sound in air.,
The frequency /1 is called the fundamental frequency or first harmonic.

Second mode of vibration: The second mode of =0 x=1
vibration occurs for n = 2 and the corresponding

wavelength A; and frequency £ are given by N 4 N <
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A3
= v

S TR T
Or f, =31

Where v is the velocity of sound in air.
The frequency f; is cailed the first overtone. Its frequency is three times the fundamental
frequency. Therefore it is called third harmonic.

Third mode of vibration: The third mode of vibration occurs for » = 3 and the
corresponding wavelength A3 and frequency f; are given by
' 2= 41. _4L

(2)(3 1) 5 z=0 x=L
v, v Sv N A A A

Or f3 =5 f;
Where v 1s the velocity of sound in air.
The frequency £; is called the second overtone. Its frequency is five times the fundamental
frequency. Therefore it is called fifth harmonic.
The frequency of i harmonic is [, =(2n=1)f,

Standing waves in an open pipe:

Modes of vibration: If the reference origin is taken at an antinode, the equation of the
stationary wave is given by
y=2acos kxsin ax

Or y= Zaws(;f— x]sm[g—ﬁr)
A T
The amplitude 24 cos kx must be maximum ( i.e., cos kx = 1) at the ends, because antinodes

are formed there.
coskl =1

Or gf»l.:mr
A

2L
n

Or A=

First mode of vibwration: The first mode of vibration occurs for n= | and the corresponding

wavelength A4, and frequency f; are given by
A = Ei{‘ =2L

v, v _ ¥

"R
Where v is the velocity of sound in air.
The frequency f; is called the fundamental frequency or first harmonic.
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Second mode of vibratien: The second mode of vibration occurs for n =2 and the
corresponding wavelength A, and frequency f; are given by

2L
/125‘“5:‘2 x'_:-g. N x=£
v, ¥ 4
/ Ay A L

or f, =2[-2—%}=2f,

Where v is the velocity of sound in air.
The frequency f; is called the first overtone. Its frequency is twice the fundamental frequenc
Therefore it is called the second harmonig.

Third mode of vibration: The third mode of vibration occurs for n = 3 and the
corresponding wavelength A3 and frequency f; are given by

Where v is the velocity of sound in air.
The frequency f; is called the second overtone. Its frequency is three times the fundamental
frequency. Therefore it is called the third harmonic.

The frequency of " harmonic is £, = n f,

Closed and open pipes compared:

One ¢nd open, one closed:

y = 4L wheren =1,23,... Or 4, = ili where nis odd integer
(2n-1) n
v nv . .
[, =@2n-1)] — where n=12,3,... Orf, =— where nis odd integer
41 4L
Both ends open:
2L ’
A, =— wheren=1,2,3,...
n
=2 where 1 =1,2,3,...




Beats: The phenomenon of waxing and waning of sound due to interference of two sound
waves of nearly equal frequenmes are called beats.

MR
WL

AR
TV
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(b)
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(c)
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Beat frequency: The frequency of the beats is the number of intense sounds heard per
second and it is the difference between the two sound
frequencies. For example, when two tuning forks of
frequencies fy = 12Hz and f; = 10Hz are sounded together,
then

Beat frequency f, = f, ~ f, =(12-10) Hz = 2 beats/s

Mathematical treatment of beats: Let us consider two
waves of slightly different frequencies £ and /5
(fi ~ /2 < 10) having equal amplitude travelling in a
medium in the same direction.
At time 1 = 0, both waves travel in same phase.
The equations of the two waves are
y, =asina¢ =asin2r fit
y, =asinw,t =asinr f,t
When the two waves superimpose, the resultant displacement is given by
yEyotn
y=asin2x fit+asinr fit =a(sin2x fit +sin2x f,1)

¥ =2acos 27:(-5—_—&} sin 27:(%&)1
f fz

Substituting 2acos 23{%{?—}? =4, and = f we have

y=Asin2x f1
This represents a simple harmonic wave of frequency fand amplitude 4 which changes with
time.

Uses of beats: o e
{I) The phenomenon of beats is useful in tuning two vibrating bodies in unison. For example,
a sonometer wire can be tuned in unison with a tuning fork by observing the beats. When an
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excited tuning fork is kept on the sonometer and if the sonometer wire is also excited, beats
are heard, when the frequencies are nearly equal. If the length of the wire is adjusted careful]
so that the humber of beats gradually decreases to zero, then the two are said to be in unison
Most of the musical instruments are made to be in unison based on this method.

(2) The frequency of a tuning fork can be found using beats. A standard tuning fork of
frequency N is excited along with the experimental fork. If the number of beats per second i
n, then the frequency of experimental tuning fork is N + n. The experimental tuning fork is
then loaded with a little bees’ wax, thereby decreasing its frequency. Now the observations
are repeated. If the number of beats increases, then the frequency of the experimental tuning
fork is N n, and if the number of beats decreases its frequency is N + ».

Doppler effect: The phenomenon of the apparent change in the frequency of sound due to
the relative motion between the source of sound and the observer is called Doppler effect.
The apparent frequency due to Doppler effect for different cases can be deduced as follows.

(1) Both source and observer at rest: Suppose S and O are the positions of the source and

the observer respectively.
If in one second, n waves produced by the source travel a distance SO, then the frequency is

n, and if v is the speed of the wave, then SO is equal to v.

wavelength = speed of the wave . . . 1 waves. . X
frequency | ' .

Or A== s V%AVAVAV%AV

n - '

(2) When the source moves towards the stationary observer: If the source moves with a
velocity v, towards the stationary observer, then after one second, the source will reach $’,
such that 88 = v, Now n waves emitted by the source will occupy a distance of (v — v} only

as shown in the figure. Therefore the apparent n waves
wavelength of the sound is .
.Y—y AWANAYANWAY AN AW:
A= - S
n o
The apparent frequency is Coug v-us

, ¥ n v
H=——=y = n
4=

As n' > n, the pitch of the sound appears to increase.

(3) When the source moves away from the stationary observer: If the source moves awa)
from the stationary observer with velocity v,, the apparent frequency will be given by

, v n v
N =—=V = n
A VY, Vv,

As n' < n, the pitch of the sound appears to decrease.

(4) When the observer moves towards the stationary source: Suppose the observer is
moving towards the stationary source with velocity v,. After one second the observer will
reach the point O’ such that GO’ = v,. The number of waves crossing the observer will be n
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waves in the distance QA in addition to the number of waves in the distance OO’ which is
equal to v,/4 as shown in the figure. Therefore, the apparent frequency of sound is

% n v
n=nt-t=n+v,~=ml+-2
A v v

S n’=[V:vo Jﬂ A A [\ /\ /\ /\
As ' > n, the pitch of the sound ‘~ SN O \/0 \/ \f vv

appears to increase.

(5) When the observer moves away from the stationary source: The apparent frequency
of sound is

As n' < n, the pitch of sound appears to decrease.

Note : If the source and the observer move along the same direction, the equation for
apparent frequency is
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ELECTROSTATICS

Frictiona! Electricity: The property of rubbed substances
due to which they attract light objects is called Frictional
Electricity or static Electricity

The rubbed substances which show this property of attraction
are said to have become electrified or electrically charged.

Note:

(1) Every object contains equal amount of the two kinds of
charges, positive charge and negative charge. With such an
equality or balance of charges, the object is said to be electrically neutral or neutral body.

{2) An object is said to be charged, when it has a charge imbalance i.c., the number of
positive and negative charges are not equal.

Electric charge: Electric charge is an intrinsic property of elementary particies { electrons,
protons, etc.,) which give rise to electric force between various objects.

Orbit of revolution
of the electrons

The SI unit of electric charge is coulomb
(C) and it is a scalar quantity.

electron S
neutron @mton
proton s qeutron

Slelectron

Note:

(1) Electron always has a negative
charge (—e)

(2) Neutron has no charge. Itis a
neutral particie.

(3) Proton always has a positive
charge (+e)

An electric charge is represented by a symbol e, whose value is £ 1.6 x 107" coulomb (C)
{4) The symbol of electron is not e or —e. Instead it ise .

Two kinds of electric charges: There are only two
kind of electric charges. The positive charge (+¢) \
— ——

and the negative charge (~e).

Fundamental law of Electrostatics: Like charges
repel and unlike charges attract each other.

Positive and negative charges:
(1) If a glass rod is rubbed with a silk cloth, it acquires positive charge while the silk cloth
acquires an equal amount of negative charge.
(2) If an ebonite rod is rubbed with fur, it becomes negatively charged, while the fur acquire
equal amount of positive charge.
Or
(1) The charge developed on a glass rod when robbed with silk is called positive charge.
(2) The charge developed on an ebonite rod when robbed with fur is called negative charge.
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Electrostatics: The branch of physics that deals with the study of the charges at rest is known
as electrostatics.

Two Kinds of charges developed on rubbing

Positive Charge . Negative Charge
Glass rod ) Silk cloth
Flannel or cat skin Ebonite rod
Woolen cloth | Amber rod
| Woolen coat Plastic seat
‘Woolen carpet Rubber shoes

Conductors and Insulators:

Conductors: Substances through which electric charges can flow easily are called
conductors. Metals, human and animal bodies are conductors.

Insulators: Substances through which electric charges cannot flow easily are called
insulators. Glass, diamond, porcelain, plastic, nylon, wood, mica etc are insulators.

Electrostatic Induction: Electrostatic Induction is the

phenomenon of temporary electrification of a conductor in - +
which opposite charges appears at its closer end and similar = L
charges appear at its farther end in the presence of a nearby Charged body

charged body (Glass rod)

(1) Charging a conductor by induction:

o = +| z + =
- ) - + }]» - : -
T
Charged bod Charged cond
Classrod) arged conductor

— = by induction

(2) Charging of two spheres by induction:

111

Charged body
{Glass rod)

Basic properties of electric charge: Electric charge has the following three basic properties
(1) Additivity

{2) Quantisation

(3) Conservation

(1) Additivity: Additivity of electric charge means that the total charge of a system is the
algebraic sum of all the individual charges located at different points inside the system

If a system contain charges 4,,91:q;--4.
Then its total charge is @ = ¢, + 4, +q5 +...+4,
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(2) Quantisation: The quantisation of electric charge means that the total charge (¢) of a
body is always an integral multiple of a basic quantum of charge (e) i.e.,
g=ne, wheren =0, £1, ¥7, +3, ...
Note:
(1) If n= 0, the body is a neutral body. If n < 0, the body is negatively charged. If n> 0, the
body is positively charged.
(2) The smallest value of electric charge ise = 1.6 x 10°7° C
(3) The quantisation of charge shows that charge is discrete and not of continuous nature.

(3) Canservation:
(a} The total charge of an isolated: system remains constant.
(b) The electric charges can neither be created nor destroyed, they can only be transferred

from one body to another.

Coulomb’s law of electric force: Coulomb's law states that the force of attraction or

repulsion between two stationary point charges is
(1} Directly proportional to the product of the magnitudes of the two charges and
(2) Inversely proportional to the square of the distance between them. This force acts along

the line joining the two charges
4 q: ) 92
® —0  ® H—r
F ' - F " |
If two point charges ¢q,and g, are separated by a distance r, then the force F' of attraction or
repulston between them is

x

Fxgqggq, and Foc-—15~
-

- Fe ‘?I‘gz or F=k ‘I:‘gz
r r
where £ is a constant of proportionality, called electro-static force constant.

4.4;

For the two charges located in free space and in SI unit, we have F = —— -2

4ze, r

where k = ?fl“ =9x10°Nm’C? and &, =8.854x10*C*N'm™(Fm™")is called
ne

]

permittivity of free space.

Dimensions of £, is [¢,]= A AL _rppa 74 421
[MLT)L']
Note:
(1) For the two charges located in free space and in cgs unit, we have F = %

where & = 1dynecm’statC™
(2) In electrostatic cgs system, the unit of charge is known as electrostatic unit of charge
(e.s.u of charge) or statcoulomb (stat C)
1C=3x10’statC
(3) In electromagnetic cgs system, the unit of charge is known as electromagnetic unit of

charge (e.m.u of charge) or abcoulomb.
1C=0.1e.mu
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(4) Coulomb's law of electrostatics is valid only if » > 107" m. (the size of nucleus)
(5) Strictly speaking Coulomb's faw applies only to point charges.

(6) If ¢,q, > Othe force is positive and repulsive.

(D If q,9, <0the force is negative and aitractive.

(8) The permittivity of free space (¢,) is determined experimentally.

Permittivity (£,): Permittivity is a measure of how an electric field affects the medium and
how it is affected by a medium.

Definition of 1C from Coulomb’s Law: 1C is that charge which when placcd 1m from an
equal and similar charge in vacuum (or air) repels it with a force of 9 x10° N

F__ l QIQZ 9 109N Zc- (1C)(1C)*9 109N
4ng, 1’ m

Note: 1coulomb is very large unit of charge. So charges are produced experimentally in the
range between pico-coulomb (pC) and micro-coulomb (4C)
1pC=10""C  and 1uC=10"C

Coulomb’s law in vector form: As shown in the figure, consider two positive point charges
g, and g, place in vacuum at a distance 7 from each other.

4 4 -
© O—Fy
.

In vector form, Coulomb's law may be express as

Fo= i 99 ;- 1 99 ; . ! q|'¥2*_, 1 N9 »
1 e (R, dme, (7, 7 4me, na "2 Al r? o

Hete we see that F,, and 7, arein the same direction.
Now consider the following diagram

B 4,
E,—® ®

:.‘ - o

£ LEY

Coulomb's law may be express as

= 1 a4 Po= 1 94 “2 = 1 ﬁ}qul = _I%?_fz]
_ T 1 1 2
2 e, |, [P0 dme, () dne, 17 mE, 1

Here we see that F, and 7, are in the same direction.
But the unit vectors are opposite to each other i.e., A, = ~Fy,
= 1 n 1 n 1 ¢9,. _ &
RR TRy Q}gz N =7 QI? ()= L Py =K,
dre, r 4re, r 4re, r
Note
(1) F,, is the force on g2 due to ¢, and F., is the force on g1 due 10 g2.
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(2) The two charges exert equal and opposite force on each other, so Coulomb's electrostatic
force obey Newton's third law of motion.
(3) As the electrostatic force act along the line joining the centres of two charges, so itis a

central force.
{4) Electrostatic force is a conservative force i.e., work done by the electrostatic force over a

closed path is zero
(5) Electrostatic force acts over an enormous range of separation (7), from r = 10" mto
r=10*m to a high degree of accuracy.

Do it yourself: As shown in the diagram, show that F‘z, =k,

4 g
$  E—o ©o—f &
N ’"12 T T

Forces between two charges in terms of their position vectors: Let two point charges ¢,
and g, be located at points A and B in vacuum or free space as shown in the figure
respectively. Let 7 and 7, are position vectors of

points A and B, where O is the origin of the Y,
Cartesian coordinate system XY,

Using triangular law of vectors we have
o =h=h

Coulomb's law may be express as
f;’;]__c I 99 » . 1 99, -

2
= 2 'l12 - 32
dre, 7, | 4ze, | 7z |
- | 4,4 -
21z4 -.iis(rz“’l)
7(6'0 Irlﬁ-rl'
Again, in the opposnte diagram we have
w =h
Coulomb's law may be express as
E U a9, . _ -t 4949 ;
= " - 2:’2}“‘_""" - [R4)
4re, |7, | Aze, |7y |
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. _ B B R, ~ = A R .
(z)ru"l’-‘; I"r_"‘:' =0 AR Sl =Ry,
I 2
' - =2 _ )= _=p5
G A-KI'=|h~A]

(4} |7, | #(7,). | 7, lis the magnitude of 7,. (7,)is a vector quantity. But |7y P =(F,)

Dietectric constant ( x ) or Relative permittivity (¢, ): Dielectric constant ( x ) or Relative

permittivity (£, ) may be defined as the ratio of the force between two charges placed some
distance apart in free space to the force between the same two charges when they are placed
the same distance apart in the given medium.

Electrostatic force of ¢, and g, in vacuum or air at a distance » from each other is

1 g4,

dme, r’

air

Electrostatic force of g, and ¢, in a medium (water) at a distance # from each other is

F o= 1 99,
Y Amg e, r?

' a9,

N Far’r — 47:80 rz
CFue 1 9%
4re £, r’

F . e
Or —2L- =g (relative permittivity)

water

Note; =g Or F

r aip

=& -F

¥ waier

water

Weseethat F, > F,_ ..
In vacuum ¢, =1
Inair ¢, =1.00054 =1

In water £, =80

Relation between (¢,) and (&, ):
Electrostatic force of ¢, and g, in vacuum or air at a distance 7 from each other is

L 1 g4,
“ 4me, r?
Electrostatic force of ¢, and ¢, in a medium (water) at a distance 7 from each other is
1 94
F =_- A2
v g r?
1 49,
. Fm’r — 4”‘90 rz ___8_
B Fwa!er _l_. _._._q]'qz 6‘0
Age '

But Far ¢, (relative permittivity)
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r

&
S =g
£

¢ is called the absolute permittivity
€,1s called the permittivity

g, is called the relative permittivity

=Se=£,E,

Note: In air or vacuume = ¢,. So ¢, is also known as absolute permittivity.

Comparing Electrostatic and Gravitational forces

Newton’s law of Gravitation

Coulomb’s law

Only attractive force

Attractive or repulsive force

Force due to mass interaction

‘Force due to charge interaction

The force is a long-range force.

The force is a short—range force.

The equation of the grawtanonal
force is

F Gmm2

?’

is

The equation of the electrostatics force

F - I Q;‘h

° 4mg, r?

Forces between multiple charges — The superposition principle:

The principle of superposition is to calculate the
electric force experienced by a charge ¢,due to

other chargesqg,, ¢;,...q,, .

The total force on a given charge ( ¢,) is the
vector sum of the forces exerted on it due to all

other charges. Thus
F=F,+F.+F,

LI L T L 99, 1
1 = 41 7

4ng, r} 4rmg, ny, 4::8 r
R U Wz .. b
[ 2} 31

dne, r; ane, r; 47!‘8

-.1: 4 3r21+q3r3;+ q_;;’-';l
ang, | ry, o e

' = I ‘31‘?2 ( ) I qlql ("
' Ane, |F -F 1F=F d dng, |F ~F, |7 =F
P i g, g3 =
= F—F)+——12—(F
] 4”E9Lﬁ ﬂ|3(l ) | —r 7

Eiectrostat:cs

S A e S b |
o

Yy q,

i I o
)___‘?_ﬁ__H)

e 1




Hid

- 4 Z —?-iFls(Flmﬁ)

43‘?80 i=2 [rl

3

Electrostatic force due to continuous charge distribution:

(1) Linear charge distribution: When the charges are distributed linearly, the total charge
dg over a small length d/ is given by

dg=Aidl
where A is the linear charge density, i.e., the charge per unit length.
The force on a charge g, due to a charge element dg where # is the distance between them is
1 gdg ! gAd

2 2

dF =

ane, r dze, r
=L
Therefore total force on ¢,is F = 9o J‘ A:ﬂ
47!'80 et r

{2) Surface charge distribution: When the charges are distributed uniformly over a surface,
the total charge dg over a small surface ds is given by
dg = o ds
where ¢ is the surface charge density, i.e., the charge per unit area.
The force on a charge q,due to a charge element dg is

1 gdqg 1 qo0ds
=

dF = -
4ne, v 4re, r
= o ds
Therefore total force on ¢,is F = 4o _[ 3
47[‘89 =0 r

(3) Volume charge distribution: When the charges are distributed uniformly over a volume,
the total charge dg over a small volume dv is given by
dg=pdv
where p is the volume charge density, i.e., the charge per unit volume.
The force on a charge ¢, due to a charge element dy is

d 1 av
dF = 1 qazq - qopz
dne, r arg, r
q v:V pdv
Therefore total force g Fl=—2 —
0 rceon g 1 yp I o

Q ¥v=0

Electric field: The electric ficld £ at a point is defined as the forcele'xpcrienced by a unit
positive test charge placed at that point, without disturbing the position of source charge.

Suppose a test charge g, experiences a force F at the point P, 7
@ >

- .. = F
Then the electric field F at that peint is £ = —

1]

B
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Or

The electric field £ at a point is also defined as the electrostatic force per unit test charge
acting on a vanishingly small positive test charge placed at that point. Hence
im F
9,0 4,
The SI unit of electric field is NC™ . It is equivalent to ¥m ™' . It is a vector quantity.

E=

The dimensions for £ can be de!érmined as follows

(E]= [F1_[MLT?) ~[MLT 4™
lg,] [4T]

Note:
(1) Electric field is also called electric field intensity or electric field strength.

(2) The electric field is defined more accurately asq, — 0. However, the minimum value of
g,is 1.6x107°C

Electric field due to a point charge: Consider a point charge g placed at the origin O. We
want to find the electric field at a point P at a distance r from O. According to Coulomb's law

the force on charge g, is
! 44, 1 99, ;

F=

!

The magnitude of Eis

|Ef B~
dre, r

Note:

(1) Clearly £ -}2— . This means that at all points on the spherical surface drawn around the
¥

point charge, the magnitude of £ i$ same and does not depends on the direction of 7 . Such 3
field is called spherically symmetric or radial field.

(2) The magnitude of £ depends upon the magnitude of charge ¢ which produces the electric
field and not on the value of the test chargegq, .

Electric field due to a point charge (In terms of position %
vectors): Consider a point charge g located at A. It is A
desired to find the electric field at B due to charge q. As @_
shown in the figure, ;, NN
Fap =Tp ¥, - % ~GF
According to Coulomb's law, the force on charge g, is 5 s ,
X
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2 1 qq, . 1 gqq, .
F..o= —_y = o
BA 47I'£a lFAB lz A 4re |FAB |

P49, o
“ e, 17 -r, Pt
1 - -
- F 17;- F_qf;. I;‘(ra ?',4)
The electric field at the point Bis £,, = —# o 175 = Fy
95 q,
- l q
OrE, =
M Ame, |, -F, T 55 =7)

Electric field due to a point charge (In terms of rectangular components): Consider a
point charge ¢ placed at O, the origin of the

coordinate system as shown in the figure. We are Z

to find the rectangular components of the electric

field intensity E at any point P(x, y, ).

F= fx+jy+kz
F

=0x+;y+kz)0x+;y+kﬂ X
(FY =ri=x'+y*+7°
¥
:\}xz +y +22 =P+ Y+ 2
=l + yt 2y
Electric field at P is
1 44, .
- —— ——2—}‘
E:£q4mor 1 i _ i.
g, q, 47:5 r ng, r’
E=41 q 30x+1y+kﬂ
e
(x +y + 2z )2
Fe q (fx+jy+£z)_ q i x N }'y . kz
- = . ; 3
o (x*+y? +2%)? 4z, (P4 yi+2)r Tyt Pyt )
= 7 1 x A1 qy ~o 1 qz
5:14 7 3”4;:3 g+k4m 3 e}
7e, (x2+y2+22)5 a (x2+y2+22)2 2 (x2+y2+22)2

fE,E ,and E_are the components of E along the three co-ordinate axes, then

E<iE +JE +kE, ()

Compat‘ing equation (1) and equation (2) we have
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1 gx

E, 24 5
o (x*+yt+2%)?
E = 47;1'8 = 2
C(xt eyt a2y

E = 1 qz
Y e :

¢ (x2+yz-!-zz)E

OrE=E +E +E,

Electric field due to a system of point charges: The total Electric field at a point P due to
all charges is.

E=E,+E,.+E,

= I g . T g, . l g .
E= ——F, + ot R e o
dne, (Fp) dre, (F,p) dre, (7,p)
E= ——}~—-— S 45 Y, En.P

r
- 3 P
4re, 5 (Fp) I

In terms of position vectors

Fel S 4

ane, T -1 |

{7 1)

Electric dipele: A pair of equal and opposite charges separated by q b —q

a smail distance is called an electric dipole. Examples are HCI, . .

H0, etc : 2; .
a

Electric dipole moment ( p : The dipole moment for a pair of opposite charges of

magnitude ‘g’ is defined as the magnitude of the charge times the distance between them.
p=gx2a

Note: The direction of the electric dipole moment is toward the posttive charge.

Dipole field: The electric field produced by an electric dipole is called a dipole field.

- & 4

A A At

Electric field at an axial point of a dipole: Consider an electric dipole consisting of charge
~q and +¢ separated by a small distance 2a in free space. Let P be a point on the axial line ©
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adipole at a distance r from the centre O of the dipole. We want to find the field intensity at
P due to the dipole.

- +q

o—2 o —t
o . _a - 1 -
F E.q E+q
¢ ' ~ -» !
i r N
s 1
Electric field due to charge —¢ at point P is
_ = 1 q .
= P

4me, (r +a)’

Electric field due to charge +g at point P is
= 1 q .
E =
" 4z, (r—ay ©
Hence the resultant electric field at point P is
Eaxia.* = Eﬂ; + E—q
= 1 q . | q .
aval 2 p- 2
dre, (r—a) 4ne, (r +a)

Ea.w'a.‘ = 1 { l 7 1 z}ﬁ
g, | (r—a)y (r+a)
=g (r+a)Y -(r-a) |.
axigl — 47[80[ (rz _az)z }p
- g {r*+a*+2ar-r’-a’ +2ar |,
axigl — i: (rZ _aZ)Z }p

47¢,

- q dar .
- a2 )2 p

axial T

4ns, (r’
1 2Agx2a)r .
ol " fApe (r*-a’)’
= 1 2pr
“a " 4me (r' —a’)
Where p=gx2ais the dipole moment
For r >>a, a’can be neglected compared to r°

24

- 1 2pr.

axal 47730 rd P

- 1 2p,
Or Ea:fa:’ = 47(8 ?—

Note:
(1) The direction of the resultant field E,. is along the dipole axis. i.e., along p

{2) For a short dipole Em; x —15‘
p
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Electric field at an equatorial point of a dipole: Consider an eiectric dipole consisting of
charges ~¢ and +q separated by a small distance -

2a in free space. Let P be a point on the
equatorial line of a dipole at a distance r from the
centre O of the dipole. We want to find the field
intensity at P due to the dipole.

Electric field due to charge —g at point P is
E*q - l g 2
Ang, (AP)
= 1 q
E_ = = along PA
4 Ang, Pl +a’ g
Electric field due to charge +g at point P is

along PA

- 1 q
E = along BP

" 4ne, (BP) &
— 1 q

= —— along BP
" Ame, r+a’ g
= 7 q

Clearly | E_1=|FE,  |=

carly | B, 1=| E., | 4re, r*+a’

The components of E ,are

4 E_q sin@ perpendicular to the dipole axis.

(2) E_, cosé parallel to the dipole axis.

The components of E}q are
(H Ew sin@ perpendicular to the dipole axis.
(2) E,, cos@ parallel to the dipole axis.

The components perpendicular to the dipole axis will cancel out, while the components
paralle! to the dipole axis add up. So the total electric field Eeqm is opposite to p.

LE = (B cosO+E, cos8)p
E . =~2E_jc0s8 P

= 1 ¢ a .
E .=-12 -
cqna [47730 (r2+a2)),]r3 +a2 p

E - } qx2a ﬁ
e4gua 47!'8 3
° (r? +a’)?

= 1 .

s = Ure : 3 P

Where p =g x2ais the dipole moment
For r >>a, a’can be neglected compared to r°
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Bzt
4ze, r

= 2

equa
Note:
(1) The direction of the resultant field Ema is opposite to the dipole moment.

(2) For a short dipole E,m o Lj and also £, oc

F axigl :5'
(3) For a single charge E o —l?
r
(4) For a linearly charged wire £ < 1 _
. r

(5) For a uniformly charged plane sheet E does not depend on r,
(6) | Eaxml' |= 2| Eequa |

Electric field at any general point (#,8): Consider a point P at a distance 7 from the mid
point O of a small dipole AB-and‘OP makes an angle 8 with the direction of the dipole
moment £ as shown in the figure. To calculate the electric field at point P due to a dipole,

we can resolve the dipole moment 5 in to two components, pcos@ 7, along 7 and pcosé i,
perpendicular to 7.

J SR PN
A 0 B

& ®

The electric field at P due to a dipole of dipole moment pcosé 7, is
F 1 2pcosf

r 3 ﬁ’
dne, r
O E = 1 2p 03039
dmg, r
The electric field at P due to a dipole of dipole moment p cosé 7, is
= 1 psing .
E =- n
T 4ps, 7
: in g
Or E, = L p51:1
4re, r

The resultant electric field at P is

_ - -
1 2pcosé 1 psiné
E=(E,) +(E,)’ =J[: 3 J +(4%’0 r?

g,
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\/_4P2°0_529+P25in29__ 1 pvdcos’G+sin2 8

E=

4ne, r 4re, r’
Ee- pV3cos? 8+cos’ G+sin’ O
4ze, r’
CE= 1 pV3cos’@+1
T ane, P
The direction of electric field intensity due to the dipole is
1 psing
_Ey, 4mey, P 1
tanaf-E 1 2pcos@ 2tan6'
dre, 1’

Note:
(1) When 8 = (",
1 p 3003 0"+1 _ 1 p¥3+1_ 1 2p

3 3 3

E= =
4re, r 47:'30 r dme, r

a= tan*‘(—li-tano“Jz tan" (0) =0

Therefore E

axia

,1s paralle] to the dipole moment p

(2) When 8 = 90°,

Ee t pv3cos90°+1 1 pJ0+1 1 p
4nz, r’ dre, r* dme, r’

a= tan”(%tan%“]: tan ™ () =90°

Therefore E «quq 1S anti-parallel 1o the dipole moment p.

(3) Electric field E due to a dipole varies with respect to distance as £ o« l;
,

Torque on a dipole in a uniform electric field: Consider an electric dipole consisting of
charges +¢q and —¢ and of length 2a placed in a uniform electric field E making an angle 6

with it. It has a dipole moment of magnitude —>
S gk
P=9x2a W4 D '

Force on charge +qis F = +gk /-/ 5 i
Force on charge —¢is F =—¢E E ] o g
—— q — a .............. R

F Total = +qE qE 0

But the torque 7 #0
Torque = either force x perpendicular distance between the two forces.
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r=gEx2asiné

r=(gx2a)Esiné b
r=pEsing T

In vector form, torque ¢an be written as 7 = pxE E

Special Cases:
(1) When 8=90°, 7= pE (torque is maximum)
(2) When 6 =0, r =0 (torque is minimum)

Note:

() If E=lunit, #=90°then r=p

The dipote moment may be defined as the torque acting on an electric dipole, placed
perpendicular to a uniform electric field of unit strength.

(2) In a non-uniferm electrie field, a dipole experiences a non zero force and non zero torque.
In a special case when the dipole moment is paraliel or antiparaliel to the field, the dipole
experiences a zero torque and a non zero force.

(3) The concept of electric dipole is used in the study of the effect of electric field on an
insulator, and in the study of radiation of energy from an antenna.

Electric lines of force: An electric line of force maybe defined as the curve along which a
small positive charge would tend to move when free to do so in an electric field and the
tangent to which at any point gives the direction of the electric field at that point.

E.a
E,
A\ Test charge
atpoint A
_ Electric po
Electric line of force .
line of force Electric
bharg line of force
S charge Source ¢ <
ource g Source charge

Note: No two lines of force (electric field line) can cross each other. If they intersect as
shown in the figure above, then there will be two tangents at the point of intersection and
hence two directions of the electric field at the same point, which is not possible.

Properties of the electric lines of force: _ _

(1) Lines of force start from positive charge and terminate at negative charge.

(2) Lines of force never intersect. ' )

(3) The tangent to a line of force at any point gives the direction of the electric field £ at that
point,

(4) The lines of force are continuous smooth curves without any break. -

(3) The lines of force are always normal to the surface of a conductor on which the charges
are in equilibrium. ' o

(6) The lines of force do not pass through a conductor because the electric field inside a
conductor is zero.
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(7} The relattve closeness of the lines of force gives a measure of the strength of the electric
field in any region. The lines of force are

{1) close together in a strong field

(i1) far apart in 2 weak field

(iii) parallel and equally spaced in a uniform field.

Area vector: The direction of a planar ar¢a vector is specified by
the normal to the plane.

The length of the vector ds represents the magnitude dS of the area
element.

Electric flux: The number of electric field lines crossing the surface normally is known as
the electric flux.

If an electric field £ passes through an

area A, then the electric flux through this \ s
area is ' . 8, -
¢, =E-4=F Acos8 A\‘ ,E

where & is the angle between the area

vector and the uniform field £ .
Electric flux is a scalar quantity. Its SI unit is Nm’C™ or Vm

Special Cases:
(1) If the angle & between the area vector A and the uniform field E is 0°, then the flux
through this area is

¢, =E-A=E Acos@

$c = E Acos0° = E 4 (The flux is maximum and positive)

(2) If the angle between the area vector A and the uniform field £ is 90°, then the flux
through this area 1s

o, = E-A=E Acos@

$ = E Acos90° = 0 (The flux is zero i.e., no lines of force pass through the area)

(3) If the angle Gbetween the area vector A and the uniform field E is 180°, then the flux
through this area is

¢ =E-A=E Acosd

¢, = E Acos!80° = —E 4 (The flux is minimum and negative)

Note: The greater the magnitude of electric field E the greater is the electric flux.

Gauss’s Law: Gauss’s law states that the total flux through a closed surface is-—l— times the
£

net charge enclosed by the closed surface.

Mathematically, it can be expressed as ¢, = 4 E-d§=2
£
5

L]

Suppose the surface S is a sphere of radius » centred on ¢. Then surface § is a Gaussian

surface.
The flux through an area dS is




dg. = E-dS = EdScos0° = E dS
The tota] flux through the surface S is

_¢£=q’d¢gzq’5ds=ﬁgds
¥ s S

Electric field at any point on S is

%t Ly

This is Gauss's [aw,

Note:
(1} In Gauss's law, ¢ is the net charge enclosed by the Gaussian surface. Not the tota} charge,
(2) If the net charge enclosed by the closed surface is zero, then flux through it is also zero

g O

¢E=—=--—=
£ £

(3) The location of charge or charges inside the closed surface does not matter.
{4) The shape of the surface does not matter provided it is a closed surface enclosing the
charge or charges.

(3) If the medium surrounding the charge has a relative permittivity ¢, , then ¢, =

£,€ &

avr
where £ = g,£, is the absolute permittivity.
(6) The charges situated outside the closed surface make no contribution to the total electric
flux over the surface.

(7) Gauss's law is true only if inverse square law for electric force between point charges is
true.

(8) Gauss's law simply says that the number of field lines crossing a closed surface depends
only on the enclosed charge.

Application of Gauss's law: Gauss' law is great, especially when there is symmetry. But it

does not always tell, what is £ at any given point in space. So it is always true, but not
always helpfiil for problem solving.

Gaussian surface: Any hypothetical closed surfag:e enclosing a charge is called the Gaussian
Surface of that charge.

Coulomb’s law from Gauss’s law: Consider a charge g located at E
fhe centre of a sphere S of radius ». Then the surface S of the sphere S
s the Gaussian surface.
The flux through an area dS is
dg. = E.dS = EdScos0® = EdS A
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The net flux through the surface Sis
4: = §dg, ={EdS = E{dS = Ex4z r’ -wmmm- (1)
#c § s

Again Gauss's law is given by ¢, = L E— (2)
From equation (1) and equation (2) we get
Ex4nri=ZL
80
Or E=nd
4ne, r
wF=q E
1 g__ 1 g9
LF=q —=—>22
%o dze, r*  4ne, r’

This proves the Coulomb's law.

Solid angle:
’ rsin &
r r,//\’/’\
0O 0
r r Area=A
Areas A cosd Area= x(rsin 8)
0 @ )

Let A be the area element (circle) on the surface of the sphere of radius » and € is the solid
angle as shown in the figure (1). Let the radius of the circle of area A be (» sin 8) shown in
figure (3).

In figure (1) Q=2
r

In figure (2) Q=ﬁ3‘§s—9
. 2 2 2

In figure (3) Q=ﬂ(r5?9) =2 S:n 9=7rsin29
r r

Gauss’s law from Coulomb’s law:
According to Coulomb’s law, the force on a chargeq, at a

E
distance r from the source charge g is F = —__5%9.
4re, r
L 44, _
2
The electric field is £ = £ _ e, =1 .% Closed surface
9 9, dne, r

The electric flux through a smatl surface dS is dgy, = E-dS = E dS cos6

%— dS cosd
dne r

]

Or d¢, =

Page
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g dScosé
4ne, r?

dScosé .
But dQ = i 1s the solid angle subtended by a small area dS at the point O.

Or d¢g =

q
dé. = dag
o=

0

The total flux through the whole area is

=9
e = 4re, IdQ

q .
= 4r
G 4re,;

a4
-|¢E £B

This proves the Gauss's law,

Field at 2 puint due to an infinitely long charged wire: Consider an infinitely long straight
wire of charge, having charged density 2. We

want to derive an expression for the electric field &
at a pomt P, distance r from it.

Let / be the length and r be the radius of the d;_;.&
cylindrical Gaussian surface. The charge enclosed IR I

1

by the Gaussian surface is g = A/ \r

The total flux is given by /
o =E-di= [E-di+ [B-di+ [E-dA,
A 4 Ay Ay

¢ = IE dA, cos0® + IE dA, cos90° + IE dA, c0s90°
4 4 4

(2 =E_fdA, +0+0= Efch
4 4

RN N7 7 Peu——
The Gauss's law is R 4. _’K ................. (2)
£ﬂ 80

Equating equation (1) and equation (2) we have

Exomr =X
go
A
2me,r
Thus the electric field of a line charge is inversely proportional to the distance from the line

charge te., Ea l

¥

nE=
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Field at a point due to a uniformly charged infinite plane sheet: Consider an infinite plane
sheet of charge having a uniform charge density o. Let P be a point at a distance r from it.
We have to calculate the electric field intensity at P.

The total flux is

¢, =E-A+E -4
¢. = E Acos0’ + £ Acos(°
G =EA+EA=2FE A evmrommmmeeeeeea (1)
Charge enclosed by the Gaussian surface is
g=0 4
The Gauss's law is ¢, = 1.2 4 (2)
£, &,
Equating equation (1) and equation (2) we have
2E4=24
80
+ E —_ g
T 2,

The magnitude of E remains the same and does not depend on the distance from the charged
sheet.

Electric field of two positively charged parallel plates: The figure shows two thin parallel
plane sheets having uniform charge densities o,and &, with

o, >0, >0 o, 0
- - H -
. : o E W E M E
In the region I, the total electric field at any point is e || ey |, e—
r M o
E,=E +E, t W o [ om
- 4 - —
OI‘E;'—“E;+E2=&+& £, W £ " £,
280 280 - K

Or E, = 2L(a, + &, ). The direction of the field is to the left. Sheet-l  Sheet-2
£

i

In the region I, the total electric field at any point is
Ey=E +(-E)=E -E

OrE, =E -E=--T2
26, Z2e¢,
Or E, = 2; {0, ~ 5, ). The direction of the field is to the right.
In the region 111, the total electric field at any point is
En=E+E
o, o
OrE =E+E,=—1L4+"L
momeT 2¢, 2¢,
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1 o
Or Ej = E-(a' +0,). The direction of the field is to the right.

(]

Special Cases:
Ifo,=0,=0c then E=E,=E

(o) (o)

. i 20 o . = =0 =
Inregionl, £, =—I{c+0)=—=—, EM E W E
g ‘ 2s,,( ) 2¢, ¢, Il

1 1 Iy 0 W

Inregionll, B, =—(g—0)=—(0)=0. U N A ¥ R
’ 2z 2 E q E = E
? o | qm— | e—

. 1 206 o

InregionIll, £, =—I\o+0o})= = of ot

g m 289( ) 2% =z Sheet-1  Sheets2

Electric field of two oppositely charged parallel plates: The figure shows two thin parallel
plane sheets having uniform charge densities + 0 and o, with |+0, {>|-0, |.

In the region I, the total electric field at any point is

_e Sttbiadel to, —0,
E =E+(-E)=E-F E MW E H E
o.] 0.2 *.,_— _| eo—
OrE,=E -E,=——-—* x i
2e, 2¢, 1 W n H m
- 4] - | ] -
Or E = EL (o, — o, ). The direction of the field is to the left. i.: =N
80

Shest-1  Sheet-2
In the region I1, the total electric field at any point is

E,=E +E,
o

£ £

] ]

Or E, = 2L(a, +0a, ) The direction of the field is to the right.
£

a

In the region 111, the total eleciric field at any point is
Ey=E +(-E)=E -E,
Or Elﬂ = EI _E2 :&_Ez_
2g, 2eg,

Or £y = % (o, — ). The direction of the field is to the right.
g -

o

+tg -0

Special Cases: N EH E

If +0,=+0 and -o,=-c then E=E=E 0——:-—0 :——D

I I I | In

In region [, £, =—-(0— o) = ——(0) =0. L EoHeE
2g, 2e, i i

Sheet-1  Sheet-2
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20 o

1

InregionIl, £, =—{c+0)= :
£

g [ 4

In region IIl, £, = Elg“(a -0)= 2; (0)=0.

] 0

Field due to a uniformly charged thin spherical shell:

(1) When point P lies outside the spherical shell ( >> R):

Spherical shell ,
of charge density o —<

. "“~—Gaussian surface

Total charge g on the shell of radius R is
g=4mR’ o
So the net charges enclosed by the Gaussian surface is
g=4nR’o.
Flux through the Gaussian surface is
b =JE-dS ={E dScos0® = E{dS = Ex 4z r? --eme- (1

By Gauss's law we have ¢, = i A— (2)
£

I

Equating equation (1) and equation (2) gives

Exdrri=4
£

1 ¢~
dne, r?
For points outside the shell, the field due to a uniformly charged shell is as if the entire
charge of the shell is concentrated at its centre.

Note:
2
(1) The electric field E = 41 YR T where r>> R
e, r
2
(2) The electric field E= —— 2% 2 _ 9 hen r=R
4re, R £,

(3) The electric field E=0 when r < R
m
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(2) When point P lies on the spherical shell (» = R):

Spherical shell
of charge density ¢

(Gaussian surface on
the surface of the shell

Flux through the Gaussian surface is

‘¢E=4E-d§=rj£dScosO°=Etde=Ex4:rR2 ------- (1)
2
By Gauss's law we have ¢, = q _4R0 )

Equating equation (1) and equation (2) gives

E x 47R? =4ER26

(3) When point P lies inside the spherical shell (r < R):

Spherical sheil
of charge density &

By Gauss's law we have ¢, = 9.~ 0 -unmeamm (2)
£

9 0

Equating equation (1) and equation (2) gives
Ex4zxr’=0
=E=0

Hence electric field due to a uniformly charged spherical shell is zero at all points inside the
shell.

[ TR e e e e
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Variation of E with distance r

E+

Electric potential: Electric potential at a point is defined as the amount of work done in
moving a unit positive charge from infinity to that point against the electrostatic force. i.e.,

. . . Workdone
Electric potential = ———
Charge
+4 v, V a.
> g e -
. . . W
Electric potential at A is V, = —=4
1 i : WcoB
Electric potential at Bis V, =
q,
The SI unit of electric potential is volit (V), and it is a scalar quantity.
[ML'T?)

The dimensional formula for electric potential is V] = AT - [IMIIT 4™

Note:
(1) The electric potential of a point charge at infinity is zero.

{2) Units of electrostatic potential V = % =JC" or V= % = NmC™

(3) Electric potential = Electrostatic potential
(4) Electric field = Electrostatic field
(5) Electric force = Clectrostatic force

Electric potential difference: The potential difference between two points in an electric field
may be defined as the amount of work done in moving a unit positive charge from one point
to the other against the electrostatic force.

+ q V VA qo
* a2 At -
. . . .,
Electric potential at Ais V, =
9,
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Electric potential at B is ¥, = 2=
- 4,

Electric potential differenceis ¥, -V, =—4 M == _ =4 -
9% 9 9» 4.

Or Vy —V,is equal to the work done in moving a unit charge g, from point A to point B.

Note:
(1) V3 >V i.e., Potential at B is greater than potential at A.
(2) Electric potential difference = Potential difference

(3) The potentiat difference ¥p — ¥, is the work per unit charge necessary to move a test
charge at constant speed from A4 to B.

Electric potential due to a single point charge:

+qg P | = g —
._ 71“ e - _._p F e m s

The Coulomb's law of electrostatic force acting on charge g,at A is
1 99,

F=-—-%

4ze, x*
The small work done in moving a charge g, from A to B through a small displacement dx, at
constant speed against the electrostatic force is
dW =F-di = Fdxcos@ = Fdxcos1 8(° =—Fax
The total work done in moving a charge ¢, from o to the point P will be

1 o . T -
_I47reo ‘?:2 dx=_4q:£a !x &

W= faw =-]‘Fdx=

o

e 9% 1| _a¢.[1] _9a,[1_1]__1 44,
dre, | x|, 4me,lx), 4dme;|r o] 47, r

Hence the work done in moving a unit test charge from infinity to the point P, or the electric
potential at point P is

I 94,
pW _dm, r
) qo qO
or v=—9
4re, r
Note:
e 1
(1) For g positive, Vis positive i.e.,, V = 9 and Ve
4ne, r r

(2) If gis negative, Vis negative i.e., V = -——l-—£ and ¥V o {l) .
4re, r r

"
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q

Arns.x r

(3) In a medium of dielectric constant «, V =

(At r=w, V=0
(5) At equal distances from the point charge + ¢, V is the same. Thus the electric potential
due to a point charge is spherically symmetric.

Electric potential due to a dipole (axial): Consider an electric dipole consisting of two point
charges —¢ anu +4 and separated by a

distance 2a. Let P be a point on the axis of the —q»__‘___tq .................................. '
dipole at a distance r from its centre O. Aj 0 B P
e St i

. , ) bo2a i r S
Electric potential at P due to —g s
V = L —9 =— L q

Y dme,r+a 4dmg,r+a
Electric potential at P due to +gis V, = 1
4ne, r~a

1 ¢ (1 4
Are, r+a 4ne,r-a

Electric potential at P due to the dipoleis V' =V_ +V, =~

po_4 [ 1 ]
dng,ir—a r+a

q[0+@—0—@]

_47reo (r—a)(r+a)
g |r+a-r+a q 2a
V= S = 72
drme | r'-a dre, | r° —a
Vo 1 q;><2a2
dre, r' —a
1 P
V =
4ne, r* - o
For a short dipole, a* <<r?, so
1 p
4ne, r’

Electric potential due to a dipole (equatorial): Consider an
electric dipole consisting of two point charges —q and + 4 and

separated by a distance 2a. Let P be a point on the perpendicular
bisector of the dipole at distance » from its centre O.

Electric potential at P due to —¢is
1 -q | q

V. = =~
“ dre, \/rz +a’ e, Ajr® + g?
1 q

Electric potential at P due to +gis V,, = —_—
e P e
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1 q . 1 q
dne, Nr*+a®  Ame, P+ @

Electric potential at P due to the dipole is ¥V =V +V, =-
V=0

Electric potential due to a dipole at any general point:
Consider an electric dipole consisting of two point charges
—q and + ¢ and separated by a distance 2a. We wish to
determine the potential at any point P from the centre G of
the dipole.

Suppose AP=r,OP=r,BP=r,and LPOB=8.

The net potential at P due to the dipole is

vev +V, =-—-9, 1 4
TN 4me,r, Ane, r

vey +v,=-24 |1 1|__4 }n-n
T dme i, n| 4me,| nn

If the point P lies far away from the dipole, then
r—r,=2ac0s8 and rr, =y’
y=_9 [200089]_ 1 gx2acosé

2

B 4re, r - 4re, r
v 1 p cczsé?
4re, r
1 prcos® 1 p.r 1 p-r
V = 7 = 3 = 3
4rme, r dne, r dne, r

Note: At large distance, the dipole potential falls off as Lz while the potential due to a single
r

charge falls off as !
r

Special cases:
(1) When the point P lies on the axial line of the dipole on the side of + ¢, then 8= 0°.

1 pcos@_ 1 pcos0® 1 p

4ze, r'  4ne, ! Az, r

E4] a

(2) When the point P lies on the axial line of the dipole on the side of - g, then 8 =180°,
| pcosd 1 pcosi80” 1 p

dne, r* - 4ne, r? dne, r’

]

(3) When the point P lies on the equatorial line of the dipole then 8 = 90°.
1 pcosf 1 pcos90’

drg, 1’ 4re,

V=

V=

V= =0

Electric potential due to a system of point charges: As shown in the figure, suppose n
point chargesq,.9,,4;,...¢, lic at distances 7,,7,,r,,...7, from a point P.
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9

Electric potential at P due to charge ¢, is V, = Y

4re, 1, 1 q,

. . q

Electric.potential at P due to charge ¢, 1s V, = 1.9 l %

4re, r, , -

1 3

Electric potential at P due to charge ¢, is ¥V, = kEl P T %

4re, r, *

O > X

Electric potential at P due to charge g_ is V, = 9.

4rne, r,

The net potential at P is
V=V, +V,+¥V, +..+V,

tg g, g, 14

B 4re, r, 4me, r, 4ng, n 4re, r,
V=L L[N . N 3
4re, | n N r,
I l-ﬂq
V= -
4re, ;;r;

Note: If 7,7, 7, ,... F, are the position vectors of n point charges, the electric potential at a
point whose position vector is 7, would be

! _4
4re, TIF -7

V=

Electric potential due to a continueus charge distribution:
(1) When the charge is distributed uniformly along a line L, dg = AdL, where A is the line

charge density.

oy, oL
dne,; r

OrVL=—-1-—I_'wI_J,
4xe, /|7 -7 ]

{2) When the charge is distributed continuously over an area S, dg = o dS, where o'is the
surface charge density.

V= I rodS
dme, { r

Or ¥V, = ! Ii‘d‘_s,'
4re, J|F -7 |

(3) When the charge is distributed continuously in a volume ¥,dg = pdV , where pis the
volume charge density.

1 av
V=g £

we,; F
A L

dre, ;| F -1}
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The electron-volt (eV): One electron-voit is the amount of energy gained by an electron
when accelerated through a potential difference of 1 V.

leV =1.6x10"J

Eleciric pofential due to a uniformly charged thin spherical shell:
(1) When the point P lies outside the shell: We know that for a uniformly charged spherical
shell, the electric field outside the shell is as if the entire charge is concentrated at the centre,
Hence electric potential at a point outside the shell is
y-— 4 (r>R)

_ 4ns, r
(2) When the point P lies on the surface of the shell: Here r = R. Hence the potential on the
surface of the shell is

L g _

are, R (r=R)

{3) When the point P lies inside the shell: The electric field at any point inside the shell is
zero. Hence the electric potential due to uniformly charged spherical shell is constant
everywhere inside the shell. (Not yet done)

I ¢
= = <R
4z, R (rek)

N

\\I‘

Relation between electric field and electric potential: Consider the electric field due to
charge + g located at the origin O.

. . Vp=V+dV V=V
Let A and B be two adjacent points +q g, 2
separated by distance dr. The two * " 2 Y >

points are so closed that electric field <

E between them remains almost constant. Let V and V + dV be the potentials at the two
points.

The work done to move a test charge from A to B is
W = F.dF = Fdrcosi80° = —Fdr

W = ~q,Edr ---eecemnmeeeem (1)
Also W =q,(V,-V)=q,{(V +dV)-V}
W=q (V+dV -V)=g,dV ---eomeemmm-- (2)

E!ct; — — __....



Equating equation (1) and equation (2) we have

~q,Edr=q,dV
E=-4
dr
-4y L
In vector form £=—— or dV ==-E-dr
dr

This is called the potential gradient. The negative sign shows that the direction of the electric
field is in the direction of decreasing potential.

Note: Electric potential is a scalar quantity while potential gradient is a vector quantity.

Equipotential surfaces: Any surface that has same electric potential at every point on it is
catled an equipotential surface.

Properties of equipotential surfaces: 2,
{1) No work is done in moving a test charge over an
equipotential surface .

WA'B = Qa(VB - VA)

As the surface is equipotential, Equipotential surface
Vo=V,
Ve—V,=0
We=q,0)=0

—

(2) Electric field is always normal to the equipotential surface at
every point.

If Eis not normal to the equipotential surface, E"H #0.Soto
move a test charge against this component, a work would have

to be done. Hence the electric field £ must be normal to the
equipotential surface at every point.

(3) Equipotential surfaces are closer together in the region
of strong field and farther apart in the region of weak field.

g4

ar

Or dr:—i}-{
E

When 4V is constant

a’rcmtl
E

(4) No two equipotential surfaces can intersect each other. If they intersect, then there will be
two values of electric potential at the point of intersection, which is impossible.
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Electric potential energy: The electric potential energy of the system of point charges may
be defined as the amount of work done in assembling the charges at their locations by
bringing them in, from infinity.

Note:
(1) If a positive test charge g, moves from point A to point B against the electrostatic field of
the source c'harge g, then the external work done is positive while the electrostatic work done
is negative. :
Ve=V, =+W:§ =—m
- 9 9,
Vs =4V, = +Wi5 =W
Up-U,=+Weg =W
where U/ and U, are the potential energy at B and A respectively and U, >U,,
(2) If a positive test charge g, moves fram point B to point A along the electrostatic field of
the source charge ¢, then the external work done is negative while the electrostatic work
done is positive.

ezt ciec
V.-V, = e +—W—"3—
9o 9o
qVs~ 9.V =W =+ W
Ug=U,=-Wg = +W;:;c
where U/ and U, are the potential energy at B and A respectively and U, > U,

Electric potential energy of two-charge system: %
Suppose a point charge g, is at rest at a point Fin space.

It takes:no.work to bring the charge g, because there is no |
field yet to work against.
W, =0 @ %

Uy
‘ 5

Electric potential due to ¢, at a point P, at distance 7, A
from B, will be :

By bringing charge g, from infinity to point F,, the work required is
9.9,
4re, r,

Hence the electrostatic potential energy U of the system is

U=W, +W, =0+ —— 9%
e, N3

W,=V xq,=

»

U= B
47t£q h,
Note: '
(1) For positive potential energy (i.e., U positive or ¢,q, > 0), a positive amount of work has

to be done against this force to bring the charges from infinity to finite position,

L
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(2) For negative potential energy (i.e., U negative or g,4, <0), a positive amount of work has
to be done against this force to take the charges from the given locations to infinity.

Electric potential energy of a system of three point q
charges: As shown in the figure, the electric potential .--'3

at P dueto ¢, and g,is

v, =-—ﬂ~—q—' and ¥V, = ] i’—respectivcly.
4re, n, 47E, Iy

Now by bringing a third charge g, from infinity to the

point P;, the work required is

W,=V xq,+V,xq, = 1 .q1q3+ 1 Q2q3= _1 Q|q:;+q:q;
350 3“ 2 X4, dne, ry, 4me, r, A4me, | n, ry,

Hence the electrostatic potential energy U of the systein is

o

U=W +W,+W, =0+ ! q"?2+ 1 [91q3+‘?z‘?3]
4re, r, 4ng,| n, Ty

Us_' (99,99 99
4ne, | ny s £5

The electrostatic potential energy U for a system of n charges is
1 l = Q:q /

2 4ne, 0 7,
ing

Electric potential energy in an external field: Electric potential energy in an external field
can be defined as the potential energy of a unit q
positive charge at that point. »
Let the electric potential at a point P in a uniform - /-—”
electric field Eis ¥V —

Therefore the electric potential energy at-that point is
U=Vxgq

PR I I
N

Potential energy of a system of two point charges in an electric field: Let V| and V, be the

electric potential of the field £ at the points where ¢, and ¢, : >

are located. Then potential energy of the two charges in the . .

field £ is . : A . E
U:leq|+V2xq2+«—--——-———q'r2 + 1/ F v; >

dne

F

where V| x g, is the interaction between ¢, and E,
V, xq, is the interaction between ¢, and £,
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1 a9, .
4;:6‘ r

o

is the interaction bcmeen g, and q,.

Electric potential energy of an electric dipole in uniform electric field° Consider an

electric dipole placed in a uniform electric field £
with its dipole moment p making an angle 8 With — [ >+ ‘IE
the field. Two equal and opposite forces + gE and '\" / - SN

~ gE act on its two ends. The two forces form a

couple. The torque exerted by the couple will be
#= pksin®

If the dlpole is rotated through a small angle @ agamst the torque acting on it, then the small

work done is
dW =1 d8 = pEsiné d6

The total work done in rotating the dipole from angle 8, with E to 8, will be

W= [aw :j'pa sind d8
8

W = pkf- cosBE‘ = ~pE[cos8, - cos,]
= pElcosy, —cos8, ]
This work done is stored as the potential energy U of the dipole.
.U = pElcosd, - cosb, ]
If initially the dipole is oriented perpendicultis tothe direction of the fifd, then 8, = 90°.
When brought to some orientation making an angle & with the field, then8, = 6. The potential
energy of the dipole will be

U= pB{ces‘)O“ - cosé’] =-pEcosd
Or U=-p-E

Special cases:
() Whenf=6%, U=-pEcos0®=~pE
In this position, the dipole has its minimum potential energy and hence it is in stable
equilibrium,
() When8=90°, U=-pEcos90’ =0
In this position, thé potential energy of the dipole is zero.
(3) When8=180°,  U=-pEcosi80° =+pE ~
In this position, the dipole has its maximum potential energy and hence it is in unstable
equilibriym.

4
Note: If we hold the dipole perpendiciilar to the electric field and bring it from infinity into
the field, then the work done on charge + g by the external agent is equal to the work done on
charge ~¢ . The net work done on the dipole will be zero and hence its potential energy is
zero.

5 S
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Conductors: Those substances which permit the flow of charge through them are called
conductors. The conductors may be classified into two categories (1) metallic conductors and
(2) ionic conductors.

(1) metallic conductors: In metallic conductors ( examples copper, silver etc), there are a
large number of free electrons

(2} ionic conductors or electrelytes: In ionic conductors ( examples solution of NaCl, KOH
etc), a large number of positive and negative ions are present due to ionisation.

Insulators: Those materials which do not permit the flow of charge through them are called
insulators or dielectrics ( examples glass, mica, paper etc).

Behaviour of conductors in electrostatic field:
(1) Net electrostatic field is zero in the interior of a conductor.

N - pa il z py .
+ > R - + | —= -
+ | + | e 4= = -
+ £E—| - + et - ef—d Enn -
+ —f = + | —= * | -
+ —_— — * | —= - Y P &.._.._) —_
=it \ Em
Conductor Conductor
(1) (2) 3)

When a conductor is placed in an electric field £ , induced electric field £, set up by the

induced charges becomes equal and opposite to the field £,,, . Thus the net field inside the
conductor is

Eer =E=Ear+EM=Euf_E¢xr zO

]

Note: - E,, =0 inside the conductor, the medium inside the conductor completely blocks the
passage of field. So absolute permittivitye=¢,6, =« .

(2) Just outside the surface of a charged conductor, electric
field is normal to the surface.

If the electric field is not normal to the surface, it will have
a component tangential to the surface which will
immediately cause the flow of charges, producing surface
currents. But no such currents can exist under static
conditions.

(3) Electric field at the surface of a charged conductor is proportional to the surface charge
density.

Electric field is zero inside the conductor and just outside, it is normal to the surface.
The electric flux through the pill box is ¢, = E AS -----=- (1)
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Charge enclosed by the pill box is g = AS

By Gauss's theorem ¢, =4- =285 ____ 2
80 go
Equating equation (1) and equation (2), gives
Eas=225 | ; ;
€ v
o
=— Surface of conductor
£, -
Eco .

{(4) Potential is constant within and on the surface of a conductor.

Inside a conductor E=0

dv dv
. E = o—— T e =
ar ar
-V = constant.

The electric field is always perpendicular to the equipotential surface, and also perpendicular
to the surface of the charged conductor. Thus ¥ is constant on the surface, and the surface of
the conductor is an equipotential surface.

Note: If the conductor is charged, there exist an electric field normal to its surface. This
indicates that the potential on the surface will be different from the potential at a point just
outside the surface. '

{5) The net charge in the interior of a conductor is zero and any excess charge resides at its
surface.

We know that the electric flux is ¢, = IE as=Z
£
b “o
*+ E = 0inside the conductor
..g=0
Hence there is no charge in the interior of the conductor and the entire excess charge ¢ must
reside at the surface of the conductor.

(6) Electric field is zero in the cavity of a holiow charged conductor.

wFeo

As E=0 + i:’ is zero inside a conductor
no=0 The potentigl ¥ is constant.
Therefore E is zero.
And g=0
So there is no charge in the surface of the

cavity.
Again electric flux through the Gaussian

surface is ¢, =ES =L
£

a

w
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LES=2
£

E=0

Hence the electric field must be zero at every point inside the cavity.

(4]

Electrostatic shielding: The phenomenon of making a region free from any electric field is
called electrostatic shielding. It is based on the fact that electric field vanishes inside the
cavity of a hollow cylinder.

Such a field free region is called a Faraday cage.
Capacitor: A capacitor is a device that is capable of storing charge. __' }_.

Electrical capacitance of a conductor: The ¢lectrical capacitance of a
conductor is the measure of its ability to hold electric charge.
If a charge ¢ is put on an insulated conductor, it increases its potential by V. Thus
gV
Org=CV
The constant C is called the capacitance of the capacitor.

V
The capacitance of the capacitor may also be defined as the amount of charge required to

raise its potential by unity.

The capacitance depends on:

(1) size and shape of the conductor,

(2) nature (permittivity) of the surrounding medium,

(3) presence of the other conductors in its neighbourhood.

The SI unit of capacitance is farad (¥). The capacitance of the capacitor is 1/ if the addition
of a charge of 1C to it, increases its potential by 1V.

The unit of capacitance is 1F = A Y

LWV 1Nm
C
. The dimensions of capacitance [C)= AT [MLPT 4%
h [MLTL)

Concept of capacitance by example: Let the charges stored on the 1* conductor is
1coulomb, P is a point in space where the electric potential can be calculated and the 2™
conductor is introduced latter.
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q = lcoulomb ¢ = 1coulomb

+ +
+ V,=30F oo _V, = 30¥
: n= lcmml; Yl =1cm 1;
+ +
(1% conductor) {1® conductor) {24 conductor)
(1) ' (2)

In figure (1): The potential at the point P distance r; *= lcm from the plane of positive
charges is Vy = 30V. The capacitance of the 1* conductor is
_q _lcoulomb

vV 30volt

In figure (2): The 2™ conductor is introduced.

g = lcoulomb g = lcoulomb .
' * Vv, = 30V
o V=307 4 T e
y=lem p i =lom V, =10V
: : 13 = 1.8cm
V; =By t‘j
(1* conductor) (2™ conductor) (1# conductor) (2™ conductor)
3 )

In figure (3): By induction, the negative charges come closer to the 1* conductor, while the
positive charges move farther away.

In figure (4): The potential at the point P distance r; = 1.5¢m from the plane of negative
charges is V, = ~10V. The potential at the point P distance 3 = 1.8cm from the plane of
positive charges is V; = 6V.

= lcoulomb q = lcoulomb

g

+ +

. V=24¥ .

g B2 Sem P T P _n=1l5cm

*Im=lem P 1= LBem 5 Elem v e 20y

+ ! +

+ 2 [

(1% conductor) (2= conductor) (1# conductor) (2" conductor)
2 © =

In figure (5): The net potential at the point P is V =30V — 10V + 6/ = 24V, The capacitance

of the 1* conductor now is
_ lcoulomb = 0.04F

TV 24volt

T
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In figure (6): If the 2™ conductor is earthed as shown in the figure, all the positive charges
has been neutrdlised by the negative charges from the ground. 8o the potential at P is
V =30V - 10V = 28V. The capacitance of the 1* conductor now is

-4 lcoulomb _

Note:
(1) The capacitance of a conductor increases in the presence of another conductor.
(2) As the potential V decreases, the capacitance C increases,

Electrical capacitance of an isolated spherical conductor: The electric potential at any

point on the surface of the spherical conductor of radius R is
=L 49

4drxe, R

.. The capacitance is ' = 4. 94 . 47e, R
v 1 g

4re, R
Clearly the capacitance of a spherical conductor is proportional to its radius. i.e.,C « R

Note:
(1) The formulaC =47¢, R is valid for both hollow and solid spherical conductors.

(2) lfarad is very large unit of capacitance.
(3) It is not possible to have a single isolated conductor of very large capacitance.

Parallel plate capacitor: Parallel plate capacitor is an arrangement of two parallel
conducting plates of equal area separated by air medium or any other insulating medium such
as paper, mica, glass, wood, ceramic, etc.

Let 4 be the area of each plate, d is the distance between the two plates, + o is the uniform
surface charge densities on the two plates and * & A is the total charge on each plate

Potential difference between the plates is V = Ed = -d

Where E = - is the electric field in the inner region bctween the l_'
80

two capacitor plates.

Capacitance of the parallel plate capacntor is

m—y—xzwa-=a'Axam
80
or ¢ =54
d

The capacitance of parallel plate capacitor depends on the following factors
(1) Area of the plates (Cx 4)

(2) Distance between the plates (C x -;l;}

T R
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(3) Permittivity of the medium between the plates (C x g)ie, C= 8‘:'A

Combination of capacitors in seties: Thcﬁgut‘e shews threeeapcmrs of capachiences C,,
C,and C;connected in series. A potential difference V:s applied across the combination.
Y, n 2 -

l .

", b A B O A
+ L + ..
+ | + - + <8 ]
+ +~ +-

—o¥ o
¢y @
The potential differences across the various capacitors are

V=L, v,=L and ¥,=L
¢’ G G,

For the series circuit, we have -

V= V+V,+V =3~—+ 9 *_g__q[l +L+i]

CI ¢, G G G G
vy 1.1 1"
_._=.._.._+_......§.._-;.a-a.m(l}
g € ¢ €
If Cis the equ:valent capacltance of the series combmanon, then
1 ¥V
Cc.=2 Or —= = —tocemnen (2
STy ¢ ¢ @)

From equation (1) and eqoatich (2), we get
1 1 I »
e g e e o e

Cs C‘ Cz C3 . :
For a series combinatin ¢§ » capacitory, we can write

Note:

(1) If two capacitors of capacitances C, and C,are connected in series, then the equivalent
. G

€ +C,

(2) The charge on each capac:tors is same.
(3) The equivalent capacitance is smaller than the smallest individual capacitance.

capacitance Cgis C =

Combination of capacitors in parsflel: The figure shows three capacitors of capacitances
C,,C,and C,connected in parallel. A potentiabdifference V' is applied across the
combination.

All the capacnms have the same potential diﬁ‘erence ¥ but different charges given by
=€V, q,-:C ¥ and q,—-C,
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Total charge stored in the combination is g
p)

-¢
g=q,+q,+q, =C,V+C,V+C, ¥V =V[C +C,+C, ] ';
+ -K
Z=C +C, +Cy—-— 4); + '
If C, is the equivalent capacitance of the parallel combination, then +,z -4,
Cp =L@ -
vV + I
From equation (1) and equation {2), we get + -
C,=C,+C,+C, e, <
For a parallel combination of » capacitors, we ¢can write I . -|c3
Co=C,+Cy+Cy+...+C, I
Note:
(1) When capacitors are connected in parallel, the equivalent YO Ve —

capacitance is larger than the largest individual capacitance.
{(2) The potential difference across each capacitor is same.

Energy stored in a capacitor: The work done in charging the capacitor is stored as its
electrical potential energy.

g - +9' —q-dq tg g
| ] e
bl b

S . - —
v V' vV
Suppose at any stage of charging, the potential difference is V'= %

If a small charge dg' is further transferred, the work done is
dW =V'dg'= %dq'
The total work done in transferring a charge ¢ from plate 2 to plate 1 will be
q 1217 2
W= faw = [Lag={ 9L | -1
& 2C |, 2¢C
This work done is stored as electrical potential energy U of the capacitor.
14 1

=—i=—CV’? =qu
2C 2 2

Note: The energy supplied by the battery is g¥, but the energy stored in the electric field is
%qV . The rest %qV of the energy is dissipated as heat in the conducting wires and battery

itself.

e S
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Energy stored in a series combination of capacitors: For series combination, ¢ is constant.
2 2 2 2 2
Total energy is U ~1g g1 + ! + 1 +. =~1—g—+—l——g——+—i—i—+...
cC, C, G 2C, 2C, 2G,
U=U, +U,+U, +..
Energy stored in a parallel combination of capacitors: For parallel combination, ¥is
constant.

Total energy is U = %CV2 = %[CI +C+Cy+. V2 = %C,V’ + -;—Csz «i»—;—C,V2 ...
U=U,+U,+U +..

Hence total energy is additive both in series and parallel combinations of capacitors.

Energy density of an electric field: The presence of an electric field in a capacitor implies
stored energy.

The capacitance of a parallel plate capacitor is C = %‘4» _"_E E=Z }L
& T
[." E ) “0-._—} :

Charge on either plate is O =04 =(¢,£)4
€y

The energy stored in the capacitor is

U@ _(GEA) B4 e EAd

20 L 8d T 254 264
d d
2
o U_soE Ad
2
Or u=£=l£0E"'
Ad 2

Here u is the energy density of the electric field and Ad is the volume inside the two plates of
the capacitor

Dielectrics: A dielectric is an insulating material in which all the electrons are tightly bound

to the nucleus of the atom. There are no free electrons to carry current. Ebonite, mica and oil
are few examples of dielectrics. The electrons are not free to move under the influence of an

external field.

Polar molecule of a dielectrics: A molecule in which the centre of mass of positive charges
does not coincide with the centre of mass of negative charges is-called a polar molecule.
Examples: Water, HC/, CO, etc

Note: Molecules of polar dielectrics possess permanent dipole moments.

Nou-polar molecule of a dielectrics: A molecule in which the centre of mass of positive
charges coincide with the centre of mass of negative charges is called a non-polar molecule.

Examples: Hy, N3, Oy, CO, etc

Note: Molecules of non-polar dielectrics do not possess permanent dipole moments.

e
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Polarisation of a non-polar molecule in an external electric ﬂ?!d: If & non polar molecule
is placed in an electric field} the centre of charges get displaced. The molecule is then said to
be polarised and the arrangement becomes an electric dipole. The molecules of the material

are said to have induced dipole moments. _

o)

L i

+* b

Keey

Behaviour of a dielectric of dielectric constant xin a uniform electric field:

(1) Relative permittivity ¢(x: The ratio of the strength of the applied electric field &, to the

strength of #ie reduced electric field Eon introducing the dielectric between the plates of the
capacitor is called relative permittivity {x) of the dielectric medium.

B
t = i
' E
(2) Relation between the induced charge density o, on the dielectric and the free charge

density o, on the plates:

o o E, o
vE,=~L  Ea<t and E==2=—L |
g, £, K EX
Also E=E, ~E,
I S %
ex 5, &,
o, g g
Or 22=—S ol
£, £ EK
o 1
Or g,=0,-~L=0 (I-——J
P e U
x~1
Or o,=0, —
K

Since x is always greater than 1, so the induced charge density o, on the dielectric is less
than the free charge density o, on the plates.

(3) Electric field due to induced charges on the dielectric: As shown in the figure, let E,
be the external electric field, E‘, be the electric field due to induced charges on the dielectric
and Eis thé net electric field. o, and o, are the free and bound charge density on the
dielectric and on the plates respectively.
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_ DY N DA N b G A
+ — > +_—‘¢-—“—L—-) it 2 g —
+—£—°—H———+ 4| - e +-—-E-—+ »[ —
] ———— +~_..x¢_.l..:t._., | —] —_ ] -
* f———p 4-——11—-——-**-—-:) - —| -
L E,
Diclectric Dielectric
(1) 2 3)
E=E,-E,
Or E=E-E
Or E=E ~F
OrEL:Eo—a’
X
Or&=&@—lJ
XK

Since « is always greater than 1, so the induced electric field E, is less than the electric field

E

{(4) Polarisation density or Polarisation vector ( P ): Polarisation vector is defined as the

electric dipole moment induced per unit volume in the dielectric slab when place in an
electric field. Thus

P:nﬁ
where n is the number of molecules per unit volume and p is the average electric dipole

moment per molecule.

Note: P=n p where pis the average dipole moment per molecule, # is the number of
molecules per unit volume. Any molecule develops a dipole moment which is proportional to
the applied field i.e., p = £,a £ where ais the atomic (electronic) polarizability, £,is the

permittivity and £ is the net electric field inside the dielectric.

(5) To show that P= o,
Consider a dielectric slab of length / and area 4. Then volume of the slab is 4/, If o, is the
induced charge density, then dipole moment of the slab is (o, A) L.
(g, 4)
—— 0‘ -
Al ’
Thus the induced surface charge density is equal in magnitude to the polarisation vector P.

By definition, Polarisation vector P =

Note: The net electric field £ can also be expressed in terms of polarisation vector P as

E=E,-E=E-2=E-L

£ £

o &

(6) Electric susceptibility ( 7 ): Electric susceptibility is the different between the relative
permittivity of the medium (x) and that of a vacuum. i.e.,
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x=x-1

wP=g,y E
E-g-Lf-p 52 _p _ g
80 7

E,=E+yE=E(l+y)

£=1+z
E
K=l+yx
x=x-1

Note: The susceptibility is the quantity that depends upon the nature of the dielectric. y is
unitless and dimensionless. P=n p=ne,a E=¢g,y E where y =na

Capacitance of a parallel plate capacitor with a
dielectric slab: The capacitance of a parallel plate
capacitor of area 4 and plate separation d is

£ A
C =280 (]
e (1

H—
M
e,
4

+ o+

e

Magnitude of electric field between the plates is [V E,
! ! J
c_ 9
E =—0=1.

- P>

o a

ISR

where o = % is the charge density.

Potential difference between the capacitor platesis ¥V, = E d .
When a dielectric slab of thickness ¢ (1 < d) is place between the plates of the capacitor, then

the magnitude of electric field between the plates is £ = £ and the potential difference
K

between the capacitor plates is
V=E{d-t)+Et=E(d-1)+ ~E—“r
K

o

y:g,,[um.«m]: g [(d_ml]
X A K

Ag,

q._ 7%
V' o@-n+t

K
But C = f; is the capacitance of the capacitor with dielectric slab between the plates.

A Ag
nC=—tE e :

- o - = @
d-n+L d-1+L d»:@mlJ
K K K

From equation (1) and equation (2) we see that C > C,
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Special case:

Ifr=d
nC= A, d=Ag"x=KCa
@d-a+& 4 |

K

Discharging action of sharp points (Corona discharge): If the conductor is given a charge
g, then the charge density o at the pointed end will be very high. Consequently, the electric

~ field near the pointed end will be very high which may cause the ionisation or electrical
breakdown of the surrounding air. The oppositely charged ions neutralise the pointed end
while the similarly charged ions are repelled away.

Van de graaff generator: It is an electrostatic generator capable of building up high
potential differences of the order of 107 volt.

Principle:

(1) Diseharging actien of sharp points (corona discharge) i.e.,electric discharge takes place in
air or gases readily at a pointed ends of conductors.

(2) If a charged conductor is brought into internal contact with a hollow conductor, all of its
charge transfers to the hollow conductor, howsoever high the potential of the latter may be.

Construction:
Van de Graaff Generator consists of a large (about a few metres in radius) copper spherical
shell (S) supported on an insulating stand (IS) which is of several metres high above the
ground.

A belt made of insulating fabric (silk, rubber, etc.) is made to run over the pulleys (P, P;)
operated by an electric motor (M) such that it ascends on the side of the combs.

Comb (C;) near the lower pulley is connected to High Voltage Rectifier (HVR) whose other
end is earthed. Comb (C,) near the upper pulley is connected to the sphere S through a
conducting rod.

A tube (T) with the charged particles to be accelerated at
its top and the target at the bottom is placed as shown in
the figure. The bottom end of the tube is earthed for
maintaining lower potential.

To avoid the leakage of charges from the sphere, the
generator is enclosed in the steel tank filled with air or
nitrogen at very high pressure (15 atmospheres).

Working:

Let the positive terminal of the High Voltage Rectifier
(HVR) is connected to the comb (C;). Due to action of
points, electric wind is caused and the positive charges are
sprayed on to the belt (silk or rubber). The belt made
ascending by electric motor (EM) and pulley (P1) carries
these charges in the upward direction.

The comb (C,) is induced with the negative charges which are carried by conduction to inner
surface of the collecting sphere (dome) S through a metallic wire which in turn induces
positive charges on the outer surface of the dome.

The comb (C;) being negatively charged causes electric wind by spraying negative charges
due to action of points which neutralize the positive charges on the belt. Therefore the belt
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does not carry any charge back while descending. (Thus the principle of conservation of
charge is obeyed.)

The process continues for a longer time to store more and more charges on the sphere and the
potential of the sphere increases considerably. When the charge on the sphere is very high,
the leakage of charges due to ionization of surrounding air also increases.

Maximum potential occurs when the rate of charge carried in by the belt is equal to the rate at
which charge leaks from the shell due to ionization of air.

Now, if the positively charged particles which are to be accelerated are kept at the top of the
tube T, they get accelerated due to difference in potential (the lower end of the tube is
connected to the earth and hence at the lower potential) and are made to hit the target for
causing nuclear reactions, etc.

Use: The high potential difference set up in the van de Graaff generator is used to accelerate
charged particles like protons, deutrons, a-particles, etc to a high energy of about 10 MeV.

Note:

(1} At C;, the positive charges ionised the air in its surrounding, the electrons moves to Cy,
while the positive ions move to the right and stick to the belt (insulator). The electrons
neutralise the positive charges in C, but the density of the positive charges is maintained by
HVR.

(2) The positive charges in the belt induced negative charges at C,, while the positive charges
are collected at the outer surface of the sphere (dome). In the space between the belt and C,,
the air is ionised, the electrons move 1o the belt to neutralise the positive charges, while the
positive ions move to the right i.e., to C; to neutralise the negative charges. So in the sphere
there is a deficiency of negative charges which make it a positively charged sphere.




CURRENT ELECTRICITY

4
Current electricity: The study of electric charge in motion is called current electricity

'Electric current: The flow of electric charges through a C
conductor constitutes an electric current.

Quantitatively, electric current in a conductor across an
area held perperidicular to the direction of flow of charge is
defined as the amount of charge flowing across that area
per unit time.

If a charge Ag passes through an area in time f to ¢ + Af,
then the current / at time { is given by

Area perpendicular to the
direction of flow of charge

_ fim Ag _dq
TAISO0M
If the current is steady i.e., the rate of flow of charge does not change with time, then

=4
H
The unit of electric current is ampere {A). It is a scalar quantity.

One ampere of cuirent is said to flow through a wire if one coulomb of charge flows in one
second. '

1A=£

Is
Note:
(1} Current flows from high potential energy to low potential energy.
(2) Positive charge moves from high potential energy to low potential energy.
(3) Electron moves from low potential energy to high potential energy.

Electronic current: The direction of electronic current is along the direction of the electrons.

Conventional current: The direction of conventional current is along the direction of the
positive charge or opposite to the direction of motion of the electron.

Electromotive force (EMF): The EMF of a source is equal to the maximum potential
difference between its terminals when it is in the e
open circuit i.e., when it is not sending any .
current in the circuit,

The EMF of a source is the difference in

o 174
potential ie.,, 6=V —V, =—

So EMF of a battery represents the strength of the battery required to move the positive

charges from low potential to high potential inside it.

Note: The potential drop across the terminals of a cell when a current is being drawn from it
is called its terminal potential difference (V). £1s always greater than V.

-
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EMF Vrs Potential difference

Electromotive force Potential difference
It is the work done by a source in taking a | It is the amount of work done in taking a
unit charge once round the complete unit charge from one point of a circuit to
circuit another
It exists even when the circuit is opened It exists only when the circuit is closed

It is larger than the p.d. across any circuit | It is always less than the EMF
element
It is independent of the external resistance | It is dependent on the external resistance
in the circuit
It is equal to the maximum potential Potential difference may exist between
difference between the two terminals of a | any two points of a closed circuit

source when it is in the open circuit

Ohm'’s law: The current flowing through a conductor is directly proportional to the potential
difference applied across its ends, provided the temperature and other physical conditions
remain unchanged i.e.,

Vo

V=1IR
R is called the resistance of the conductor.
The SI unit of resistance is ohm (Q). 1 2 =1 volt/ | ampere
V1_Wiql _(MLT?]_

[MDT7A47)
(7]  []  [4l[4T]

The dimensions of resistance is [R] =

International ohm: It is defined as the resistance of 106.3 ¢m long mercury column of |
mm® cross-sectional area and mass 14.4521 g at o°c

Resistance: The resistance of a conductor is the property by virtue of which it opposes the
flow of charges through it.

Conductance: The conductance of a conductor is the ease with which electric charges flow
through it. It is equal to the reciprocal of its resistance and is denoted by G. Thus

G=1
R

The S1 unit of conductance is ohm™" or mho or siemens (S)

Factors affecting the resistance (Resistivity): At constant temperature, the resistance R of a
conductor depends on the following factors.

(1) Length {I}: Rl |
(2) Area of cross-section (4): R « :l;

{3) Nature of the material:
i [
SR — Or R=p~
y £
o is called the resistivity or the specific resistance of the material of the conductor. It depends

on the nature of the material, temperature etc but not on the size and shape.
The SI unit of pis Qm.
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Resistivity ( p): Specific resistance or resistivity of a material is the resistance offered by Im
length of wire of the material having area of cross-section of 1m? i.c.,

! 1
R=p—=p- =
p—=P3 =R=p

Conductivity: The reciprocal of the resistivity of a material is called its conductivity and is
denoted by o. Thus

1
O=—

p
The SI unit of conductivity is ohm™ m™ or mhom™ or § m™’

Current density: The current density at any point inside a conductor is defined as the
amount of charge flowing per second through a unit area held normal to the direction of the
flow of charge at that point.

Current{/) Current ()

Area{A) perpendicularto the Area(A) inclined at an angle
direction of flow of charge 0 to thie direction of current (I}
(1) 2)
In figure (1) Current density is j= «g:;—" = :2-
| T
In figure (2) Current density is j =
Acost

Or [ = jAcosf =] A
Current density is a vector quantity. Its ST unit is Am™

Classification of materials in terms of resistivity:

(1) Conductors: The materials which conduct électric current fairly well are called
conductors,
p=102Qm to 10° Qm.

(2) Insulators: The materials which do not conduct electric current are called insulators.
p> 10 Qm.

(3) Semiconductors: These are the materials whose resistivities lie between those of
conductors and insulators.
p lies between 10° Qm and 10* Qm.

Carbon resistor and colour code: A carbon

resistor is made from powdered carbon mixed ——0) ) ) ) )_—‘—‘

with a binding material and baked into a small e

tube with the wire attached to each end. 1* Ban / 3+ Band \Tolerance
24 Band
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Colour code

Aids | Colour | 1"Band | 2™ Band 3" Band (x) Tolerance
B | Black 0 R % 190
B Brown 1 t %10 :
R Red 2 2 x10° Gold + 5%
O Orange 3 3 x10°
Y Yellow 4 4 <10° Silver + 10%
Great | Green 5 5 x10° . -
Britain | Blue 6 3 <106 No colour + 20%
Very | Violet 7. 7 %10’
Good | Grey 8 8 x10°
Wife | White 9 9 x10° i i

Mechanism of current flow in a conductor — Drift velocity and relaxation time: Just after
collision, let i,,i, ,#, ,... i, be the velocities of the 1%, 2™, 3" _.n"™ electron, whose average

iy i+ E

velocity is 4 =
n

Force gxperience by an electron is 7 = —eF
The acceleration of the electron is a = ¢k
m
Before the 1% electron will suffer the next collision, the velocity will be

V,=u, +dr,

The velocities of the other electrons are

V, =u,+dr,, Vy = Uy + AT, 7

+ﬂ
y 4Vt

<|
+ i
i l‘:;

Bl

a

The average velocity of all the n electrons is v, =

2: ity b}

. (utar)+(l,+dr,)+ (U +ar)+..+(u,+ar,)
d-— L

n
5 L MHar Vil +AT, iU +AT .+, 4T,
=
n
5 oty tiy 4.+, +AT AT, +AT; +..+4T,
=
. n
Uy +Uy vy +.. U, a1, +37,+41; +...+ar,
v, = +
. n n
AR 7 AL NE B Y AR AR A S 3
Vv, = 1 2 3 24+ d 1 2 3 R
n n
v, =0+ar
v, =ar
- ekr
v, = ———
m
Consider the magnitude only we have
_ ekt
v, =———
m

m
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Or Vc'"ﬁ L -
mi ;
7 is the average time between two successive collision called the relaxation time. vd is cﬂ’le@ .
the drift velocity. ' \r‘r[ L(,nl\
Drift velocity: The drift veloeity of the electrons is defined as the average velocity gained by
the free electrons of a conductor moving in the opposite direction of the external applied
electric field.

The drift velocity of the electrons in a conductor is given by

v, =ar
Where 4 is the acceleration and 7 is the rélaxation time.
. F ek
g = — o e ——
m m

Where F is the electric force, Eis the electric field, m is the mass of the electron and ¢ is the

chargc on the electron.
- ekt
SV ——
m

In magnitude, the drift velocity is v, = L2213

Again °°E=%

Where Vis the potenual dxffercncc across the conductor and / is the length of the conductor.
evr

... vd
m I

Note:
(1) The average time that the electron spends ber'wecn two successive col!nsxons is called the

relaxation time (7). Its value is of the order of 10"

(2) The average velocity with which free electrons get drifted in a metallic conductor under
the influence of electnc field is called dnft veloc:ty (v4)- The drift velocity of free electrons is

of the order of 107> ms™' or 0.01 mm s~

Relation between electric current and drift velocity:
Let n be the number of electrons per unit volume

(electron density) moving with drift velocity v, through

an area 4 in a conductor in a unit time.
The total number of electrons per unit volume ( elcctron

%,

density) crossing the area 4 is v,
q=nedv, Area A perpendicularto the
g q direction of flow of electrons
= —r» 0]‘ 1 = ~1— = q

- The electric current is { = nedv,
Hence current flowing through a conductor is directly proportional to the drift velocity i.e,,

Iocvd
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\ ]
Again — =nev
g 4 d

S ] = nev,
Where j is the current density. In vector form, [ = - nev,

Note: Since the drift velocity of the electrons is v, = T f—f—/}z
m m
Etr ne’drE

(1) The current through the conductor 7 = nedv, = ne4 ¢
m m

2
(2) Also the current through the conductor / = nedv, = ned eV;- = he ‘4; 4
m m

Validity of Ohm's law or Derivation of ohm’s law:

The drift velocity of the electrons is v, = ekt = evr
m ml
The current through the conductor is [ = nedv, = neAe—V:
m
So K = T[
I ne‘dr

At a fixed temperature, the quantities m ,/,n,e, 4 and r all have constant values for a given

conductor.
vV

g —=
I neldr

=¢onstant = R

ml

ne’dr
Hence V « [ which is Ohm’s law.

where K =

Resistivity in terms of electron density and relaxation time: The resistance R of a
conductor of length /, area of cross-section 4 and resistivity o is given by

p depends on the electron density of the conductor, and the relaxation time. It is independent
of the dimensions of the conductor.

Mobility of charge carriers (u): The mobility of a charge carrier is defined as the drift
velocity acquired by it in a unit electric field.

Yo _eET _er

E mE m
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ET
For electron y, = —=

¢

7#

For hole u, = (in semi conductor)

m,

#1s positive for both electrons and holes, although their drift velocities are opposite to each
other.

Or
?
.y AT E
m
I er
R el
nedAE m )
v, eEtr er
By definition pr= =" = e (2
Y # E mE m @
Equating equation (1) and equation (2) we have
I
" ned E

Note: How easy the electrons accelerate in a conductor, in the presence of the electric field is
the mobility. Or how often the electrons hit something in a conductor to get scattered.

Temperature dependence of resistance: It has been found that in the normal range of
temperatures, the resistance of a metallic cenductor increases linearly with the rise in
temperature, THerefore resistance-temperature graph is a straight line as shown in the figure.
Consider a metallic conductor having resistance R, at 7,°C and R, at #,°C. Then in the normal
range of temperatures, the increase in resistance i.e., (R; — Ro) is
(i) Directly proportional to the initial resistance i.e.,
—Rox R,

(1) Directly proportional to the rise in temperature i.e.,

Ri— Ry
- (ili) Depends upon the nature of the material.

Resistance

Combining the first two, we get,
-Rox R 1y
Ri~-Ro=aRoty (1)
Where « is called temperature co-efficient of resistance.
Its value depends upon the nature of the material and

temperature
Rearranging equation (1), we get : 5
Ri=R,(1+tar) : : —
R -R © f ‘2
And @ = ——2 Temperature

Temperature co~ef’fic1ent of resistance of a conductor is the increase in resistance per chm
original resistance per °C rise in temperature.

]
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Limitations of ohm’s law — ohmic and non-ohmic conductors: A conductor that obeys
Ohm’s Law is called an ohmic conductor and the one that does not obey Ohm’s law is called

a non-chmic conductor.

Ohmic conductors: A conducting material obeys OChm’s law when the resistivity of the
material is independent of the magnitude and direction of the applied electric field (figure 1)

+i +J
7 s
-1 -7
(Figure 1) - (Figure2)

Non-ohmic conductors: Non-ohmic substance may have one or more of the following

properties:

(1) V ceases to be proportional to / (figure 2)
(2) The relation between ¥ and / depends on the sign of ¥. In other words, if / is the current
for a certain V, then reversing the direction of V keeping its magnitude fixed, does not
produce a current of the same magnitude as / in the opposite direction {figure 3).

(3) The relation between ¥ and / is not unique, i.e., there is more than one value of ¥ for the

same current / (figure 4).

(4) The straight line V-I graph does not pass through the origin (figure 5).

+f

- r
i

~1
(Figure 3-diode)

iy

v

+1

4

{
-1
{Figure 4-GaAs)

+ 1
v, TV
-1

(Figure 5-Water voltmeter)

Resistances in series: A number of resistors are said to be connected in series if the same
current flows through each resistor
and there is only one path for the

current to flow through all of them.

Consider three resistors of

resistances R, R, and R3 connected
. in series across a battery of EMF ¢
“yolt as shown in the figure. Let / be

ﬁhﬁuit current. By Ohm's law

Y, =IR, V,=

Current electricity

IR,

2

2 2 12
AN > AVAVAVAN 3
R] R} R]
I
Lk
&
= IR,

 Page 220



If R is the equivalent resistance of the series combination, then we must have
£= IR
But £=V,+V,+V,

IR, = IR, + IR, + IR,

R, =R +R,+R,
The equivalent resistance of  resistances connected in series will be

Ry =R +R,+ R, +..+ R,
Note:
(1) The current in each resistor is the same
(2) The total resistance of the circuit is equal to the sum of individual resistances plus the
internal resistance of the cell if any.
(3) The voltage drop across any resistor is directly proportional to the resistance of that
resistor.
(4) The current in the circuit is independent to the relative positions of the resistors in the
circuit
(5) The total resistance in the series circuit is more than the largest resistance in the circuit.
{6) The main disadvantage of a series circuit is that if one device (or resistor) fails, the current
in the whole circuit ceases.

Resistances in parallel: A number of resistors are said to be 4
connected in parallel if the voltage across each resistor is the same. R,
i’ AN
Consider three resistors of resistances R, R, and R; connected in R,
paralle] between points A and B acress a battery of EMF £ volt as L on ]
shown in the figure. Let [}, I, I3 be the currents through the Lf Ry !
resistances R|, R, and R; respectively. By Ohm's law
1y
£ £ d 1+
] ==, ], =—, I, =~
i Rl 2 Rz 3 R} £
If R, is the equivalent resistance of the series combination, then we must have
£
I=—
R,
But /=1 +1, +1, resistance of the series
& & & &
—— =
R, R R, R
1 | S G
—— e e
R, R R, R,

The equivalent resistance of » resistances connected in paraliel will be

P 1 1 1 1
——E e —— b —

R, R R, R R,

Note:

(1) The voltage across each resistor is the same

(2) The current through any resistor is inversely proportional to its resistance.

(3) The total current in the circuit is equal to the sum of currents in its parallel branches.

sy
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(4} The reciprocal of the total resistance is equal to the sum of the reciprocals of the

individual resistances.
{5) As the number of parallel branches is increased, the total resistance of the circuit is

decreased.
(6) The total resistance of the circuit is always less than the smallest of the resistances.

Internal resistance of a cell: The resistance offered by the electrolyte of a cell to the flow of
current between its electrodes is called internal resistance of the cell

J I} AV VAN 'l; -------------------
e d ! ,

It depends on:

(1) Nature of the electrolyte (NaCl or CuSo,) ete

(2) Nature of the electrodes

(3) It is directly proportional to the concentration of the electrolyte

(4) It varies inversely as the common area of the electrodes immersed in the electrolyte

Relation between internal resistance (r), EMF (&) and terminal potentisl difference ()
of a cell: Consider a cell of EMF ¢and internal resistance r connected to an external
resistance R as shown in the figure. Suppose a constant current / flows through this circuit.

By definition of EMF,
g=lV +¥V'
By Ohm'slaw ¥V = /R and V'=Ir R
v
Hence the EMF of a cell is & = IR+ Ir = I(R+r) S
£ :
i ircuitis 7 = ' AAAN
The current in the circuit is 7 Rer —.-L,' A :
Potential difference across Ris V= IR = &’ T
R+r
ce=V+lir
Ir=¢g-V

The internal resistance of acell is r = g;V £ nid = [E — VJR

14 14

R

Note: The terminal voltage V of a cell is the voltage across its load (R) when the cell is
delivering current i.e., the cell circuit isclosed.

Combinations of cells in series: When the negative terminal of one cell is connected to the
positive terminal of the other cell and so on, the cells are said to be connected in series.

As shown in the figure, suppose three cells of EMF £, ¢, and ¢, and internal resistances r,,
r, and r; are connected in series between points A and D. Let / be the current flowing
through the series combination.

Current electricity Page 222



The potential difference across Aand Bis V,, = ¢, - Ir,
The potential difference across Band Cis V. = ¢, - I,
The potential difference across Cand Dis V., = ¢, - In

The potential difference across Aand Dis V,, = Vig Vi +¥ep
Vip ={&,~In)+ (g, - 1)+ (&, - Iny)
Vio=6+&+&-In+rn+n)
VAD = geq - Ireq
But V,, =IR
“IR=¢,~Ir,
R+1Ir, =¢,

I(R+req) =€,

If & =g, =&, = £(say)
and », =r, = r, = r{say)
Then ¢, =c+£+£=3¢

and r, =r+r+r=3r

7= 3¢
R+3r
For n number of cells in series, the current / will be / = né
R+nr

Special Cases:
{D)IfR >> nr,

Then [ = %(n times the current % that can be drawn from one cell)
Q)R <<nr

Then =" = f-(the current given by a single cell)
nror

Combinations of cells in parallel: When the positive terminals of all the celils are connected
together, and in the like manner all the negative terminals are connected together, the cells
are said to be connected in parallel.

As shown in the figure, suppose two cells of EMF ¢, and g,, and internal resistances r, and
r, respectively are connected in parallel. Suppose the current /; and I; from the positive
terminals of the two cells flow towards the junction A, and current [ flows out.
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As the two cells are connected in parallel between the same two points A and B, the potential
difference ¥ across both cells must be the same.

The potential difference between the terminals of the first cell is

A 4
n
The potential difference between the terminals of the second cell is
-V
r
-V -V |4 14
Hence 1=I,+12=€' + 22 T I R
h r r h o nnon
hoon hoon I A A J
[=|&htehl_ylhth k
nr, nr, o Iy
Il : H
1 AL o
V(n+@]=(qq+£mJ_] A 2%1 (A B
nr, rry bLi st SOUOTUOTUUPUR ST g
V= en+ 6N [ _Ah I x nr, {2 ;,: N )

y =[€ir2 tEh JMIX( " J
r o+ B+

If we replace the parallel combination by a single cell of EMF ¢, and internal resistance 7,
then

V=g, Ireq
Comparing the above two equations we have
_Enhten
" h+hn
ne
req - 1'3
v+,

frn=r=r and ¢ =¢,=¢
2

gr+er 2er T r
Th = =z = d = = —_— = —
R 2r £ A N T 2
1: geq = £ = £
Rtr, p.t 2R+r
2
_2¢
2R+
For m number of cells in parallel, the current / will be [ = me
mR+r
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Special Cases:
(DJf mR<<r
me £ .
Then I = > (m times the current — given by a single cell)
r
QI mR>>r

Then I = «%(the current drawn from one cell)

Mixed grouping of cells: In this combination, a certain nuntber of identical cells are joined
in series, and all such rows are then connected in parallel with each other,

. R e ANAAA >
------------------------------------------------------------------- - - Rtt
R oo e \
e e A m ing ML m
S TRV
_(_i_i} AN e d AAA — e :13 nr
i r H :Igl" r —— 1 Ly S

As shown in the figure, suppose # cells, each of EMF £ and internal resistance r, are
connected in series in each row and m such rows are connected in parallel across the external
resistance R.

Net EMF of each row of # cells in series = ne

Net internal resistance of each row of n cells in series = nr

Total EMF of m cells in parallel = ne

Total internal resistance of m cells in parallel = r
m

The current through the external resistance R is

B TotalEMF _ ne  mnr

Total resistance  p 77 mR+nr
m

The current / will be maximum if mR + sr is minimum. .

mR +nr :(M)z +(Jr1_r)2
mR +nr =(J;E)) +(\f;)2 ~2m\fn_r+2m\/;;
mR+nr=[(M)—(~[r;)]z t2NmR~Nnr

mR + nr will be minimum if VmR —nr is equal to zero i.e.,
NmR ~ \/; =0
JmR = «/;_1;

mR = nr
nr
S R=—
m

External resistance = Total internal resistance of the cells
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Note: In a mixed grouping of cells, the current through the external resistance will be
maximum if the external resistance is equal to the total internal resistance of the cells.

Heating effect of current: The phenomenon of the production of heat in a resistor by the
flow of an electric current through it is called heating effect of current or joule heating

Note:
(1) The speed of the electrons does not increase beyond a constant drift speed.

(2) The metal ions begin to vibrate about their mean positions more and more violently. The
average kinetic energy of the ions increases. This increases the temperature of the conductor.

Heat produced by electric current - Joule’s law: Consider a conductor AB of resistance R

as shown in the figure. A source of EMF maintains a Bulb
potential difference J between its ends A and B and ——r . 5"
sends a steady current / from A to B. R
Potential at point A is V, Cells
Potential at point B is ¥, { H: -
Clearly V, >V, &
The decrease in potential across AB is

V=V, -V,
The amount of charge that flows across AB in time ¢ is

q=1I
The loss of potential energy U is

U=qV=(Ityf =Vt -—ererememoneee M

U=gV =(It)IR) = I*Rt ~emmmememmem= (2)

Or

U=VIit=(R)It)=1'Rt

2 n? 2
U=]2R=IRI=V" 3)
R
Or
2
U =V];=V[K} A
R R -
The loss of potential energy U is equal to the heat A produced in the conductor.
H =VIt joule= L cal (4)
4.18
2
H=I’Rt joule =X cal 5)
4.18
2 2
H =Y joule =/ cal 6)
R 4.18x R

These equations are known as Joule’s law of heating.
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According to this.law, the heat produced in a resistor is

(1) directly prdpoftionai to the square of cusrent for a given R

(2) directly propertional to the resistance R for a given /

(3) inversely proportional to the resistance R for a given ¥

(4) directly proportional to the time for which the current flows through the resistor.

Note:
I cal in physics =4.18 ]
1 Cal in food = 1000 cal = 4180 J

Electric power: The power of an clectrical applismce is the rate at which electrienl energy is
converted into other forms of energy like heat, light etc. For example a 60W buib converts
601 of electrical energy into heat and light each second.

Thus |
Pe Elccn‘u‘:alenergy i VI watt
time t
" b
Pe Electrlf:alenergy _1 Rt = IR watt
time
H 2 H
Pe Electnf:alenergy _ Vet _ |4 watt
time Rt R
The SI unit of power is watt (W) i.e., l watt = ljloule
s

Hence electric power of a circuit or a device is one watt if a current of 14 flows through it,
when a potential difference of 1V is maintained across it. ( From P = V)

Note:

1AW= 1000 W

IMW =10 =10 W |
The commercial unit of power is horse power (HP) where 1HP = 746 W

Electrical energy: The loss of electrical potential energy in maintaining current in a circuit is
called electrical energy consumed in the circuit.

Electric energy, W = Pt = Vit joule = PRt joule
| joule = 1 watt x 1 second

1 kilowatt-hour is defined as the electric energy consumed by an appliance of 1 kilowatt in
1 hour. .
1 kilowatt-hour = 1 kilowatt x | hour

1 kilowatt-hour = 1000 watt x 3600 second
1 kilowatt-hour = 3.6 x 10° joule

Note:

(1) 1kW-h is ajsc called Board of trade (B.O.T) unit or unit of electricity.

(2} The resistance of the wires supplying electric current is very small, therefore these wires
do not heat up when current passes through them.

b L
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(3) The resistance of the filament of a lamp is very high, theréfore it shows more heating
effect when electric current passes through it.
(4) Heater wire must have a high resistivity and high melting point.

Power rating: The power rating of an electrical appliance is the electrical energy consumed
per second by the appliance when connected across the marked voltage of the mdins.
If a voltage V applied across a circuit element of resistance R sends current 7 through it, then
power rating of the element will be :
2
P=VI=]'R= e
R

Note:
1) Suppose the voltmeter reads ¥ volt and the ammeter reads / amp, then the power rating of
the electric lamp will be

P =VIwau
(2) When a 60W and a 100W bulbs are cennected in series, the 40W buib will glow brighter
than the 100W bulb.
(3) When a 60W and a 100W bulbs are connected in parallel, the 100W buib will glow
brighter than the 60W bulb.
(4) In series connection, if any bulb get fused, then others will not glow.,
(5) In parallel connection, if any bulb get fused, then others will continue to glow.

Kirchhoff’s first law or Kirchhoff’s currént law (KCL) or junction rule: In an electric

circuit, the algebraic sum of currents at any junction is zero.
Or
The sum of currents entering a junction is equal to the sum of currents leaving that junction.

Mathematically, this law may be expressed as ) /=0
Example i} + i +(—i3) +(—~is) =0
i+ iy “‘1'3 —ig=0
Lhth=i+ i

Sign convention for applying junction rule
(1) The currents flowing towards the junction are taken as positive.
(2) The currents flowing away from the junction are taken as negative.

Note: Kirchhoff’s current law is based on the law-of conservation of charge.

Kirchhoff’s second law or Kirchhoff’s voltage law (KVL) or loop rule: Around any
closed loop of a network, the algebraic sum of changes in potential must be zero.
Or
The algebraic sum of EMFs in any loop of a circuit is equal to the sum of the products of
currents and resistances in it.
Mathematically, the loop rule may be expressed as
y4v=20 ory e=) IR

L .. ... . ]}
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Example
Ol
g = IR, + IR, - L,
el —- —e—— e
N e +IR “IR”

Sign convention for applying loop rule

(1) We can take ary direction (clockwise ot anti-clockwice) as the direction of traversal.

(2) The EMF of cell is taken as positive if the direction of traversal is from its negative to the
positive terminal (through the electrolyte)

Note: Kirchhoff's voltage law is based on the law of conservation of energy.

Potetittometer: A potentiometer is a device used to measure an unknown EMF or potential
difference accurately.

m‘x T | o | Rh
D > D ‘—I o -
=
+
[ K
Battery == !
s

t W&
E — D T—‘@»—/“n

Principle: The basic prineiple of a potentiometer is that wken a constant current flows
through a wire of uniform cross-sectional area and composition, the potential drop across any
length of the wire is directly proportional to that length.

V:IR:f[p-%)=(%)l v]

nV !

Sensitiveness of a potentiometer: A potentiometer is L
sensitive if
(1) 1t is capable of measuring very small potential S X

differences ‘ 0 [

(2) 1t shows a significant change in balancing length for Potential drop ¥ « length |

a small change in the potential difference being

measured.

The sensitivity of a potentiometer depends on the potential gradient along its wire. Smaller
the potential gradient, greater will be the sensitivity of the potentiometer.

Potential gradient: The potential drop per unit length of the potentiometer wire is known as
. : - V :
potential gradient. It is given by £ = 7

The ST unit of potential gradient is V™' and its practical unit is Vemr™,

= ST IITIEINREREERE S R SRR R R RS PR S
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Uses of a Potentiometer:
(1) Measurement of EMF of a cell:

Rh
*_1 I — V“
d
+
- Sl _.’,../f
K o
Battery =—— - P
42 ™ . L
& I b (¢] x >}

When the Galvanometer shows no deflection at point ¢, the EMF of the cell is & where
£ = potential difference across ‘ac’

+Ve /, and let ac = x,

~.from the graph € is known

(2) Determination of internal Resistance of a cell:

ex !, or e=kl
When key k' is closed,
Ve ly or V=kl; - [ =

We know that r=5—"xR

W}Ien key k' is operled, Rh '7 B L £ 1 1 L ;| 14 2 ;| N
8
+

r= Ll xR
2
. The internal resistance of the cell is

r= [[* =4 }x R
"2
Comparison the EMF of two cells: Let £, be the EMF

of the first cell when the Galvanometer shows no

deflection at /; and €, be the EMF of the second cell ™ prorr —
when the Galvanometer shows no deflection at /. Thus E:L

g xl =g =kl
And e, xl, =g =k

e, ki, I
or &KL b
R TR, —**—',_©)

Advantages of & potentiometer:
(1) It is a null deflection method, and therefore the balance condition can be found with a

high degree of sensitivity.
(2) No current is drawn from the circuit under test. Therefore, it can measure the EMF of a
cell accurately. '

o b
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.(3) The scale can be made long for maximum accuracy.

(4) Results are dependent only on measurements of length and the values of standard
resistances.

Disadvantages of a potentiometer:

(1) It is slow operation.

(2) The potentiometer wire must be of uniform cross-sectional area.
(3) The temperature of the potentiometer wire must remain constant.

Wheatstone bridge: It is an arrangement of four resistances used to determine one of these
resistances quickly and accurately in terms of the :
remaining three resistances.

Principle: Wheatstone bridge principle states that
when the bridge is balanced, the products of the
resistances of the opposite arms are equal i.e., PX = QR
or X=(Q/P)xR

A

The values of resistances P,Q,R, and X are so adjusted
that the galvanometer shows no deflection. It means
that no current is flowing in arm BD and hence
potential at B is equal 1o the potential at D.

Let in a balanced bridge, same current /; flow through P and Q and same current I, flow

through R and X.

Then _

VisVp=I P (1) V=V =1Qmn ()
Vi=Vp=IR v 3) Vp=Ve = [,X wmmemme (4)

. VB - VD
. Equation (1) equal equation (3)ie, [ P=1I,R-----(5)
Also equation (2) equal equation (4} i.e, [,Q=1,X veeenee (6)
On dividing equation {5) by equation (6) we get

—= O[‘ X = 2 X R
P
Sensitivity of a wheatstone bridge: A wheatstone bridge is said to be sensitive if it shows a
large deflection in the Galvanometer for a small change of resistance in the resistance arm.
The sensitivity of a wheatstone bridge depends on two factors:

(1) Relative magnitudes of the resistances in the four arms of the bridge. The bridge is most
sensitive when all the four resistances are of the same order.
(2) Relative positions of battery and Galvanometer.

Metre bridge or slide wire bridge: It is the simplest practical application of the wheatstone
bridge that is used to measure an unknown resistance.
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Principle: Its working is based on the
principle of wheatstone bridge. When the

bridge is balanced, L = LS
g X

At the balanced condition of the metre

bridge, we have
P_R
0 X.
Let AD=/cm and DC=(100-cm
P=0dlQ and Q=c(100-NH
G is the resistance per unit length of the wire.
R__ o 1
ST o(100-1)  100-/
Or S=wa

!
Knowing / and R, the unknown resistance S can be determined.

Determination of resistivity: If » is the radius of the wire, L be its length, A is the area of
cross-section S be the resistance and p be the resistivity. Then we have

L
S—p}
54
=7
_Sxr’
L

If S, rand L are known then pis known.
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MAGNETIC EFFECTS OF CURRENT AND MAGNETISM

Concept of magnetic field: The space around a magnet
within which its influence can be experienced is called its
magnetic field. Like electric ficld, magnetic field is a

vector field. We used the symbol B for magnetic field.
The SI unit of magnetic field is tesla (7)

Note:

(1) A moving charge or a current creates a magnetic field
in the space surrounding it.

(2) The magnetic field exerts a force on a moving charge or a current in the field.

Oersted’s experiment: Qersted found that i
when current was alfowed to fiow through a -~
wire placed paratlel to the axis of a magnetic
needle kept directly betow the wire, the needle
deflected from its normal position. When
current was reversed through the wire, the
needle was found to deflect in the opposite
direction. *1
!
Note: The direction can be remembered with /
the help of the word SNOW. It indicates that if w
the current flows from South to North and the wire is held Over the needle, the north pole is
deflected towards the West.

Direction of the Deflection of the Direction of the Deflection of the
current OVER | NORTH poleofthe | current BELOW NORTH pole of
the needle needle the needle _the needle
StoN WEST StoN EAST
Nto S EAST NtoS WEST

Conclusions From QOersted’s Experiment:

(1) A current-carrying conductor produces a magnetic field.

{2) The larger is the magnitude of the current in the conductor, the stronger is the magnetic
field.

(3) The magnetic field produced by the current-carrying conductor is at right angles to it.
(i.e., plane of the concentric circles is perpendicular to the current-carrying conductor)

(4) A current-carrying conductor produces a magnetic field consisting of circular lines of
force concentric with the conductor.

(5) If the charge is in motion, in addition to the electric field, it produces a magnetic field.

Magnetic flux: The magnetic flux ¢, linked with a surface held in a

magnetic field Bis defined as the number of magnetic lines of force

I
#! L

crossing a closed area 4. If § is the angle between the direction of —e—y >
~ >

the field and nermal to the area, then
¢ = B- A= BAcosé
The ST unit of magnetic flux @, is weber (Wb)i.c., Wb=T m’

JFJ

v o1}
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Biot-Savart law: According to Biot-Savart law, the magnitude of the field dB is

(1) directly proportional to the eurrent / through the conductor i.e., dB < [

(2} directly proportional to the length d/ of the current element i.e., dBx dl

(3) directly proportional to sin 6 i.e., dB x siné i
(4) Inversely proportional to the square of the distance r

of the point P from the current element i.e., dB « iz ‘\
r 4
4

Combining all these four factors we get __I )
i dl
dB 1dl szm L]
F I
Or dp=jldlsing 1dl smt?
r
The proportionality constant & depends on the medium between the observation point P and
the current element / d and the system of unit chosen. For free space and in SI unit,
k=t 2107 Tma™ or Wom' 4™
4r
Or u, =4z2x107 Tm4™
Where 4, is the permeability of free space.

dB=&IdIs)m6
4z r

Note: Biot-Savart law holds strictly for steady currents.

In vector form:

_&Idlrsin&
B P ai x 7
Ol‘ dE:f—o.{ilix_r) (ﬂ r
T r

The direction of dBis perpendicular to the plane of dl and 7 . Itis given by right-hand screw
rule,

Note: Just as the charge g is the source of electrostatic field, the source of magnetic field is
the current element 7 df .

ST unit of magnetic field from Biot-Savart law: According to Biot-Savart law

a’B=~€"— !dfjmﬁ
4 r
If I=14, di=1m, r=1im and €=90" so that sin90° =1, then
HoIxIxt p
dB=e " =i
Ay 1? 4
-7
or d8=2"10" 07 esta
4n

Thus one fesla is 107 times the magnetic field produced by a conducting wire of length one
metre and carrying current of one ampere at a distance of one metre from it and perpendicular

to it. .
P - "~ - |
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Note: dB=10"tesla=10" x10 tesla=1tesla

L

Special cases:

(HIf 8= 0°, sin@=0 so that dB = 0 i.e., the magnetic field is zero at points on the axis of
the current element.

D If 8=90, sinf=1 sothat dB is maximum i.c., the magnetic field due to a current
element is maximum in a plane passing through the element and perpendicular to its axis.

Biot-Savart law vrs Coulomb’s law:

= Points of difference
Biot-Savart law j Coulomb’s law _

The magnetic field is produced by the , | The electrostatic field is produced by a
vector source, the current element / di scalar source, the electric charge ¢

The direction of the magnetic field is The direction of the electrostatic field is
perpendicular to the plane containing the | along the displacement vector joining
displacement vector 7 and the current the source and the field point.

element / di

Points of similarity
Both ﬁeids depend inversely on the square of the distance from the source to the
point of observation.
Both are long range fields.

Note:

(1) Biot-Savart law is also called Laplace's law and inverse square law.

(2) This law cannot be tested directly because it is not possible to have a current carrying
conductor of fength d/.

(3) Current element is the product of current / and length of very small segment di of current

carrying conductor. The current element / df is a vector. Its direction is tangent to the
element and acts in the direction of current flow in the conductor.

Right hand grip rule: Grip the wire with your right band with thumb pointing in the

direction of the conventional current.
E ;f

Then curled fingers point in the direction
of the magnetic lines of force.

Note: ® shows that the field (magnetic
field or electric field) comes out of the
plane of the paper and @ shows that the
field (magnetic field or electric field)
entering the plane of the paper.
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Magnetic field at the centre of circular current loop: Consider a circular loop of wire of
radius 7 carrying current /. We wish to calculate its magnetic field at the centre O. Consider

a current element I df of the loop. According to Biot-Savart law, the magnetic field at the
centre Q due to this element is

di=te 1(dl xF)
4r
Q
dB“&!dlﬁ:liG__&!dlSl:ﬂG i, Idl (oo di L7
4z r 4 r 4r r?

Hence the total magnetic field at the centre O i 15

H, 1dl p, 1
8= fas= Lmr_ 4rr? o J

-

If instead of a single loop, there is a coil of n turns, all wound over one another, then
g=H
2r
Note: The direction of the magnetic field at O is inward i.e., into the plane of the paper and
perpendicular to it.

Magnetic field on the axis of a circular current loop: Consider a circular loop of wire of
radius 4 and carrying current /, as shown in the figure. Let the plane of the loop be perpen-
dicular to the plane of the paper. We wish to

find field B at an axial point P at a distance x 1dl A dBcos¢
from the centre O. ‘
From Biot-Savart law, the magnetic field at r B
the centre O due to the current element / d/ 4
atAis I x__ #IND ABsing
dp o I disin@ 4 ¢ dBsin ¢
4r 7t y $\df
ldl Lr
d3=£1_2_1d!sin90° H, Idl ldlg dBcosé
4 r? 4r r’

The field dB lies in the plane of the paper and is perpendicular to r. Let ¢ be the angle
between AP and OP. Then dB can be resolved into two rectangular components.

(1) dB sin ¢ along the axis,

(2) dB cos ¢ perpendicular to the axis.

The cosine components for the loop will be equal and opposite and will cancel out. Their
axial components wili be in the same direction, i.e., along OP and get added up.

.. Total magnetic field at the point P in the direction OP is

B= [dBsing
But sin¢-—=£ and deﬁl—f{
r : 4z r
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=Ll fai= 1 o
4nr drr Py
2
Bzm@
2r

Now r=+va’ +x?

o1’
k]
2(a? +x?)?
If the coil consists of n turns, then
unla’

-2

S B=

Q
«-—  Distance (x} —*

B=

3
2(a’ + x*)?

Special cases:
(1) At the centre of the currert loop, x = 0

B pnla®  unla®  unl
2(02)% 24’ 2a

nid? . p,nid
- 3

Or B=’u" n
2a r 2ma

where A is the area of the loop

(2) At the axial point lying far away from the coil, x >> g
5= unla® u,nia’

- Poax

2(x*)?
_ Honla® 7 _ ponld
T 2xd m 2xs

B where A is the area of the loop

(3) At the axial point where x = a
B pnlad unia’ _ ponlat  unl

3
2

T3 s
2(a*+a®)? 2Qa"? 2'a’ 2'a
Direction of magnetic field:

(1) Right hand palm rule
(2} Clock rule
{(3) Right hand grip rule

CQUILG

&)

n

m
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Ampere’s circuital law: Ampere’s circuital law states that the line integral of the magnetic

field B around any closed circuit is equal to 4, times the total current / threading or passing

through this closed circuit. Mathematically, *
nj‘B" dl =p1

@i

Proof:
The magnetic field B at a distance r from the straight B

current carrying conductor is given by

g tel

=

Let df be a small element of the closed path. Thus
dB-dl = {Bdicos0® = {Bdl = Bl

dB-di = 2L 2
2rr
~4B-dl = p,1
This prove Ampere's law. This law is valid for any assembly of current and for any arbitrary
closed loop.

Note:
(1) Ampere's circuital law is not independent of the Biot-Savart law, It can be derived from

the Biot-Savart law.
(2) Ampere's circuital law holds for steady currents which do not change with time.

Magnetic field due to a straight conductor carrying current: Consider a long straight
conductor carrying current / in the direction shown in the figure. It is desired to find the

magnetic field Bat a point P at a perpendicular distance r from the conductor.
Applying Ampere's circuital law to this closed path,

we have
dB-di = u,1
<§B dlcos0® = u 1
Bdl = u,I
Bx2rr=pl
_ AT
2rr

A straight solenoid: A long coil of wire
consisting of closely packed loops is called a
solenoid.

Or
A solenoid means an insulated copper wire
wound closely in the form of a helix.

A toroidal solenoid or a toroid: A solenoid
bend in the form of a closed ring is called a
toroidal solenoid or a toroid.
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Magnetic field inside a straight solenoid: The magnetic field inside a closely wound long

solenoid is uniform everywhere and zero
outside it. The figure shows the sectional
view of a long solenoid. At various turns of
the solenoid, current comes out of the plane.
of paper at points marked ® and enters the
plane of the paper at points marked ®,

Consider a rectangular closed path abed as
the Amperean loop.

According to Ampere's circuital law, we
have

B-di = p,1
Now 4§.di=}a.dh]é.df;‘]é.dh}é.dr
& o

[

j dlcos90° =0

b

outside the solenoid, and

h.l.._,,_‘h h‘__‘h. o o

j B dlcos90° =0
g

q’ﬁ-df = J‘B dl cos0° = ]’B di = Bbjd: = Bl weneen (1)

where [ is the length of side ab of the rectangular loop abced, n is the number of turns per unit
length of the solenoid, then »/ is the number of turns in length / of the solenoid. Therefore the

total current threading the loop abed is nll

Again from Ampere’s circuital law, we have
dB-dl = p,1 = 1, (nil) - (2)
Equating equation (1) and equation (2} gives
Bl = unll
Or B=yni

Note:

(1) B depends upon n and /. It does not depend upon the
position within the solenoid. Therefore magnetic field
inside the solenoid is uniform.

(2) If the solenoid is iron-cored of relative permeability
H, , the magnitude of the magnetic field inside the

solenoid is B=pu unl = unl

(3) At points near the end of the air-cored solenoid, the
magnitude of the magnetic field is

I
=g nl
Zﬂo

=

PR, e S

Endof 0 End of
solenoid Distance solencid
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Magnetic field due to a toroidal solenoid or a toroid: Consider a thin air-cored toroid
having a large radius. Let 7/ is the current through the toroid, » is the mean radius of the toroid,
n is the number of turns per unit length and B is the magnitude of the magnetic field inside
the toroid.
According to Ampere's circuital law, we have
B-di = p,1

Now dB.dl = quzcosw =qdBdl = Bddl = BQ2x r) -~ (1)
Again from Ampere's circuital law, we have

dB-dl = p,1 = p [nQ27 P)I}oomnnn (2)
Equating equation (1} and equation (2) gives

B(2rry=pu [n(2m r}l]
Or B=unl

If N is the total number of turns of a toroid, then N= n(2nr)or n= Eﬁ\f_ .
r

4, NI

The magnetic field B=
nr

Note:

{1} The maximum and minimum magnetic field strengths within
the toroid is B, = H N and B = f, N1

2z 2z r,
(2) If the toroid is iron-cored of relative permeability 4, , then the

M4, NI
2xr

respectively.

magnitude of the magnetic field inside the toroid is B =

MNT

or B=-"—~—.

Force on a moving charge in a magnetic field: The electric charges moving in a magnetic
field experience a force, while there is no such force on static charges.

Suppose a positive charge ¢ moves with velocity ¥ in a magnetic field B, It is found from
experiments that the charge ¢ moving in the magnetic field B experiences a force & such that

(1) The force is proportional to the magnitude of the magnetic field i.e., F_ o« B

(2) The force is proportional to the charge g 1.e., F, « ¢
(3) The force is proportional to the component of the velocity v in the perpendicular direction
of the field Bie., F, x vsing

RO R @O

B 2 ® 8 & ebs

F 5 ® ® oNl® ®

® 2R VNE® ®

|£ _ ®®F®®®®
¥V

Q@R @ ®
Right hand paim rule & O R
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Combining the above factors, we get

F_ o Bgvsing

F, =k Bgwsiné

F_ = Bgvsind [ k=1
F is called magnetic Lorentz force.
In vector form F, = ¢ (¥x B)

Special cases:

() Ifv=0,then F, =0

(2)1f6 =0° or @ =180°, then Fp=0

(3)If @ =90°% then F=gqvB. Here Fis maximum

Definition of magnetic fieM: The magnetic fiekd at a point may be defined as the foree
acting on a unit charge moving with a unit velocity at right angle to the direction of the field.
 F, = Bqvsiné

F,
qvsiné
IfF=1N, ¢=1C, v=1ms™", 8 =90°, then the SI unit of B is

IN
B=
1C-1ms™ -sin90°
IN

B=——=INA"'m" =ltesla(T)
1A4-1m

Or B=

Note: 1gauss =107 tesla

Lorentz force ; The total force experienced by a charged particle moving in a region where
both electric and magnetic fields are present, is called Lorentz force.

A charge ¢ in an electric field £ experiences the electric force F =4k

A charge ¢ i a magnetic field B experiences the magnetic force £, =g (¥ x B)
The total force or Lorentz force is _
F=F+F =q(E+VxB)

Work done by a magnetic force on s charged partide is zero:

The magnetic fotce F = ¢ (¥ x B) always acts perpendicular to the velocity ¥ or the direction

of motion of the charge g.
F3=q(xByv=0

According to Newton's second law, we have

—

F=md=m—
dt
m‘-ﬁ—-iz'zo
at
m{d&v di»']
—|—V+¥.— =0
2| dr dt
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—2—“‘7'(\’ V) 0

dfl .}

d’[zmv J-O
-‘g—-o = K = constant
dt

Thus the magnetic force does not change the kinetic energy of the charge particle. This
indicates that speed of the particle does not change.

Note: According to work- energy theorem, the change in kinetic energy is equal to the work
done on the particle by the net force.

Motion of a charged particle in & uniform magnetic fieJd: When a charged particle having
charge ¢ and velocity ¥ enters a magnetic field B, it experiences a force F =g (¥ x B) .The

direction of this force is perpendicular to both ¥ and B . The magnitude of this force is
F=gvBsing

(1) When the initial velocity is parallel to the magnetic field:
Here 6=0°, so the force F =g vBsin0°® =0

(2) When the initial velocity is perpendicular to the magnetic field:
Here 8 =90°, so the force F = ¢ vBsin90° = g vB X
This force continuously deflects the particle

sideways without changing its speed and the particle

will move along a circle perpendicular to the field.

Thus the magnetic force provides the necessary

centripetal force. Let R be the radius of the circular X
path, thcn
mv* y
~——=gqvB
R q
or R="% %
qB
Period of revolution 7 = 27R X
v
orr=2nmy_21m
v gB ¢B
]

Frequency of revolution f, = =7= = Py— 48 . This frequency is called
am

cyclotron frequency.

(3) When the initial velocity makes an arbltrary angle with the
magnetic field direction:

Consider a charged particle ¢ entering a uniform magnetic field B

with velocity ¥ inclined at an angle @ with the direction B as shown
in the figure.
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The velocity ¥ can be resolved into two rectangular components,

v, = veosd and v, =vsind.
The charged particle experiences a force
2
Fo=qvB and  F ="4
2
“F=F Or ’""_’* =qv, B
Or ro™s_ mvsinf

98 ¢B
2rr _ 2m mvsin@ 2zxm
v, vsing ¢B gB

The period of revolution is T =

radius
The linear distance travelled by the charged particle in the direction of the magnetic field
during its period of revolution is called pitch of the helical path.
2zm _2xmvcosé

Pitch= v, xT = yeosé x
g8 q8

Cyclotron or Magnetic resonance accelerator: It is a device used to accelerate charged
particles like protons, deutrons, a-particle, etc., to very high energy.

Principle: A charged particle can be accelerated to very high energy by making it pass
through a moderate electric field a number of times. This can be done with the help of a

perpendicular magnetic field which throws the charged particle into a circular motion, the
frequency of which does not depend on the speed of the particle and the radius of the circular
orbit.

Construction: The cyclotron consists of two D shape metallic chambers marked D; and D,.
They are separated by a very small gap. An alternating high voltage is apphed across the gap.
The voltage is of the order of 10* ¥ and its frequency is of the order of 107 Hz. The dees are
closed in a steel box which is placed between the pole pieces of a very strong magnet. The
magnetic field is applied perpendicular to the plane of the dees.

Waorking: An alternating voltage is applied across the dees. The positive ion to be
accelerated is introduced at the centre of the dees. Suppose at that instant D) is negative.

g R e L
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The particle will be accelerated towards D and will describe a semicircle. By the time it
comes to the edge of D the polarity of the dees is reverse. D2 becomes negative and Dy
becomes positive.

The particle is further accelerated and it describes a circle of targer radius. As it emerges
from D,, the polarity again changes and this will go on. Every time the particle crosses the
gap, it accelerates. By applying a deflecting electric field the highly accelerated ion is
removed.

source ctectm
{south pole}

Theory: Let a particle of charge ¢ and mass m enter a region of magnetic field Bwith a

velocity ¥ normal to the field B. The particle will follow a circular path provided by the
magnetic field.

2
The centripetal force on charge g is F, = av
,

The magnetic force F_ = gvBsin90° = gvB

2
or 2 = gvB =r="
r gB

Period of revolution of charged particle is given by

T = 2nr 21 my _2rm
v v ¢B qB
Frequency of revolution of charged particle is given by
_1__498
Ly

This frequency is called cyclotron frequency or magnetic resonance frequency.

Angular frequency of the charged particle is given by
@=2x f, =27~ 98 -4
2zm m
Maximum K.E of the accelerated ions: The ions will attain maximum velocity near the
periphery of the dees. If v, is the maximum velocity acquired by the ions and 7, is the radius of

the dees, then
ﬂ——qu ::»voqur"
r m

]

The maximum K.E of the ion will be

- ]
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X =lmv2 =lm(q3ro )2 :q232r02
o202 m 2m

Limitations of Cyclotron:
(1) According to Einstein’s special theory of relativity, the mass of the paricle increases with

the increase in its velocity as m = m‘i—z— where m, is the rest mass of the particle. At high

| .
- cz
. B . . .
velocities, the cyclotron frequenhcy f = Eﬂ* will decr o.e due to increase in mass. This
- T m

will throw the particles out of resonance with the oscillating fieid. That is, as the ions reach

the gap between the dees, the polarity of the dees is not reverse at that instant. Consequently

the ions are not accelerated further.

The above dsawback is overcome either by increasing magnetic field as in & synchrotron or

by decreasing the frequency of the alternating electric fiel as in a synchro-cyclotron.

(2) Electrons cannot be accelerated in a cyclotron. A large increase in their energy increases
their velocity to a very large extent. This throw the electron out of step with the oscillating
field. :

(3) Neutrons, being electrically neutral, cannot be accelerated in a cyclotron.

Uses of cyclotrom:

(1) The high energy particles produced in a cyclotron are used to bombard nuclei and study
the resulting nuclear reactions and hence investigate nuclear structure.

(2) It is used to implant ions into solids and modify their properties or even synthesise new
materials.

(3) It is used 1o produce radioactive isotopes which are used in hospitals for diagnosis and
treatment.

Note:

(1) The frequency depends on the mass of the charged particles in motion.

(2) The time spent by the positive ion inside the dee is T/2 i.e., independent of the values of
the velocity of the ien and radius of its path.

(3) Another name of cyclotron is magnetic resonance accelerator.

Force on & charged particle in 2 uniform electric field: Consider a charge +4 of mass m

moves with constant velocity v along the X axis, entering a uniform electric field E as shown
in the figure,

"5y
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Force on the charged particle is F=¢g£ along OY

Acceleration on the charged particle is a = F =4 along OY
m m

. A X
Time taken to traverse the fieldis t= =
v

If y is the transverse deflection during time ¢, then

y=0x:+—1-a:2 L
2 2

_I{gEY x 2_ gk
y-2(m](v] Tomvt
Or y=kx’

This is the equation of the parabola. Therefore inside the electric field, the charged particle
follow the parabolic path OA.

Note:
(1) As the charged particle leaves the electric field, it follow a straight path. (AB in the

figure)

(2) When the charged particle just leaves the electric field, vertical deflection produced is
qE - £

2my

(3) As the charged particle leaves the eiectric field, its vertical velocity is given by

v, =v, +at =0+.[g£)(£) = 9ex

mAv mv

(4) Angle with the X axis at which the charged particle emerges from the electric field is
ang =2 9EX = pmt(£3)
¥ my my

Force on 8 current carrying conductor placed 3
in & uniform magnetic field: Consider a
conductor of length / and area of cross-section A,
carrying current / as shown in the figure. The A .
electron drift towards left with drift velocity ¥, . ] vg—p——1 i
Each electron will experience a magnetic Lorentz { l:,/ - j
force which is given by Fad !

Magnetic effects of current and Magnetism Page 246



f=-e(@,xB)
If nis the numi})ver O:Lf;ee;lectrons per unit volume, then the total number of free electrons is
.. The total force on all the electrons in a conductor is
F =—nldie(v, x B)]
F=nAle(-1%,x B)]
iIf 17 represent a current element in the direction ot current, then
vector [ and v, will have opposite direction. Hence
F =nAle(v,] x B
F= neAvd(fx E)
But nedv, =1
~F=1(xB)
The magnitude of the force on the current carrying conductor is given by
F =IHBsinf

Where € is the angle between the direction of the magnetic field and the direction of flow of
current.

Special cases:

(1) If 8 =0° or 180°

F=1IB(0)=0

Thus a current carrying conductor placed parallel to the direction of the magnetic field does
not experience any force,

(2) If 8 =90°

F = IIBsin90° = IlB

Thus a current carrying conductor placed perpendicular to the direction of a magnetic field
experience 8 maximum force.

Force between two parallel current-carrying conductors: If currents are in the same
direction, the conductors attract each other, if current are in opposite direction, the conductors
repel each other. Thus like currents attract while unlike currents repel.

L | A A

F T, . 4
B, 5 B, | B,
= G -
7 B
Y T G
2

je— J' > — F —>
i 2 1 2
Consider two infinitely long parallel conductors 1 and 2 carrying currents /, and /,

respectively. Suppose the conductors are separated by a distance r in the plane of the paper.
The magnetic field produced by the current /, at any point on the conductor 1 is
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B, = ol2
2rr
The force acting on the conductor 1 of unit length will be
F=1JiBsin#
Or F=1(1)B, sm90°—1’B ‘u"jf
, 2z r
Similarly the force acting on the conductor 2 of unit length will be
F,=1,8,= !0z
2rr

If the two currents /, and 7, are in the same direction, the forces between them are attractive,
But if the two currents /; and /, are in opposite direction, the forces between them are
repulsive,

Note:
(1} If two straight current-carrying conductors of unequal length are held parallel to each
other, then the force on the long conductor is due to the magnetic field of short conductor.

If I, = current through the short conductor of length J,
1, = current through the long conductor of length L
And if r is the separation between these parallel conductors, then
al,

Force on long conductor = Force on short conductor = 5
Tr

(2) Currents in the same direction (parallel).
(3) Currents in opposite direction (series).

Definition of ampere: One ampere is defined as that current flowing in each of the two
infinitely long parallel conductors 1m apart, which result of exactly 2 x 10”7 N¥ per metre
length of each conductor.

If I, =1, =14, r=1m, The force per unit length on each conductor is
= F _#L1 _4mx107(H(Y)
27r 27 (1)

=2x107" Nm™

Torque experienced by a current loop in a uniform magnetic field: As shown in the

figure (1), consider a rectangular coil PQRS suspended in a uniform magnetic field B, with
its axis perpendicular to the field. '

}
h ]

L . L3 L

= 11

v \L L
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Let = current flowing through the coil PQRS
a b = sides of the coil PQRS ~
A = ab = area of e coil
6= angle between the direction of B and that of the vector N drawn normal to the plane of
the coil.

The foree on the side PQ is 7, = I(@x B)
Its magnitude i, F, = JaBsin(90° - §) = laBcosd
The foree on the side QR is F, = I(5 x B)
Its magritude is, F, = ’bBsin90° = BB
The force on the side RS is £, = /(@ x B)
Its magnitude is, F, = JaBsin(90° +8) = laBcosé
The force On the side QR is F, = /(b x B)
Its magnitede is, F, = IbBsin90° = 168
The forces F and F, act along the axis of the loop, as shown in the figure (1). These forces are
equal, opposite and collinear. So they give rise to no net forces or torques.

The forces F‘z and £, are equal and opposite but not coHinear. So they form a couple.

The perpendicudar distance between the two forces is g sing, as shown in the figure (2).
The magnitude of the torque 7 on the loop is given by
7 = Force x perpendicular distance
t=[bBxasinf = IBAsin&
Or v = mBsiné
Where m = [4 is the magnitude of the magnetic dipole moment. (not yet done)
-In vector notation, the torque 7 is given by
F=mxB
If the rectangular loop has N turns, the torque is
7 = N(#x B)

Special cases:
(1) When §=0°, =0 i.., the torque is minimum when the plane of the loop is
perpendicular to the magnetic field.

(2) When 8=90°, r=NIBA i.e., the torque is maximum
when the plane of the loop is parallel to the magnetic field.
Thus 7, = NIBA.

Moving coil galvanometer: A galvanometer is a device to
detect current in a circuit.

Principle: The operating principle of the galvanometer is
that a current carrying coit placed in a magnetic field
experiences a torque, the magnitude of which depends on the
strength of current.

Construction: A moving coil galvanometer consists of a
rectangular coil wound on a non metallic frame and Uniform radial magnetic ficid

.. |
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suspended from a torsion head with a phosphor bronze wire in a magnetic filed B produced
by a permanent magnet NS. The magnetic lines of force remain nearly parallel to the plane of
the coil, as it rotates on passing the current through it. This is achieved by making the pole
pieces of the field magnet concave and by having a soft ion core at the centre of the coil. The
lower end of the coil is attached to a spring which wind up as the coil rotates.

Waoerking: The deflecting torque acting on the coil due to the magnetic field, when a current
is passed through it is

7, = NIBA
Where N is the number of turns in the coil, 4 is the area of the plane of the coil, /is the
current flowing through the coil and B is the magnetic field produced by the field magnet.

As the coil rotates, a restoring torque sets up in the suspension fibre and the spring. If the
deflection is a then the restoring torque is
T, = k&
Where k is the restoting torque per unit twist, called the torsion constant.
In equilibrium,
Deflecting torque = Restoring torque
NIBA =ka
I= L a
NBA
f=Ca
Where G is called galvanometer constant or current reduction factor of the galvanometer.
fxa
Thus the deflection produced is directly proportional to the current passed through the
galvanometer.

Figure of merit of a galvanometer: It is defined as the current which produces a deflection
of one scale division in the galvanometer and is given by
Ik

a NBA

Sensitivity of a galvanometer: A galvanometer is said to be sensitive if it shows large scale
deflection even when a small current is passed through it or a small voltage is applied across
it.

Current sensitivity: It is defined as the deflection produced by the galvanometer when a unit

current flows through it.

- NB.
Current sensitivity, I =f} = _kﬁ —r

Note: If N 5 2N, then [; - 2/,
That is, when the number of turns N is doubled, current sensitivity is also doubled.

Voltage sensitivity: It is defined as the deflection produced by the galvanometer when a unit

potential difference is applied across its ends.
a NBA

==l Q)

_ a
Voltage sensitivity, V, =—
oltage sensitivity, V. VIR IR
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Note: If N 2N, then R — 2R

Hence voltage sensitivity remains unchanged.

An interesting point to note is that, Increasing the current sensitivity does not necessarily,
increase the voltage sensitivity.

Factors on which the sensitivity of a moving coil galvanometer depends:
(1) Number of turns N in its coil g

(2) Magnetic field B
(3) Area A of the coil
(4) Torsion constant k of the spring and suspension wire

]

Factors by which the sensitivity of a moving coil galvanomerer can be increase:
(1) By increasing the mumber of turns N of the coil

(2) By increasing the magnetic field B

(3) By increasing the area A of the coil

(4) By decreasing the value of torsion constant £,

Conversion of a galvanometer into an ammeter: As shown in the figure, let G be the
resistance of the galvanometer, J/; is the current

3 -
with which galvanometer gives full scale ; : i I
deflection, S is the shwmt resistance and / - I; is the >—i E @ > »>
current through the shunt. ;

Py lig T
P.D across the galvanometer = P.D across the shunt : S

1

1,G=(-1)S | MWW,
I L ’
S=—E—xG A
I-1, Amimneter

So by comnecting a shunt of resistance S across the given galvanometer, we get an ammeter
of desired range. Moreover
hY
E 6+8
The deflection in the galvanometer is proportional to /g and hence to /.

x i

Note:
(1) An ammeter is a shunted or low resistance galvanometer. Its effective resistance is

R, = GS <S

G+S

(2) The effective resistance R, << G

(3) Higher the range of ammeter to be prepared from'a given galvanometer, lower is the value
of the shunt resistance required for the purpose.

(4) The ammeter of lower range has a higher resistance than the ammeter of higher range.

(5) The range of the ammeter can be increased but it cannot be decreased.

Shunt: A shunt is a low resistance which is connected in parallel with a galvanometer {or
ammeter) to protect it from strong current.

- e |
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Uses of shunt:

(1) To prevent a galvanometer from being damaged due to large current.
(2) To convert a galvanometer into ammeter,

(3) To increase the range of an ammeter.

Conversion of a galvanometer into a voltmeter: As shown in the figure, let G be the
resistance of the galvanometer, /; is the current : -t

with which galvanometer gives full scale R E
deflection, R is the high series resistance which MWA_|
restricts the current to safe limit J;. i
.~ Total resistance in the circuit is R + G -
= V. Voltmeter

8 R+@G

R+G= Y

18

Or R= IK -G

F 1
So by connecting a high resistance R in series with the galvanometer, we get a voltmeter of
desired range. Moreover, the deflection in the galvanometer is proportional to current ; and
hence to V.

Note: A voltmeter is a high resistance galvanometer. Its effective resistance is
R,=R+G>>GC

Magnets and magnetism: A magnet is 2 material that has both
attractive and directive properties. It attracts smali pieces of iron, nickel,
cobalt, etc. This property of attraction is called magnetism.

Artificial magnets: The pieces of iron and other magnetic materials can
be made to acquire the properties of natural magnets. Such magnets are called artificial

magnets.

(1) Bar magnet: It is a bar of circular or rectangular cross-section.

{2) Magnetic needle: It is a thin magnetised steel needle having pointed ends and is pivoted at
its centre so that it is free to rotate in a horizontal plane.

(3) Horse shoe magnet: It has the shape of a horse shoe.

(4) Ball ended magnet: It is a thin bar of circular cross-section endmg in two spherical balls.

Basic properties of magnets:

(1) Attractive property

(2) Directive property

(3) Like poles repel and unlike poles attract

{4) Magnetic poles always exist in pa:rs

(5) Magnetic induction

L _______________________________________________ ]
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Some important definitions connected with magaetism:

(1) Magnetic fieki: The space around a magnet within which its influence can be experienced
is called its magnetic field.

(2) Uniform magnetic field: The magnetic field in a region is said to be uniform if it has the
same magnitude and direction at all points of that region.

QX (ORCRORO,
—f ®®®®P IOJOR OO
- BB ORORCRO.

08R OJORONO,

(3) Magnetic poles: These are the regions of apparently - cncentrated magnetic strength in a
magnet Where the magnetic attraction is maximum.

(4) Magnetic axis: The line passing through the poles of a magnet is called the magnetic axis
of the magnet.

Magne:ig.icngth
i ) {

"""""""" R B Mg ais N
Mlpeu/c Maéneﬁc " Y J
North pole § South pole Geometrical length

Magnctif:eqtmtor

(5) Magnetic equator: The line passing through the centre of the magnet and at right angles to
the tnagnetic axis s called the magnetic equatar of the magnet.
(6) Magnetic length: The distance between two poles of the magnet is calied the magnetic
length of the magnet. It is slightly less than the geometrical length of the magnet. It is found
that

Magneticlength 0.84

Geometrical length -

Coulomb’s law of magnetic force: This law states that the force of attraction or repulsion
between two magnetic poles is directly proportional to the product of their pole strengths and
inversely proportional to the square of the distance between them.

Ifg,,and g, are the pole strengthsof the two magnetic poles, separated by a distance r apart,
then the force between them is given by

F o« ‘Im‘gmz
r

01, F = k qmigm‘.‘
”

' ﬂo q IQII2
ar 1

where u_is the permeability of free space and is equal to 47 x10~ Hm™'

Note: If ¢, =q,, =lunit, r=1m then

F=te OO _1o7n
ax ()

g T e e e T S e e T T T ]
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Hence a unit magnetic pole may be defined as that pole whichk when placed in vacuum at a
distance of one metre from an identical pole repels it with a force of 1077 newton.

Magnetic dipole: An arrangement of two equal and opposite
magnetic poles separated by a small distance s called a
magnetic dipole. Every bar magnet is a magnetic dipole. A
current carrying loop behaves as a magnetic dipole. An atom
acts as a magnetic dipole due to the circulatory motion of the
electrons around its nucleus.

Magnetic dipole moment: The magnetic dipole moment of a

magnetic dipole is defined as the product of its pole strength and 'y In
magnetic length. It is a vector quantity, directed from S-pole toN-  Njo «a—— ol
e

'

- 2

m=q_x2l ,
Where ¢, is the pole strength and 27 is the magnetic length of the dipole. The S} unit of pole
strength is ampere-metre.(4m), and the SI unit of magnetic dipole moment is ampere-metre?
(Am*) or joule per tesia (JT™)

A magnetic line of force: A magnetic line of force may be defined as the curve the tangent
to which at any point gives the direction of the magnetic field at that point. it may also be
defined as the path along which a unit north pole would tend to move if free to do so.

—»

N,

Properties of line of force:

(1) Magnetic lines of force are closed curves which start in air from N-pole and end at the
S-pole and then return to the N-pole through the interior of the magnet.

(2) The lines of force never cross each other

(3) They start from the end on the surface of the magnet normally

Magnetic field of a bar magnet at an axial point: Let NS be a bar magnet of length 2/ and
of pole strength g,,. Suppose the magnetic field is to be determined at a point P which lies on

the axis of the magnet at a distance  from its centre, as shown in the figure.
r+l
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The magnttic field at P due to the S-pole is
=t _In__ aiongpS

C4x (r+1)?
The magnetic fi eid at P due to the N-pole is
H
=2 —"— along NP
Y 4g (r --l)2 &
The net field at P is
Ba.:ma‘ =BN -‘B ’
p Mo Gn M a _#aq,,. i 1
Baxmf S —_F__ T 2
Ar (r-0* 4rx(r+l)? (r=0" (r+h
ﬂaqm 4rl K (q,, x 2[)2r
Bamzr‘ == T g3z
{r ) 4z (r" =-1%)
_Hy 2mr I, m=q,_ x 2]

B Lo 7

T g (PR 1)
For short bar magnet, / <<7, therefore we have

M 2mr _ M, 2m
=& ——e = 2 — glong NP
“d " 4x £ dn P e

Clearly, the magnetic field at any axial point of magnetic dipole is in the same direction as
that of its magnetic dipole moment i.e., from S-pole to N-pole, SO we can write
oM 2m

B
4zr

attal T

Magnetic field of a bar magnet af an équa;torial point: Let NS be a bar magnet of length 2/
and of pole strength g, . Suppose the magnetic field is to be

determined at a point P which lies on the equatorial line of the
magnet at a distance r from its centre, as shown in the figure.

The magnetic field at P due to the S-pole is
H, g
By ==%=Z along PS
57 47 £ ¢
The magnetic field at P due to the N-pole is

Ho 9
B, = ir along NP

As the magnitude of B, and B, are equal, so their vertical
components get cancelled while the horizontal components add up along PR.
Hence the net field at P is

B,,,=Bycos@+ B;cosf =28, cosd

Mo G 1

B =2.103m _

T 4x Xt ox
BeM 2 :;, 111—2‘4&;__-3_”—1__5._}_‘2_ (qwlei
( 2+11)2 ( 2+32)2
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H, ™
B.= P
(r*+1%)?
For short bar magnet, / <<, therefore we have

H, m '
B =<2 along PR
Y 4p st gp

Clearly, the magnetic field at any equatorial point of a magnetic dipole is in the direction
opposite to that of its magnetic dipole moment i.e., from N-pole to S-pole. So we can write

Note:
(1) Forl<<r, we have
B =t2m and B, =22
aria . r} equa 4n r3
B = 2Bem

(2) When the point P lies on the axial line of the magnetic dipole, it is called end-on position
or tangent A (1an A} position. However when point P lies on the equatorial line of the
magnetic dipole, it is known as broad-side-on position or tangent B (tan B) position.

Torque on a magnetic dipole (bar magnet) in a uniform magnetic field: Let NS be a bar
magnet of length 2/ placed in a uniform magnetic

field B. Letq,, be the pole strength of its each
pole. Let the magnetic axis of the bar magnet
make an angle 6 with the field B as shown in the
figure.

Force on N-pole = ¢, B along B

Force on S-pole = ¢, B opposite to B
The moment of a couple or torque is given by o G
t=gq,Bx2sin8@=(q,_x2)Bsinf T B

Or 7=mBsind
where m = g, x 21 is the magnetic dipole moment of the bar magnet.
In vector notation,

T=mxB

The SIzunit of 7is Nm and that of B is tesla (T). Therefore, the SI unit of m is NmT! orJT
or Am”.

Special cases:
(1) When the magnet lies along the direction of the magnetic field,

6=0°, sin@=0, 7=0.
Thus the torque is minimum. 7, =0
(2) When the magnet lies perpendicular to the direction of the magnetic field,
8=90°, sinf@=1, r=mB.
Thus the torque is maximum. r,,,, = mB
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Definition of magnetic dipole moment: FB8=1, 8 =96° then r=m.
Hence the magnetic dipole moment may be defined as the torque acting on a magnetic dipole
placed perpendicular to a uniform magnetic field of unit strength.

Current loop as 2 magnetic dipole:
TdiA dBeos¢

¢ /4B

dBsin ¢
“dBsin ¢

"

¢\ B

1

In figure (1) we have B= f‘* 214

S for x>>q

T x
_Ho 2m

anal P r}
On comparing the two equations, we have

m= 14
In vector notation

=4
Hence the magnetic dipole moment is equal to the product of the current in the loop and the
area of the loop.

In figure (2) we have B for r>>1

Magnetic dipole moment of a revolving electron: Let an electron of charge ¢ and mass m,
revolve along a circular path of radius ». The corresponding current / is given by

e e ev
I =— = ———=
T 2xr 2zxr
v
2nr 2rr 2
Where 4 is the area of the loop, and the above equation can also be written as
p=IA=evr-m‘= myr
2 m 2m, 7 >
Where uis the magnetic dipole moment. ‘
The angular momentum of the electronis L=m,vr ”
L e

Hence u= L1
Zm,
In vector form
€

—1I
2m,

=~
Note:

{

l

—
H

(1) According to Bohr's quantisation condition, the angular momentum of the electron in any
permissible orbit is integral multiple of #/2x where 4 is a planck’s constant.
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ﬂ:-—-—-—-—L:—-——:n
2m Zm, 27 47 m,

(2) Bohr magneton u, is defined as the magnetic moment associated with an electron due to

its orbital motion in the first orbit of hydrogen atom.
eh

4 m,

Hp =

Gauss’s law in magnetism: The surface integral of a magnetic field over a closed surface is
always zero. Or the net magnetic flux through a closed surface is always zero i.e.,

cj'}i-dS'zo

Some definitions in connection with earth’s magnetism:

(1) Geographic axis or Geographical axis: The straight line passing through the geographical
north and south poles of the earth is calied
geographic axis

(2) Magnetic axis: The straight line passing
through the magnetic north and south poles of the
earth is called magnetic axis

(3) Magnetic & Geographical meridian: The
vertical plane passing through the magnetic axis
is called magnetic meridian and through the
geographic axis is called geographical meridian ~ Geographicat Axis

Plarw of
anliptio

Elements of earth’s magnetic field: The earth’s magnetic field at a place can be completely
described by three parameters which are called elements of earth’s magnetic field

Geographical
meridian
) a
Geographical Horzontal <
meridian \ o Component 8
of B=By B
Magn?tlc e Magnetic—"|
meridian Mevidian a(
af
Vertical |
Component
of B= Bv

(1) Magnetic declination: The angle between the geographical meridian and the magnetic
meridian at a place is called the magnetic declination () at that place.
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(2) Angle of dip or magnetic inclination: The angle made by the eM’s total magnetic field

B with the horizontal direction in the magnetic meridian is called angle of dip (8) at any
place.

Note: The angle of dip &is 0 at the magnetic equator, and $0° at the magnetic pole,

(3) Horizontal component of the earth’s magnetic field: It is the component of earth’s total
magnetic field B in the horizontal direction in the magnetic meridian.

Note:
The horizontal component of the earth’s magnetic field is B, = Bcos3.

The vertical component of the earth’s magnetic field is B, = Bsind.

B, - Bsind - tans

B, Bcosd
At the magnetic equater, 5=0°, .. B, = Bcos0° =B
At the maghetic pole, §=90°, 5B, = Bcos90° =0

Thus the vahie of B,, is different at different places on the surface of the earth.

Neutral point: It is the point where the magnetic field due to a magnet is equal and opposite
to the horizontal component of earth’s magnetic field. The resultant magnetic field at the

| \\V
B
7

south Magnetic meridion

Earin's Beid r—mm

Classification of magnetic materials:

(1) Diamagnetic substances: Diamagnetic substances are those which develop feeble
magnetisation in the opposite direction of the magnetising field. Such substances are feeble
repelled by magnets and tend to move from stronger to weaker parts of a magnetic field.
Examples are water, copper, lead, tin, gold, silicon etc

{2) Paramagnetic substances: Paramagnetic substances are those which develop feeble
magnetisation in the direction of the magnetising field. Such substances are feeble attracted
by magnets and tend to move from weaker to stronger parts of a magnetic field. Examples are
Manganese, aluminium, sodium etc

Curie Law: According to Curie law, the intensity of magnetisation B of the paramagnetic

material is
(1) Directly proportional to the external magnetic field A in which the specimen is placed.

(2) Inversely proportional to the absolute temperature
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BocHl
T
H
B=C = cmaa-a 1
- (1)

Whete C is a constant called Curie constant. Equation (1) is known as Curie law

(3) Ferromagnetic substances: Ferromagnetic substances are those which develop strong
magnetisation in the direction of the magnetising field. They are strongly attracted by
magnets and tend to move from weaker to stronger parts of a magnetic field. Examples are
iron, cobalt, nickel, etc ' a ‘

Hysteresis: The lagging of the intensity of
magnetization B (or magnetic induction) behind the
magnetizing field H, when a magnetic specimen is
taken through a cycle of magnetization, is called
hysteresis.

Hysteresis loop: A hysteresis loop shows the
relationship between the induced magnetic flux density and the magnetizing force.
Some important terms used to describe magnetic properties of materials:

(1) Magnetising field: The magnetic field that exists in vacuum and induces magnetism is
called magnetising field. It is given by

==
i

N turns

I

Figure (1)

-

By=pwH O H=2

¥ |

Where H is the magnetising field, B, is the magnetic induction in free space and 1, is the

permeability of free space (figure 1).
B=pl oOr H=2

M

Where His the magnetising field, B is the magnetic induction and uis the magnetic

permeability of the magnetic matenial (figure 2). _

L]
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{2) Magnetisation vector: The maguetic moment developed per unit volume of the material
when placed in shagnetising field is calied magnetisation vector or intensity of magnetisation
or simply magnetisation
W= lim Z(ﬁm ). _ magnetic dipole moment
Av—0Q Ay unit volume

(3) Magnetic susceptibility: Maguetic suseeptibility measutes the ability of a substance to
take up magnétisation when placed in a magnetic field. It is defined as the ratio of the
intensity of magnetisation M to the magnetising field intensity H.
M<H Or M= X i
M

M=z, B} Or Xn =77

%, is the magnetic susceptibility

{4) Magnetic induction: The total magnetie field inside a magnetic material is the sum of the
external.thagnetising field A and the additianal magnetic field M produced due to
magnetisiation of the material . This is cdlled: magnetic induction B

B=By+pM = poH + po M = o H + iy H = (14 2,) B

.‘.§=)u0)urﬁ °"ﬂr=1+2m

(5) Magnetic permeability: Permeability is the measure of the extent to which a matenial can
be penetrated or permeated by the magnetic field.

g - - . ______________________________|
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ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENT

Magnetic flux: The magnetic flux through any surface
placed in the magnetic field is the total number of
magnetic lines of force crossing this surface normally.

¢, =B-A=BAcosd
The unit of magnetic flux ¢, is weber (#W5) and the unit of
magnetic field B is tesla (7). So Wb = Tm?

Note:
I Wb = 10® maxwell
> = —
Figure (1) ¢, = B- A= BAcos# = 5 -
1 2 > A
Figure (2) ¢, = B- A= Bdcos0° - 4, EE’
¢, = BA —— =
(i.e., the flux is maximum) (1 2)
Figure (3) ¢, = B+ A = BAcos90° S >
4y =0 = 8
LA >
B >
Figure (4) > _;
¢, = B- A= BAcos180° (3) ’ *® i
¢s =—BA

(i.e., the flux is negative and minimum)

Electromagnetic induction: Electromagnetic induction is the phenomenon of production of
electric current or EMF in a closed coil, when magnetic flux linked with the coil is changed.
The current and the EMF so produced are called induced current and induced EMF.

Laws of electromagnetic induction:
Faraday’s first law: Whenever there is a change in magnetic flux linked with a closed

circuit, an induced EMF (and hence current) is produced.

Note: For EMF to be induced in a coil, the magnetic flux linking the coil should change
continuously.

Faraday’s second law: The magnitude of the induced EMF is directly proportional to the
rate of change of magnetic flux linked with the closed circuit.
d¢
£=—
at
Lenz’s law: The direction of induced current is such that it opposes the cause which
produces it, i.e., it opposes the change in magnetic flux.
a¢
at

£=

L
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Lenz’s law and Energy conservation: Work has to be done against the force of attraction or
repulsion in order to move the magnet away from the coil or in bringing the aragnet closer to
the coil. It is this mechanical work which changes into electrical energy or EMF. Thus,
Lenz’s law is in accordance with the principle of conservation of energy.

Expression for the induced EMF:
If the flux changes from g, tod, in time ¢, then the induced EMF will be

gocé'—%
!

Ore= k¢2—;£‘— where the value of k is unity in SI unit

ON:=u

t
If the coil consists of N tightly wound turns, then £=N b4

)
. . d¢
In differential form we have £ = N—
dt
The magnitade and direction of induce EMF are givenby £=-¥N _c_;%
The minus sign on the RHS represents Lenz's law mathematically. In SI units, £is measured

in volts, ¢in webers and ¢ in seconds.

Motional EMF from Faraday’s law: The EMF induced across the end of a conductor due to
its motion in 2 magnetic field is catled motional EMF.
Let a eonduetor of length 7is moving with velocity v towards ¢lie lef in a uniform magnetic

field B .The magnetic field Bacts perpendicular to the plane of the rails vertically
downward. During its motion, the area /x decreases.

Ore= —BI-@
di
Or ¢=Blv

\?Vhe:re%E = -y, the velocity v is in the decreasing direction of x
4
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Note: To know the direction of current 1, we have to use the Fleming’s right hand rule.

Motional EMF from Lorentz force and energy consideration (for electrons):
As the arm PQ is move towards the left with a speed v, the free electrons on PQ also move
with the same speed towards the left. The electrons experience a magnetic Lorentz force

F_ =gqvB

x x

According to Flemings’ left hand rule or Right hand palm rule, this force
acts in the direction QP and hence the free electrons will move towards
P. A negative charge accumulates at P and a positive charge at Q. An
electric field E is set up in the conductor from Q to P. This field exerts a
force F, = gE on the free electrong. The accumulation of charges at the

two ends continues till these two forces balance each other, i.e.,

F,=F,

Or gvB=gFE

vB=FE
The potential difference between the ends Q and P is

¥V = El =vBIl = Blv
Clearly, it is the magnetic force on the moving free electrons that maintains the potential
difference and produces the EMF & = Biv called the motional EMF.

Note:
(1) Current induced in the loop 7., = % = -‘%‘i

272
(2) Force on the movable arm F = /IBsin90° = [ Bé"); _5 I‘; 4

B

(3) Power delivered by the external force P = Fv=

2 2522
(4) Power dissipated as Joule loss P, =7 IR = (Bva) R= B IRV

Induce EMF by changing relative orientation of the coil and the magnetic field - Theory
of AC generator: Let a closed coil of area A4 rotates freely in a magnetic field B, and iet 8 be
the angle between the perpendicular direction of the plane of the coil at any instant with the

field B as shown in the figure. (Coil
The magnetic flux is ¢ = BAcosé =
¢ = BAcosa! N - _{’5 S
b > )
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The induced EMF ¢ = —-%ﬁ
1

__d{(BAcosat)
dt

£= —BA%(cosmt)*: BAwsinw1

If the coil has N turns, then
€= NBAwsin@!t=¢ sinwt

E=¢g,sin2nf ¢
Such an EMF is called sinusoidal or alternating EMF.

Eddy currents: Eddy currents are the current induced in a solid metallic masses when the
magnetic flux threading through them changes.

In the first position AB, The metal sheet is swinging to the
right and has just entered the magnetic field. A clockwise,
circular eddy current is induced in the copper sheet to resist
this motion.

In the second posttion CD, The metal sheet is still swinging
to the right and is half way out of the magnetic field. An
anti-clockwise, circular eddy current is induced in the
copper sheet to resist this motion.

Minimisation:

{1) The effect of eddy currents can be minimized by reducing the area through which the
eddy currents flows. Thus the pendulum plate with holes or slots reduces electromagnetic
damping because the area decreases and the plate swings more freely.

CRCRCORCNENE
cACHCECRCEC]
BEBRRGG
PERRIFE

®®®
Motion of the

EO®
{cJeXeyeXeye
RcXeXeleere

tagls {out)

(2) These currents can be minimized by using thin laminated sheets in the core of the
transformers rather than using solid thick metallic plate. The plane of the laminated thin
sheets should be always arranged parallel to the magnetic field so that they cut across the
eddy current paths. This type of parallel arrangement reduces the strength of eddy currents.

Practical Applications of Eddy Currents:
(i) Magnetic brake

(ii) Dead-beat galvanometer

(1ii) Induction firrnace

(iv) Energy meter

Electromagnetic Induction And Altertin Current Page 265



(v) Diathermy
(vi) Speedometer
(vii) Induction (i.e., ac) motor

Inductance: Inductance is the property in an electrical circuit where a change in the electric
current through that circuit induces an electromotive force (EMF) that opposes the change in
current.

Self-induction: Self-induction is the phenomenon of production of induced EMF in a coil
when a changing current passes through it. This EMF is called seif-induced EMF or back
EMF.

-_)

The magnetic flux linked with a coil of N turns is proportional to the current i.e.,
Npoc ] Or Ng=LI
L = self-inductance of the coil.
The induced EMF in the coil is £=— a =- a

dt dr
The ST unit of L is henry (H)

Coefficient of Self-Induction (Self-Inductance): Self-induction is the property of a coil {or
a circuit) by virtue of which it opposes any change in the strength of current flowing through
it by inducing an EMF in itself.
For this reason self-inductance is also called the inertia of electricity.

g==L-—

dt

A coil {or a circuit) has an inductance of 1 henry if current changing at the rate of 1 ampere
per second through the coil induces an EMF of 1 volt.

Again L= iﬁ
A coil (or a circuit) has an inductance of 1 henry if a current of 1 ampere in the coil set up a
total flux of 1 weber (i.e., Ng =1 weber),

Self-inductance of a long solencid: Consider a long air-
cored solenoid of length /, area of cross-section 4 and
having total number of turns N. For a long solenoid, the
magnetic field inside is constant, If the solenoid is carrying
a current / then magnetic field inside the solenoid is given
by '
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.

H, NI

B=ypunl= where n =—?,— is the number of turns per unit length.

Magnetic flux linked with each turn of solenoid is
N

¢=BA= ; A
..Inductance of solencid L = % = —l}i . -'I—J"—IAE- -4
72
Or L=-«~—-~-—-—-—ﬂ"mr 4

{

' 2
[f the solenoid carries a core of relative permeability g, then L = HthN A

Mutual-induction: Mutual-induction is the phenomenon of production of induced EMF in
one coil due to a change of current in the neighbouring coil. The magnetic flux linked with a
coil of N tumns is proportional to the current that flows through the other i.e.,
Nopx1I Or Ng=M
M = mutual induetance between the two coils.

The mutual induced EMF set up in one coil when a current flows through the other is

dy M dal

dt dt
The SI unit of M is henry (H).

Theorem of Reciprocity:
The magnetic flux linked with the secondary coil of N; turns is proportional to the current in
the primary coil i.e.,
Ng =1, Or Ng.=M]I,
M; = mutual inductance of the secondary coil.
The mutual induced EMF in the secondary coil is

dr
N A Y]

83 == .3 5
dt dt

Also the magnetic flux linked with the primary coil of N,
turns is proportional to the current in the secondary coil i.e.,
Ng, =l Or N g, =M,
M, = mutual inductance of the primary coil. The
mutual induced EMF in the primary coil is

Primary ooil
d¢ dl
=-N —E =M ==
& °di P dt
di
It is found that if7:=%€’— x.}—|+ '|‘|":‘Am..4./\—

then £, =¢,
And M =M, =M (say)
The above equation is called the theorem of reciprocity or reciprocity theorem of mutual
inductance.
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Coefficient of Mutual-Induction (Mutual-Inductance): Mutual induction is the property of -
two cotls by virtue of which each opposes any change in the strength of current flowing
through the other by developing an induced EMF.
£=-M—
dt
Mutual inductance betweentwo coils is 1 henry if current changing at the rate of 1 ampere
per second in one coil induces an EMF of 1 volt in the other.

Again M =-$
Mutual inductance between two coils is 1 henry if a current of 1 ampere in one coil sets up a
total flux of I weber in the other coil.

Mutual-inductance of two long solenoids: Consider
two long air-cored solenoids S and S; of the same length
/. Solenoid §; surrounds solenoid S; completely as
shown in the figure. The two solenoids are so closely
wound that they have the same area of cross-section 4.
Let N; and N, be the total number of turns of solenoids
St and S, respectively,

Mutual inductance of S; with respect to S, is Ms;: The
magnetic field B, inside solenoid Sy due to current /;
through it is given by

B =punl = £ °};/‘!' where n, =§;—‘— is the number of turns per unit length,

Since the solenoids are closely wound, the magnetic field inside solenoid S; is also B;.
Magnetic flux linked with each tutn of solenoid S; is
¢, =B,A=B A= %TLA
N2¢2 N2 poN 1 A
I, I, !

NN, A
Or M, = ﬁ___l_m
Mutual inductance of S} with respect to Sp is M;: The magnetic field B; inside solenoid S,
due to current /; through it is given by

. Mutual inductance of solenoid Sz is M,, =

B, =unl, = #‘"T 212 where n, =--A?r2- is the number of turns per unit length.

Since the solenoids are closely wound, the magnetic field inside solenoid S, is also B,.
Magnetic flux linked with each turn of solenoid S is

6 =BA=B,A= %T] A

. Mutual inductance of solenoid §) is M|, == =—- .22 21 4

Or M, =
Thus we see that M, = My, = M
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The mutual inductance between the. two ceils is the same no matter which of the two coils
carries the current. Therefore no subscripts are needed.
M - l“a NI NZA
Note: The mutual induction between two coils depends upon
(a) the size and shape of the two coils
(b) their relative orientation
{c) separation betweén the coils
(d) material of the core on which they are wound.

Alternating voltage: An altemating voltage (or EMF) is one whose magnitude changes
continuousty with time and direction reverses periodically.

r & ™ gy sin oot r 8 wgqcos oot
e.d . 8,0
I =], sin ot I =1, cos oot
8’ ‘}. N L
L] ¢ \ L \\
0 0 + : ot
P NE :-w)\s_x/ﬁ;z 4x 8= 1
’ t . ’ [\ * t
\q.i' \- f' \-\. I’ ‘bl‘
T/4 Y72 3T/4 T ST/4 3¥72 7714 2T TH T72 3T/4 T STi4 3172 7T/4 1T

[ L4

Alternating current: An alternating current is that current whose magnitude changes
continuously with time and direction reverses periodically.

Direct current (d.c.) Alternating current (a.c.)

[— e ] -
—£ R . R
T € =€, sinef
- -—m ] —

The alternating EMF is given by £=¢,sin@?
Suppose this EMF is applied to a circuit of resistance R. Then by ohm's law, the current in the
circuit will be

£ €, .
I=—="fsingt=] sinwt
R R

1 is the instantaneous value of alternating currenti(a.c.) at any instant ¢

£, . . .- .
{,= —};4 is the peak or maximum value of a.c. and is called current amplitude.

Amplitude: The maximum value attained by an alternating ¥
current or voltage in either direction is cailed its amplitude

or peak value and is denoted by /, for current and g, for
voltage.

Time period: The time taken by an alternating current or g
voltage to complete one cycle of its variations is called its T
time period and is denoted by T

L . ]
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_ Angular displacement _ 2%
Angular velocity @

Frequency: The number of cycles completed per second by an alternating current or voltage
is called its frequency and is denoted by /
1l o
=—=— =S w=27
T 2n 4
Note:
(1) An alternating current can be represented as

I=1sinwt=1sin2r fi=1, sinz?”t

(2) A direct current is that current which flows with a constant magnitude in the same
direction.
(3) The frequency of alternating current of voltage in India is f= S0Hz.

Mean or average value of alternating current and voltage: It is defined as that value of
direct current which sends the same charge in a circuit in the same time as is sent by the
given alternating current in its half time period. It is denoted by /_,, [ or I,

ol i
Capacitor Capacitor
— l” I+ /\/
Battery 8.C, source

Time=T/2, Charge collccted q Time=T/2, Charge collected=g¢

The alternating current at any instant ¢ is given by
I=1 sinwt
The amount of charge that flows through the circuit in small time d¢ will be
dg=1Idt=1, sinwtdl

The total charge that flows through the circuit in the first haif cycle is

T T

VI coswit |z 1 ’
q=_[dq='flosina)tdr=lo!:— ] =—~2fcosw1]?
o 0 ]

o @
q=- /s {0032—”1']2 =~ [cos:r cosO"] [—I—l]
2xiT T 1, 2;1':’ m’T
_LT I
"a 3 4 WS
.. The average value of a.c. over the first haif cycle is E awfage Rﬁs 1
charge q _2q ¥ l
!mr = - _=—_— & ¥
time T/2 T g é
21T 2 = :
l,=—"—=~—], ~063’?I =
“ Tr =& 8 AN

The similar relation can be proved for alternating
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EMF, which is

£, = -2—30 =0.637¢,
z

Root mean square (RMS) or virtual or effective value of a.c.: It is defined as that value of
direct current which produces the same __ AAAA AAANA___
heating effect in a given resistor as is Resistor Resistor

produced by the given alternating
current when passed for the same time,

ltis denoted by /,,,, I, or I, S HE /\j
' Battery a.c. source
The amount of heat produced in small time df will be
dH =1’ Rd

If T is the time period of a.c., then heat produced in one complete cycle will be

T
H = [1* Rt
1]
T
H =R [12sin’ o dt
]
T
H =RI? J’sin2 o tdl

H=RI cos2wr '

Ir . T
R t_sm2a)t]
2 i 20 |,
r T
. 2%
2 sin2—¢
H= RI; . T
2 2o
L ¢
-
H= RI; T smx) (0- 0)]
2 L
?
H= RIO T -
Let /,; be the effective value of a.c. Then heat produced in time T must be
e A 2)
Equating equation (1) and equation (2) we have
1, A,
2
12
2 o
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ff 2‘\/5

Root mean square (RMS) or virtual or effective value of alternating EMF: It is defined
as that value of steady voltage that produces the same amount of heat in a given resistance as
is produced by the given alternating EMF when applied to the same resistance for the same

time. It is denoted by ¢,__,
The amount of heat produced in small time df will be

£, O £,

dH = I’ Rdt
& 2 2
re=IR ::>I=E or I'= 7
2 82
~dH =—2Rdt =>dH =—dt
R R

Let T be the time period of alternating EMF. Then heat produced in time 7 wili be
T T
H=1 fetar= s sin? wrar
R ¢ R o

82 T
H==¢ fsin2 w tdt

2
_E II cos 2@1

[4]

0
T
I i—cos2at)dt
4]

2 . T
gofal,_sin 2@!}
2R} 20 |,
- T
£ sin 22—71'!
H=2elf- T
2R 20
L 0
e[, sinx }
H=—= T——-—m- 0-0
28| ( )=(0-0)
2
H=bop g
R (1)
Let ¢, be the effective value of alternating EMF. Then heat produced in time T must be
2
£
H= '{RT Ny T N —— 2)
R R
Equating equation (1) and equation (2) we have
2 2
£
vr-foy
R 2R
2 aﬂ .
6’ —
eff 9
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Importance of RMS values: An alternating voltage or current is always speeified in terms of
RMS values. Thus an alterndting cwrrent of 10A is one which has the same heating effect as
1A d.c., under similar conditions. THe domestie a.c. supply is 230V, 58Hz. Rt is the RMS or
effective value. It means that the dlternating voltage available has the same heating effect as
230V d.c., under similar conditions. The equation of this alternating voltage is

£=¢, sinwt

£={6,5 #2)sin2zx )t
£ = (230x~/2)sin(27 x 50) = 325.2695in314.16 ¢

Phasors and phasor diagrams: The rotating vector that
represents a sinusoidally varying quantity is called a
phasor,

Phasor diagram: A diagram that represents alternating
currerk and voRage of the same frequency as rOtating
vectars (phasors) along with proper phase angle between
them is called a phasor diagram or Argand diagram.

Suppose the alternating EMF and current in a circuit are
given by

e=g,sinot ahd I=1 sinw!
If the current leads the EMF by ¢, where ¢ is the phase angle between & and Jo, then
we can write / = J, sin(wt + @) as shewn in the figure.
If the current lags behind the EMF by ¢ then we can write [ = [ sin(a¥ — ¢)

a.c. circuit containing only a resistor: As shown in the figure, a resistor of resistance R is
connected to a source of alternating EMF & given by
€=g,sin@b

Or IR=¢,sinwt R

€, .
Or I=—Lsinwt

R
Or I=1,sinwt /\/

£, Sin aX

£ . . .
Where /, = Eﬂh is the maximum or peak value of a.c.

The EMF rand the current / are in the same phase in a purely resistive circuit. This means
that both £and [ attain their zero, minimum and maximum values at the same time.

"t
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T4 TR XT14 ¥ 5Ti4 312 7T 2T 0 a =

Note: [ =% =eg,>1,
R

a.¢. circuit containing only an inductor: As shown in the figure, an inductor L is connected
to a source of alternating EMF £ given by

=g, sinw!
The magnetic flux linked with a ceil of N turns is proportional to the current i.e.,
Ngocl Or Ng=LI ,
As the alternating current flows through the inductor, a back EMF is

.. net instantaneous EMF = Source EMF + back EMF
=s+[-l,—‘£)= s—Li{
di

dt
But this net EMF is zero because there is no resistance in the circuit.
di
SO=zg-L— {0001
dt L
Or e=1L ﬁ
dt
dl

Or g, sinwt = L— /\/
dt

o
Or d!=%sina»‘dr o SN X

£ . £
Or I= I*—OSIDQN dt = ——2-¢cosax + constant
L wl

The average of current / over a time period 7 is zero. Now the average of cos a¥ over a time
period T is zero, hence the integration constant in the above equation must be zero i.e.,

£
0=~ —"Lcosw x 0+ constant = constant = 0
@

==L 1 =] (—cosax
s 1= ==%cosal = (—cosai) Average of cost = 0

Or 1=Iosin(m:~-’%) A L

where [ = % is the peak value of a.c.
@,

The current lags behind the EMF by % or 90°
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L J— 80 go

X, = oL is called the inductive reactance

s d & ™ Gy sim oot
I =fsimiot -n/2)

it
0=t x2 4

———— t

Tid T2 3Ti4 T ST 3T/T TTM4 2T &

(a) Ford.c.,f=0
X, =ol=(2rx0)L=0
-.a pure inductance offers zero resistance to d.c.

(b) Forac,f=f
X, =l =2rxxf)L DX, < f

- greater the frequency f, greater is the inductive reactance X, and vice versa,

(c) Unit of X,
XLza)L:-!-xﬁz}- —-K-....K-._
; s Afs A
Note: 1, = Lo =g, >1,
ol

a.¢c. cireuit containing only a capacitor: As shown in the figure, a capacitor C is connected
to a source of alternating EMF ¢ given by
£=¢g,s5inw!
“Q@=Ce=C¢, sinwt

o= a9 _ jd—Cf;o sin af

Coodr dt
I =wCg,cosar /\/

I=1 cosmt
x
=] sin|l &f +—

80_.
1

oC
The current leads the EMF by -’é’- or 90°

o =

where /, =wCs, = is the peak value of a.c.

80 - 80 — so
I, =0Ce, = = l X.

oC (2 NHC
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X =—is called the capacitive reactance

& = 5y sim oot
I=lhsdn (ot +x/2)

4

4z 0= oot
—_—
T T2 37T/4 T ST/ 3T 1T 2T

(a) Ford.e., f=0
1 1 1

= e = 00
T wC Qaxf)C (Qax0)C
. a pure capacitance offers infinite resistance to d.c. In other words, a capacitor blocks d.c.

(b) Forac.,f=fie,f+#0
] i I
Xp=s—mm—m—— =X, x—
T eC Qrxf)C ¢
.. Greater the frequency f, smaller is the capacitive reactance X - and vice versa.

(¢) Unit of X

o=t s BV g
wC F ClV As 4

Note: I =aCe, =g, <],

Series LCR circuit: As shown in the figure, an inductor L, a capacitor C and a resistor R are
connected to a source of alternating EMF £ given by

£=g,sinw! ¥ ¥ %
Let I be the current in the series circuit at any S B0V 11 lr AAAA
instant. The applied EMF appears as Voltage L C R

drops ¥, Vcand Vz across L, Cand R
respectively. Then

V, =IX, = lol
I
Ve =IX = e
¢ cToC
Ve=1IR

The length of the phasors for I, ¥, , Vcand V; are
I..1.oL, L, and T R.
oC

As shown in the figure

(1) In L, current lags behind voltage by n/2
(2) In C, current leads the voltage by n/2
(3) In R, current and voltage are in phase.
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The resultant of [ @l and 1y
oC

I 1
= ] L el f - i
o) 0(a)L ]
The resultant phasor will be

_ 2 1 '
s,,-‘[uom nfor-L)
(o)
Ore, =1, R’+(a)l.—---—]
wC

2
The impedance of the circuit is Z = -2 = JRI +((oL -;;l-c—-]

N} ;—-‘l%
g

=g, =

Series LCR circuit: Special cases

Casel: WhenX; > Xe e w Ll > l/aC,

tan ¢ = positive or ¢ is positive
The current lags behind the EMF by phase angle ¢ and the LCR circuit is inductance -
dominated circuit,

Case II: When X; <Xy te w L < 1/C,

tan ¢ = negative or ¢ is negative
The current leads the EMF by phase angle ¢ and the LCR circuit is capacitance - dominated
circuit,

Case HI: When X; =X, ie. wl = 1l/oC,

tang =0 or ¢ is0°
The current and the EMF are in same phase. The impedance does not depend on the
frequency of the applied EMF. LCR circuit behaves like a purely resistive circuit.

Resonance condition of a series LCR circuit: A series LCR circuit is said to be in the
resonance condition when the current through it has its maximum value,
When X, = X,
")L b3 .._!.....
oC

tang=0  =>¢=0°

2
wZ= IR +(m ~-1-—)
aC
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The impedance (i.¢., the resistance of the L-C-R circuit) offered by the circuit is minimum
and the current is maximum. This condition is called resonant condition of LCR circuit and
the frequency is called resonant frequency, denoted by f, .

1

oL = —-
w,C

r

Or o -—lﬁ
T 4JLC

1
Or /. =
/. 2rLC

Characteristics of series resonant circuit: h
(1) Resonance occurs in a series LCR circuit when X, = X

1.
2) Resonance frequency f, =
@ 4 v/ 2N LC

(3) The impedance is minimum and purely resistive.
. £ »
(4) The current has a maximum value of ? at resonant condition.

2
{5) The power dissipated in the circuit is maximum and is equal to f—;"-’- .
2R €]

Ims

P=~—-=~————-——~»Ime=
! ! R R

Sharpness of resonance or Q-factor: Quality factor (Q-factor) is defined as the ratio of
resonant frequency to band width.

@ 1

Q_2Afo A R <R <R,

where 2Aw is the band width.

Or R

Quality factor (Q-factor) is defined as the ratio of potential B/ 2 '

drop across either, the inductance or the capacitance to the

potential drop across the resistance. N

V, wl V I 2
szt_:__.f_ Or thiz,_._ /,. \K
v, R V. &,CR AT

R [

Note: The greater the Q-factor of resonance L-C-R circuit, the b
sharper is the resonance curve.

Q-factor can also be written as O = = _é_

Example: Consider an L-C-R series circuit connected to 240V a.c. source. If Q-factor of the
coil is 20, then voltage across L or C will be
V, =V, =0xV,=20x240V = 4800V

Expression for Q-factor: Clearly at «, the impedance (i.e., the resistance of the L-C-R
cireuit) is equal to R, while at @, and o, its value is Y2 R.
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.-.Z=JR’ [L”E] =2R ,

Squaring both sides we have

1 2 I,_f-!- --------
R’+(wL-—«~H) =2R? R ]
2 I = Jo e 80 -------- i
(wL-«-L] = R? ™z 2R o
a)L-—L*iR E E i
oC (!
o a2 1 g
We can write oo °
|
[ ATy SU——— |
: o, C M
1
1773 P U1y - QORORIORR———
2 0,C @

Adding equation (1) and equation (2) we get
1{1 1
(o, + @,)L - «E(—+ «—J =)

@, o,
(a)l.}.a)z)Lml_(M)nﬂ
C\ ww,
1{ o +ao,
— @, + @, .
C( )02, J @ )
1 —
«,a,
1“2 =75
i
Or L= 3
Co,0, ©

Subtracting equation (1) from equation (2), we get

1{1 1
~oyL+f Lo L|-2R
(@ - o) +C(0)z ("1}

oy —@
(@, ~ @)L +—C~{—3—--——'-J= 2R

(@0 )[L . J..J_] 28
0,40,
o, -o)|L+ L}=2R { By using equation (3)]
(0, -~@,)2L=2R

R
— ) =
L

[ TR O )
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(5) [ By using equation (4)}

@, CR o CR '~ CR RVC
Again equation (5) can also be written as

o, Ll,, _V, VoltagedropacrossL
Ri,.. Vi Applied voltage
= Voltage magnification

Q=

Or

Expression for Q-factor: Clearly at ., the impedance (i.e., the resistance of the L-C-R
circuit) is equal to R, while at ; = (0, - A®) and ©; = (o, + A} its value is V2R

\/R‘ (a},L—;;C—) =V2R i

Squaring both sidezs we have Y I '
R
R’+[mIL——-l—-] = 2R ;
: ! =-!iz S | :
1 2 ™ 2 ﬁR tE ]
(o) - i
¢ i
OL-——=-R L
0)|C 0 [
i Wy o, Sy o
o -Aw)L - = -
(@ ) (@, -Aw)C
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w,L[l—-f‘ﬁ’-}—m,L(1+£‘3’—J=-R
a’r a)r

oL-0,L2% 010122 &
)]

[ r

20022 ¢
a’l’
o,Lx 2Aw =R
a)P
Aw = L
2L
Therefore, sharpness of resonance or Q-factor is
w, @ 2. al
Omt =t 2 (D)

20 2 R R

@, LC
Equation (1) can be written as
1 11 1 1 (L
= s T s s amen T A O e 7 |2
Q o,CR CR CR R\NC

r r

Power in an A.C circuit: The rate at which electric energy is consumed in an electric circuit
is called its power.

In d.c. circuit, Power = Voltage x current

In a.c. circuit, Power = Instantaneous voltage x Instantaneous current

Suppose in an a.c. circuit, the voitage and current at any instant are given by -

€=¢g,sinwt

I=1 sin(at + @)

where ¢ is the phase angle by which the current / leads the voltage £ the instantaneous power
is given by

P=d =g, I sinat-sin(ex +¢)

P=g ] sinaot{sinwtcosd + coswtsing]

P =¢,1 [sin® wtcosd + sin ot cos ot sing)

P= 59210- [(1-cos2amt) cosg + sin 2 sin @]

P~

.90210 fcosd — (cos2at cosg --sin 20 sin §)}

P= ﬂ’z—li[cow —cos(2at + ¢))

If the instantaneous power is assumed to be constant for an infinitesimally small time dt, then
the work done is

dW = Pdt

The total work done over a complete cycle is

et P PP Py
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r
W= der

Hence average power dissipated in the circuit over a complete cycle is

m=% l]‘sz

r
e d

"2 £lcos¢ —cos(Qat + ¢)]dr
L+

T
-—% cosg ~cos(2ax + ¢)]dt

‘*-!!»—-

L]

Fr

[

o

Il

-;f-[ foosg dr - Icos(2w:+¢) dtjl

P, = #{cosﬂ ! ]o -0)

I id

P, = £ol, cosgT
2T

av

' £,1
P, =—22cos
2 ¢

= 2=cosg
ff R
P = ms rﬂlscos¢
})GP = rms ﬂ!ﬂ' ﬂl!s mc
2
e
cosg, ; and R _ are called
\/R2 +(mf,—~3—]
oC
power factors

€], 1S called the apparent power

Mz = rmsy

o 1

Power in a.c. circuit with R:
In R current and EMF are in phase, ¢ = 0°

P, =¢,1,cosp=¢,1 cosC =g I

Hﬂ.\' rms rms " rmt

Power in a.c. circuit with L:

In L the current lags behind EMF by % ¢= —-g—
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Pmr = sm:Ims COS¢ = sm[m CO{—%) =0

Power in a.c. circuit with C:
In C the current leads EMF by =, 4 =1;.

2
P, =6,1.,.cosg=¢_1,, cosEgJ =0

Power (Energy) is not dissipated in Inductor and Capecitor and hence they find a lot of
practical applications and in devices using alternating current.

Wattless Current or Idle Current: The current in a.c. circuit is
said to be wattless if the average power consumed in the circuit rms
is zero. The average power of an a.c. circuit is given by I, cosé
P, =&, CO¢
Here P, is associated with I, cos ¢ not with /.., sin ¢ Hence o0 !
Irms in @ is called wattless current. .
I, sing
Or
The component I, cos ¢ generates power with €. However, the component I, sin ¢ does
not contribute to power along £ms and hence power generated is zero. This component of
current is called wattless or idle current.

LC oscillations: When a charged capacitor is allowed to discharge through a non-resistive
inductor, eleetrical oscillations of constant amplitude and frequency are produced. These
oscillations are called LC-os¢illations. Let Uy and Up are the electric and magnetic energy at
the capacitor and inductor respectively, then

(DAte=0, Ug=Max. & Up=0

(D Ate=T/8, Ug=Un

(3) At1=2T/8, Ug=0 &Up= Max.

(4) At¢=3T/8, Ug=1h

(5) Atr=4T/8, Us=Max. & Up=0
(6) At¢=5T/8, U= Up

(7) Att=6T/8, Ug=0 & Up=~ Max.

(8YAts=TT/8, Ug = Up

DAt/=T, Ug=Max. & Up=0
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8 e

TV =

e
Undamped Oscillations ! Damped Osciilations

If LC circuit does not have any resistance, the amplitude of oscillations wili remain constant.
Such oscillations are called undamped oscillations. However if the amplitude of oscillating
current decreases gradually, and eventually becomes zero, such oscillations are called
damped oscillations.

Mathematical treatment of LC-oscillations: If ¢ be the charge on the capacitor at any time

tand % the rate of change of current, then

-L % +2 -0 {Since there is no resistor]
ar\ at C
Here /= -d—f in the present case (as g decreases, / increases).
2
424140
dat C
2z
d_:? +9 9
a* LC

1
Putting — =
ing —— =

99+ w2g=0

dt’

m
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The above equation represents Simple Harmonic Electrical Oscillation with @, as angular
frequency i.e., the charge, oscillates with a natural frequency w,

The solution of this equation is ¢ = 4cose,¢ + Bsinw,t where 4 and B are constants
HALt=0, ¢g=¢

q = Acosa t + Bsina ¢

g, = Acosa, (0) + Bsinw, (0) =q,=A4

. _dq d :
(ii) I--‘;}-“E‘-:(AcoswoMBsma)at)
I=—-Awsinet+Bocosaw
Ate=0, I=0
5 0=~q asinag, (0)+ Bocosw, (0): =>B=0
Putting the values of 4 and B in the general solution we get
g =q,cosw,t +(0)sinw, ¢
Or g=q,cosw!
dq

d .
And IT=w-t =g cOsS@t)=w,g SINWL
dt dr!.(qo o) OQO o

(a) The maxigpurm value of varying charge-on the capacitor is g,

1
(b} The maximum value of varying current in the inductoris I, = ,q, =
) arying 9=%TE
i :

¢) T frequency of oscillating charge or current is given b =
(€) quency g charg 8 y f ™7

Transformer: Transformer is a device which converts lower alternating voltage at higher
current into higher alternating voltage at lower current

mutual Induction. It is the phenomenon of inducing -

EMF in the secondary coil due to change in current N,
in the primary coil and hence the change in
magnetic flux in the secondary coil. @ &

Theory: Let Np and N5 be the number of turns in
the primary and secondary coil of the transformer -
respectively and ¢ he the magnetic flux in the iron

core linked with each coil.

The induced EMF in the primary is

Principlt;,:‘ Transformer is based on the principle of ,E {\E
N
&s

d¢
.‘.'p = —NP —‘};’
The induced EMF in the secondary ts
g, =N, i
Cdr
s N _g
€, Np

(where K is called Transformation Ratio or Turns Ratio)

L
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For an ideal transformer,
Output Power = Input Power

el =¢,1,
LA
g, |
g_L_N
£, I, Np

Efficiency ()2 Efficiency of a transformer is the ratio of output power to input power i.c.,
_ Output power  ¢,1,
- Input power T o)

For an ideal transformer » is 100%

Step up and step down transformer: prisnary
N, >N, e, K>1 coil
—_—
>, and I <], 1107120
N,<N, le, K<l .
. primary sevondary
g, <g, and I, >1], coll
il ——
220/240 110/120
volts volts

Energy losses in transformer:
(1) Copper Loss: Heat is produced due to the resistance of the copper windings of Primary
and Secondary coils when current flows through them. This can be avoided by using thick

wires for winding.

(2) Flux Loss: In actual transformer coupling between Primary and Secbndary coil is not
perfect. So, a certain amount of magnetic flux is wasted. Linking can be maximised by
winding the coils over one another.

(3) Iron Losses:

(a) Eddy Currents Losses: When a changing magnetic flux is linked with the iron core,
eddy currents are set up which in turn produce heat and energy is wasted. Eddy currents are
reduced by using laminated core instead of a solid iron block because in laminated core the
eddy currents are confined within the lamination and they do not get added up to produce
larger current. In other words their paths are broken instead of continuous ones.

(b) Hysteresis Loss: When alternating current is passed, the iron core is magnetised and
demagnetised repeatedly over the cycles and some energy is being lost in the process.

This can be minimised by using suitable material with thin hysteresis loop.

(4) Losses due to vibration of core: Some electrical energy is lost in the form of mechanical
energy due to vibration of the core and humming noise due to magnetostriction effect.

Note: Magnetostriction is a property of ferromagnetic materials that causes them to change
their shape or dimensions during the process of magnetization.

e ]
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Alternating current Generator or Alternator: Alternating current Generator or a.c.
Dynamo or Alternator is a device which converts mechanical energy into alternating current
(electrical energy).

Principle: a.c. Generator is based on the
principle of Electromagnetic Induction.

Construction:

(1) Field Magnet with poles N and S
(2) Armature {Coil) PQRS

(3) Slip Rings (R, and R»)

(4) Brushes (B, and B;)

(5) Load

Working:
Let the armature be rotated in such a way thatthe R,
arm PQ goes down and RS comes up from the
plane of the diagram. Induced EMF and hence
current is set up in the coil. By Fleming’s Right 7
Hand Rule, the direction of the current is PQRSR,B,B;RP.

After half the rotation of the coil, the arm PQ comes up and RS goes down into the plane of
the diagram. By Fleming’s Right Hand Rule, the direction of the current is PR.B.BszSRQP.
If one way of current is taken posmve then the reverse current is ;

taken negative. Therefore the current is said to be alternating and the
corresponding wave is sinusoidal.

Theory: Let N be the number of turns in the coil of area A, and B is
a strong uniform magnetic field. The flux ¢ linked with the coil at
any instant is given by
¢=NBAcosé@

At time 4, with angular velocity o,
8=wt (att=20, loop is assumed to be perpendicular to the magnetic
field and 8 = 0°)
S @¢=NB A cos of
Differentiating with respect to ¢,
d¢/df =~ NBA o sin o

= dg/dt
£ = NBA © sin ot
e=gysinwt (where gy = NBAw)
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ELECTROMAGNETIC WAVYES

Electromagnetic waves: Electromagnetic waves are produced when an electric charge
vibrates or accelerates. In other words, electromagnetic waves are produced in constantly
changing fields.

Electromagnetic waves consist of sinusoidal variation of electric and magnetic fields at right
angles to each other and to the direction of propagation of the wave. Both these fields vary
with time and space and have the same frequency.

Piane of Electric Field (E)

Plane of Magnetic Field (B)

Characteristics of electromagnetic waves:

(1) Electromagnetic waves are produced by accelerated charges.

{2) They do not require any material medium for propagation.

(3) In an electromagnetic wave, the electric ( E)and magnetic ( B) field vectors are at right
angles to each other and to the direction of propagation. Hence electromagnetic waves are
transverse in nature.

(4) Variation of rhaxima and minima in both E and B occur simultancously.

(5) They travel in vacuum or free space with a velocity 3 x 10°ms™ given by the relation

I
" Tt

(6) The energy in an electromagnetic wave is equally divided between electric and magnetic

field vectors.
(7) The electromagnetic waves being charge less, are not deflected by electric and magnetic

fields.

(8) The electric field vector £ and magnetic field vector B are related by c= —gi where £,
0

( 4, - permeability of free space and &,- permittivity of free space)

and B, are the amplitudes of the respec-rive fields and ¢ is speed of light.

ue
absolute permeability and absolute permittivity of the material medium.
(10} Electromagnetic waves obey the principle of superposition.
(11) Electromagnetic waves can transfer energy as well as momentum to objects placed on
their paths.
{12) For discussion of optical effects of electromagnetic wave, more significance is given to
Electric Field (E). Therefore, electric field is called ‘light vector’.

* » L] - - - 1
(9) The velocity of electromagnetic waves in a material medium is —J—_- where 4 and ¢ are
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Electromagnetic spectrum: The orderly classification of electromagnetic waves according
to their wavelength or frequency is called the electromagnetic spectrum.

Electromagnetic Spectrum:

Sl.no | EM Wave | Rangeof’ | Rangeofyv Source Use
1 Radio Afewkm | AfewHzto | Oscillating Radio and TV
wave t00.3m 10° Hz electronic broadcasting
circuits
2 | Microwave | 03mto 0" Hzto | Oscillating | Radar, analysis of fine
10° m 3x 10" Hz | electronic details of atomic and
circuits molecular structures &
. Misrowave oven
3 InfraRed | 10°mto | 3x 10" Hz | Molecules industry, medicine,
wave 7.8%x 10" m to and hot astronomy, night vision
4x 10" Hz bodies device, green house,
revealing secret writings
on ancient walls, etc,
4 Lightor |7.8x10"m| 4x 10" Hz | Atoms and Optics and Optical
: Visible to to molecules Instruments, Vision,
Spectrum | 3.8x 107 m | 8x 10" Hz when photography, etc.
electrons
are excited
5 Ulra [38x10"m | 8x10™Hz | Carbon-arc { Medical application,
Violet to 1o lamp, sterilization, killing
Rays 6x10"m { 3x10'"Hz | electric bacteria and germs in
spark, food stuff, detection of
discharge | invisible writing, forged
tube, hot | documents, finger print,
bodies and etc.
. _ sun. - -
6 X-Rays | 10°mw | 3x107Hz | Inneror X-ray photography,
6x 10" m to more treatment of cancer, skin
5x10°Hz | tightly disease & tumor,
bound locating cracks and flaws
electrons in 4n finished metatlic
atoms. objects, detection of
smuggied goods in bags
of a person, study of
) crystal structure, etc.
7 v-Rays They 3 x 10" Hz | Radioactive Information about
overlap the to substances structure of nucle,
upper limit | 3 x 10% Hz astronomical research,
of the X- etc.
10%m to
10"*m

L
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Energy distribution between electric and magnetic field of eleciromagnetic waves: An
electromagnetic wave can transfer energy from one point to another. The energy stored in a
unit volume is called energy density. Let the electric and magnetic field vectors are

E=FE sin(kx-at) and

B = B, si{kx — o)
In vacuum, the electric energy density and the magnetic energy density are given by
2
uF—-l—aoEim d u3=l‘£”—”’—
2 2

Or u,=—gEl = Z““{}(CBO)

Or u, =%303§ 2 =%£OB§.E—1-—J

Or y,=————~=—-—+
4 gy, 4 4y
: 2 2
Or U =2Lﬁ=—-l—(%]
He 2 2\ V2
2
Or uE =._l..£’._’!§..- P

Bo
Therefore the energy is equally distributed in electric and magnetic field of an
electromagnetic wave, _

The total energy density is
U=lg+Uy =Up +Up =2, [vus=u)
Or u=u; +ug=uy+uy, =2u, [rup =ug]

Hence wu=2u,=2- %%Efm =& Efm

Or u=2u, =2-%£GE§ =~1--£'(,E02

2
2 -2
Also u=2u, = .l.£m=3ms
Hy Hg
2 2
Or u=2u3=2._.§_..§0_=13_0
2u, 2 2 u,

Momentum and Radiation pressure of electromagnetic wave: The waves that can
transport energy can also transport linear momentum. Thus the electromagnetic waves exert
pressure on the objects on its path and this pressure is called radiation pressure.

Displacement current: Displacement current is that current which comes into existence, in
addition to the conduction current, whenever the electric field and hence the electric flux

changes with time.

S
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Mathematical analysis of Displacement current:
Consider a capacitor C being charged from a battery as shown in the figure, The charge g on
the capacitor at any time is ¢ = CV where V is the potential difference between the plates at
that instant.
Now V= Ed where d is the plate separation and E is the electric
field between the plates.
&4

Also C=—— O AN
d —
where 4 is the area of the plate el —3 (-4
. €4 I
L q=CV =22 (Eq) —
d ———
Or g=¢g,AE d\'
dq dE ]
Or = =g A— !
a " dt i
dE

Ori,=¢,4 7 where I, is the displacement current.

Again ¢, = EA Or E= ‘-’j where ¢, is the electric flux,

d¢
~ I, =g,4A—E
P Adr
de.
Orl,=¢,—*%
Tip=§& di
Equality of The conduction current (/) and the displacement current (I,):
dq
o -
dt
P = 4 = g=£8;
€y
dg_, db;
]
dt dt
I =1,

Generalised form of Ampere's Law:

" ampere's Law is ‘j‘ B-dl = u,I where Iis the conduction current,
The modified form of Ampere's Law is rjf}-df = (I +1p) S S
where /, is the displacement current.

Or {B-dfw{uao%i)

For surface Sy, I, =0 qﬁ-dfz,uof

- - de.
For surface S;, /=0 43 -di =#06‘o£_é'

L

.-:_..-
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GEO RICAL OPTIC

Optics: Optics is the branch of Physics which deals with the study of nature, production and
propagation of light. Optics can be divided into twe main branches.

(1) Ray optics: It concerns itself with the particle nature of light and is based on the
(i) Rectilinear propagation of light
(ii) Law of reflection and refraction of light.

(2) Wave optics: It concerns itself with the wave nature of light and is based on the
phenomena like

(i) Interference

(ii} Diffraction and

(iii} Polarisation of light

Behaviour of light at the interface of two media: When light travelling in one medium falls
on the surface of the second medium, the following effects may occur:

Normal

(1) A part of the incident light is turned back into Incident ray |  Reflocted ray

the first medium. This is called Reflection of
light.

(2) A part of the incident light is transmitted into
the second medium along a changed direction.
This is called Refraction of light.

(3) A part of the incident light is absorbed by the
second medium. This is called Absorption of light

(1) Laws of Reflection of light: Reflection of light takes place according to the following
two laws N
First Law: The angle of incidence is equal to the angle of :

reflection. i.e., i = 4r . .
Second Law: The incident ray the reflected ray and the normal X,
at the point of incidence all lie in the same plane. '

(2) Laws of Refraction of light: The phenomenon of refraction of light obeys the following
two laws

First Law: The incident ray, the refracted ray and
the normal to the interface at the point of incidence
all lie in the same plane.

Normal
Incident ray

Second Law: The ratio of the sine of the angle of First
incidence to the sine of the angle of refraction is Medium (1)
constant for a given pair of media. - Second
Mathematically, 4 ,= smi Medium
sinr (2)
This law is known as Snell's law of refraction. 'y , Refracted rav

is called the refractive index of the second medium
with respect to the first medium.

W
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Spherical mirrors: A spherical mirror is a reflecting surface which forms part of a hollow’
sphere, Spherical mirrors are of two types:

Concave mirror Convex mirror

Concave mirror: A spherical mirror in which the outer bulped surface is silvered polished _
and the reflection of light takes place from the inner hollow surface is called a concave
mirtor,

Convex mirror: A spherical mirror in which the inner hollow surface is silvered polished
and the reflection of light takes place from the outer bulged surface is called a convex mirror.

Definitions in connection with spherical mirrors:

X Pole Centre of durvature Y
Y Principalaxis P :

Radius
of cwvature of curvature
Concave mirvor Convex mirror

Pole: It is the middle point ‘P of the spherical mirror.

Centre of curvature: It is the centre “C "of the sphere of which the mirror forms a part.
Radius of curvature: Itis the radius ‘R = CP "of the sphere of which the mirror forms a part.
Principal axis: The line ‘XY 'passing through the pole and the centre of curvature of the
mirror is called its principal axis

Linear aperture: it is the distance between the extreme points M and M’ (diameter of the
circular boundary) en the periphery of the spherical mirrer.

Angular aperture: It is the angle MCM' (solid angle) subtended by the boundary of the
spherical mirror at its centre of curvature ‘C °

Principal focus: A narrow beam of light parallel to the principal axis either actually
converges to or appears to diverge from a point ‘F ‘on the principal axis afier reflection from
the sphetical mirror. This peint is called the principal focus of the mirror. A concave mirror
has a real focus while a convex mirror has a virtual focus.

Pnncxpalfocuh Y
F C ;

Convex mirror

Concave mirror

e
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Principal axis Cenucof énrvam §F yRPole

Y
X
Prmcipa] focua
s i
Focal
length
Comcave mirrer Canvex mirror

Focal length: It is the distance /= PF between the focus and the pole of the mirror.
Focal plane The vertical plane passing through the pnnclpa! focus and perpendicular to the
principal axis is called focal plane

New Cartesian Sign convention for Spherical mirrors:

(1) All ray diagrams are drawn with the incident light travelling from left to right.

(2) All distances are measured from the pole of the mirror.

(3) All distances measured in the direction of incident light are taken to be positive.

(4) All distances measured in the opposite direction of incident light are taken to be negative.
(5) Heights measured upward and perpendicular to the principal axis are taken positive.

(6) Heights measured downward and perpendicular to the principal axis are taken negative

4

+} Direction of the 4
§ incident ray
N 0 e Y | 'Y
X C X C
. ! Positive . W Positive
- Negative ——— - Negative ———go
v distince ? distance 4 6—58%(;‘ stance
Concave mirror Convex mirvor

Note: According to the sign convention, the focal length (/) and radius of curvature ( R ) are
negative for concave mirror and positive for convex mirror.

Relation between f and R:

A > h A >
f\, -
e Y
X C: /F X
: R :
Concave mirror Convex mirror

According to the law of reflection Zi=Zr.
As AB is parallel to PC, Li= Za
nLr=La
Hence CF = FB _
For.a mirror of small aperture, FP ~ FB
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Or CF = FP
Hence CP =CF + FP=FP + FP
OrR=f+f=2f

~R=2f ::»f=B-

2
Or Focal length = %x Radius of curvature.

Rules for drawing images formed by spherical mirrors:

Y
Concave mirror Convex mirror
Formation of images by concave mirror:
&
O P
Ic
X X i
€ \J
Cencave mirror Concave mirror
N Object beyond C. The Image is Object at C. The Image is
Between Cand F AtC
Real Real
Inverted Inverted
Smaller than object Same size as object
Y
X ). S
‘Concave mirror Concave mirror
Object between F and C. The Image is Object at F. The Image is
Beyond C At infinity
Real Real
Inverted Inverted
Larger than object | Exiremely large
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Concave mirror
Object between F and P. The Image is
Behind the mirror
Virtual
Erect
_Larger than object

Formation of images by convex mirror:

Convex mirror

For any position of the object , the Image is_
Behind the mirror
Virtual
Erect
Smaller than object

Derivation of a mirror formula for a concave mirror when its forms a real image:
Using new Cartesian sign eonvention, we find
Focal length FP = —f

Image distance [P = —v

Radius of curvature CP =-R =-2f

Object distance OP = -u

AOQAP = AIBP

"' LAOP = £BIP =96°, and ZAPO = ZBP]

,OA OP -u u

S —— e e i makiman (1)
B IP -v v
Again, AOAC = AIBC
LAOC = /ZBIC = 90°, and ZACO = £BCI Concave mirror

.OA _OC_OP-CP_-u-(=R) -u+R @
“IB IC CP-IP -R-(-v) -R+v
FC T T T R R T
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Equating equation (1) and equation (2) we have

u_ -—u+R

v ~R+vy
Or ~uR+w=-uv+vR
Or ww+uv=vR+uR
Or 2uv=R{u+v)

uvm%(u+v)=f(u+v)

Divide both sides by uv we have

: j.(l 1] I 11
l= f} —+— = — =
vV u fF v u

This is the mirror formula for a concave mirror

Derivation of a mirror fornmls for a concave mirror when its forms a virtual image:

Using new Cartesian sign convention, we find
Focal length FP = —f

Image distance IP = v

Radius of curvature CP = ~R = -2f

Object distance OP = —u

AQAP ~ AIBP

" ZAOP = ZBIP = 90°, and LAPO = £BPI
0OA OP -

Rt e AL S ¢
IB 1P

Again, AOAC = AIBC
W ZAOC = £BIC = 90°, and £ZACO = £BCI
.0A OC PC-PO -R-(-u) - ~-R+u

"IBIC PC+PI  -R+v  ~R+4v
Equating equation (1) and equation (2) we have

-~ ~-R+u

v —=R+v

Or uR~uv=-vR+uv
Or v+ uv=vR+uR
Or 2uv=R(u+v)

mrz'%(u+v)=f(u+v)
Divide both sides by uv we have
] 1) 111
l= fl-+— = e m =t
vVou J v u

This is the mirror formula for a concave mirror

2)

Concave mirror

[ TSNS EEEEEEN S
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Derivation of a mirror formula for a convex mirror when its forms a virtual image:
Using new Cartesian sign convention, we find
Focallength PF = f

Image distance PI=v

Radius of curvatare PC=R =2f .
Object distance PO = -y B
SOAP = AIBP

" ZAQP = £BIP = 90°, and ZAPO = £ZBPI

Again, AGAC = AIBC
' LAOC = £BIC =90°, and LACO = £BCI ]

L 0A_OC_FO+PC_-usR ) Convex mirror

"IB IC PC-PI R-v _
Equating equation (13 and equation (2) we have
-u_—u+R '
v-R-v
Or —-uR+uv=-uv+vR
Or ww+uv=vwR+uR
Or 2uv=R{u+v)

_ uv=—§—(u_~i—v)=f(u+v)

Divide both sides by uv we have

ﬁ(l Ij 111
{= fl—4— | D e FL
v ou f v u

. This is the mirror formula for a convex mirror

Linear magnification:
The ratio of the height of the image to that of the object is called linear or transverse

magnification or just magnification and is denoted by m
_ Height of the Image 4,
Height of the object 4

Linear magnification m for Concave marror when the image is real:
.+ AOAP ~ AIBP
. IB Pl

“OA PO
Using new Cartesian sign convention, we find
Image distance Pl = —y
Object distance PO = —u
Height of the Image IB = -4,
Height of the Object OA = A,

or ~h_ ¥
h ~u
or .Y v
' h, u u Concave mirror
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: : v
. Magnification m= 3 = ——

Linear magnification m for Concave mirror when the image is virtual:
- AOAP ~ AIBP
IB _PI

“"0A PO

Using new Cartesian sign convention, we find
Image distance P] = v

Object distance PO = —u

Height of the Image IB = &,

Height of the Object OA = I

or .y
-Uu
Or ﬁlz,_l'.

h, u

S h v Y & =
- Magnification m = ~% = - AR
u

-]

- Ly
S .,
a0
e
- S R e Er T

. ) . . Concave mirror
Linear magnification m for Convex mirror:

"> AOAP ~ AIBP
B _ P
“O0A PO
Using new Cartesian sign convention, we find
Image distance PI=v
Object distance PO = —u
Height of the Image IB = h;
Height of tlie Object OA = A,

Or ﬁ=-l’—~
h  ~u ;
Convex mirror
Or ﬁ:__,,‘,’_
h, u

2w

- Magnification m = i’— =~

Linear magnification in terms of v and f:

The mirror formula is L ! + 1
f v u

Multiplying both sides by v, we get

1
— XY= XVt =XV

Y H
Z.:l.{.f.
f u
Or -——-:l-——-‘—)«zzf——v
u ff
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I v -V
. Magnification m = ~—= L

u f

Linear magnification in terms of # and f:

The mirror formula is 1 = Ll + 1
v u

Multiplying both sides by u, we get

1 1 1
—XU=—XU+—XU
v u
U u
—=—+]
f v
or Moy B_Sou
v f f
Oor-L= S
u -u
. Magnification m=—2 = f
u f-u

Spherical aberration: The inability of a spherical mirror of large aperture to bring all the
rays of wide beam of light falling on it to focus at a single point is called spherical aberration.

Note:

(1) When parallel rays of light, and parallel to
the principal axis fall on the spherical mirror

of large aperture, they will converge to Merginal rays
different points on the principal axis. This Paraxial rays
defect can be reduced by decreasing the Paraxisl rays
aperture of the mirror. Marginal rays ——=
Concave mirror

(2) Spherical aberrations are defects due to large aperture of lenses and mirrors.

Green light
Green light

Greez;fighx
Grccn’light \
CONYEXLENS

w
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[Marginal rays] White light
[Paraxial rays] White light iy

X .
. [Paraxis rays] White light
[Marginal rays) White lLight
[Marginal rays] Green light - S
o [Paraxial ays] Groen lighe — ) ‘
[Paraxial rys] Groen light 7
[Marginal mys] Green light f’ ¥
(2)
[Margine! rays] White light o
[Paraxial rays] Green kight AN Y
{Parfxial rays) B!uel light 77
[Marginal rays] Red light '(,f +
€3]
CONCAVEMIRROR

(2) No spherical aberration in a parabolic mirror.

Chromatic aberrations: Chromatic aberrations are defects due to dispersion of light by lens.
All types of mirrors are free from Chromatic aberrations.

White light

CONVEXLENS Y S

Refraction of light: The bending of light as it passes obliquely from one transparent medium

to another is called refraction of light.

It is observed that:
(1) When a ray of light passes from an optically rarer medium to an optically denser medium,

it bends towards the normal i.e., the angle of incidence £i is greater than the angle of
refraction Zr as shown in figure (1).

D
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Incident \ : ! ray
rey . ! Rarermedium Refracted .1 Rarcrmedium N ormnl" Rarer medivm
] (air) T2y , (air) | (sir)

Medium Medium T Mediam
[ t7 Vincident v
(glnss) cfasted @asy  T\T gy Reiwted
Yy L @y
1) ) (ki)

(2) When a ray of light passes from an optically denser medium to an optically rarer medium,
it bends away ftom the normal i.e., the angle of incidence £i is less than the angle of
refraction Zr as shown in figure (2).

(3) A ray of light travelling along the normal passes undeflected i.e., Zi = Zr =0 as shown
in figure (3).

Laws of refraction of light:
First law: The incident ray, the refracted ray and the normal to the interface at the point of
incidence all lie in the same plane.
Second law: The ratio of the sine of angle of incidence to the sine of angle of refraction is
constant for a given pair of media.
Mathematically, m ='u,
sinr
', is called the refractive index of the second medium with respect to the first medium. This

law is also known as Snell's law of refraction.
Third law: When light goes from one medium to another, the frequency of light does not
change. However, the velocity and wavelength of light change.

Refractive index: A property of a material that changes the speed of light is called refractive
index

Refractive index in terms of speed of light: The refractive index of a medium may be
defined as the ratio of the speed of light in vacuum to its speed in that medium.
speed of light in vacuum

speed of lightin a medium

Refractive index =

Or ,u=£

v
Refractive index of a medium with respct to vacuum is called absolute refractive index.

Refractive index in terms of wavelength: The refractive index of a medium may be defined
as the ratio of the wavelength of light in vacuum to its wavelength in that medium.

_f___’lmmxv_zmwm = m_l_ |

A R 57

medium ‘medium

Where vis the frequency and 4 is the wavelength of light.

Factors on which the refractive index of a medium depends:
(1) Nature of the medium.

(2) Wavelength of light used.

(3) Temperature. '

(4) Nature of the surrounding medium.

R
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Physical significance of refractive index:

(1) The value of refractive index gives information about the dicection of bending of refracted
ray. It teils whether the ray will bend towards or away from the nosmal.
(2) The refractive index of the medium is retated to the speed of light.

For example, refractive index of glass is 3/2. This indicates that the ratio of the speed of light
in glass to that in vacuum is 2 : 3 or the speed of light in glass is two-third of its speed in

vacuum

Principle of reversibility of light: This principle states that if the final path of the ray of
light after it has suffered several reflections and refractions is reversed, it retraces its path

_ Normal
Refract b N
ef::; ed i! Rmrmedmm
: ! (air)

exactly.
Normal
Incident ‘
ray i! PRarcrmedium
: (air)
Medium r
@ass) R‘f:;“d
H
In figure (1) “4t, = = weemen (1)
ginr
In figure (2) 41, = = - (2)
sin i
Muitiplying (1) and (2) we have
ap .g‘u - ii..ll{. . .s..i._r.l.i =1
2 7 sinr sini
¢ i
e

Denser i
Medium 17\ Incident
(glass) ray

@

Critical angle: The angle of incidence in the denser medium for which the angie of reflection
in the rarer medium is 90° is catied ¢ritical angle of the denser medium, and is denoted by i,.

Normal

Rarer medium

! Refracted
) ray

3O

!
Incident /
ray

: Denser
' Medium

No:;mal
F
)
mediua 5‘]900 Refracted
- : 'my
Incident ic: D
el i Medium

Relation between critical angle and refractive index:

Hgigss SIN G,

H glass

= u,, sin90°
_sin%0° _ 1

ﬂmr

sini,  sini,
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Jug.:‘ass - } - l
=L :ﬂga‘rm_ s
1 sind, sin i,
. 1 TS B
sini, = ~—— = i, =sin
”g!m ﬂgfm
Or
denser = Sin ic
" sin90°
denser _ Sini =
ey = ——— = SIN i,
., 1 ;e a) I
sini = ————— =i =S8In P a—
Jadmser denser
I
rarer
“J & = . »
denser sini,
Total internal reflection: The phenomenon in which a Normal
ray of light travelling at an angle of incidence greater !
than the critical angle from denser to a rarer medium is R
1
1

totally reflected back into the denser medium is called Rarct medium
total internal reflection. '

arkd
Incident +  Refracted
ray  Denser ™Y
Medium

Necessary conditions for total internal reflection:
(1) Light must travel from an optically denser medium
to an optically rarer medium.

(2) The angle of incidence in the denser medium must be greater than the critical angle for
the two media.

Applications of total internal reflection:
(1) Sparkling of diamond

(2) Mirage

(3) Optical fibres

(4) Totally reflecting prism

Applications of optical fibres: Fibre optic cables find many uses in a wide variety of
industries and applications. Some uses of fibre optic cables include:

Medical: Used as light guides, imaging tools and also as lasers for surgeries
Defense/Government: Used as hydrophones for seismic and SONAR uses, as wiring in
aircraft, submarines and other vehicles and also for field networking .

Data Storage: Used for data transmission

Telecommunications: Fiber is laid and used for transmitting and receiving purposes
Networking: Used to connect users and servers in a variety of network settings and help
increase the speed and accuracy of data transmission

m
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Spherical lenses or lenses: A lens is a piece of refracting medium bounded by two surfaces,
at least one of which is a eurved surface. Lens can be divided into two categories.

(1) Convex or converging lenses

(2) Concave or diverging lenses

Convex or converging lens: 1t is thicker at the centre than at the edges. It is converges a
parallel beam of light on refraction through it. It has real focus.

CONVEX LENS CONCAVE LENS
Concave or diverging lems: It is thinner at the centre than at the edges. It is diverges a
parallel beam of light on refraction through it. It has virtual focus.

Definitions in connection with Spherical lenses:

Or OPTICAL CENTRE CENTRE
CURVATURE .. | oF
CURVATURE
RIS ] =
Cz 0 Cl . 2 P -—’
C, /' 0 N C,
PRINCIPAL | PRINCIPAL AXIS PRINCIPAL
FOCUS FOCUS

CONVEX LENS CONCAVE LENS

Centre of curvature (C): The centre of curvature of the surface of a lens is the centre of the
sphere of which it forms a part. Because a lens has two surfaces, so it has two centres of

curvature C, and C,.

CENTRE
OF OPTICAL CENTRE CENTRE
CURVATURE ' OF
/ . CURVATURE
F )3 — F, F, TN
Cz‘."'-‘ 0 ‘‘‘‘‘‘ Cl —é*\._ —"""C
S I IR Lt IO, 2
RZ Tea - R, R;~~. - RZ

CONVEX LENS CONCAVE LENS

Radius of curvature (R): The radius of curvature of the surface of a lens is the radii of the
sphere of which the surface forms a part.

Principal axis (C;C3): It is the line passing through the two centres of curvature of the lens
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Optical centre (O): If a ray of light is incident on a lens such that after refraction through the
lens the emergent ray is paralle! to the incident ray, then the peint at which the refracted ray
intersects the principal axis is called the optical centre of the lens

-
-
Y
iy
L,

™
LT

-
.

CONVEX LENS

CONCAVE LENS

Or
The centre of the lens where the principal axis passes through, is called the optical centre

Second principal focus (F1 or F): It is a fixed point on the principal axis such that the light
rays incident parallel to the principal axis, after refraction through the lens, either converge to
this point (in convex lens) or appear to diverge from this point (in concave lens). The distance
between the second principal focus (F or F) and the optical centre (O) is called the second

focal length f> or £

CONVEX LENS CONCAVE LENS

First principal focus (F;): It is a fixed point on the principal axis such that rays starting from
this peint (in convex lens) or appearing to go towards this point, after refraction from the
lens, become parallel to the principal axis. The distance between the first principal focus (F1)

and the optical centre (O) is called the first focal length f;
N

y / F, C
P »

>

CONVEX LENS CONCAVE LENS
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Aperture: It is the diameter AB of the circular boundary of the lens

'
)
B B
CONVEX LENS CONCAVE LENS

New Cartesian sign convention for Spherical lenses: All distances are measured from the
optical centre (O) of the lens.

INCIDENT LIGHT

»

VE HEIGHT

3!

. NEGATIVE DISTANCE

“AGAINST INCIDENT LIGHT | / POSITIVE DISTANCE
ALONG INCIDENT LIGHT

CONVEX LENS

-VE HEIGQ

Refraction at the convex Spherical surface (Gbject lies in rarer medium, Image in the
denser medium): LetO be a point object situated in the rarer medium of refractive index

whose image I is formed in the denser medium of refractive index x, as shewn in the figure.

L SING = Uy SINP —eeenee 4y
In ANOC
i=a+y
sini =sina +sin y

If and yare very smatl, then we have
NM NM NM . NM

0P T CP -u R

sini =

W
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In ANCI
y=r+p
r=y=p

sinr=siny-sin 8

If yand Bare very small, then we have
NM_NM _NM_NM

P R v
shr:NM(lwl)mnnO)
R v

Putting (2) and(3) in (1) we have

11 l
NM|— NM| ==}
H, [~u+R) H (R v}

siny =

L e
¥ R R v
__au]+y2___£“_2___£fl_
u v R R
A _ T H
o R

Refraction at the convex Spherical surface (Object lies in rarer medium, Image in the
rarer medium): Let O be a point object situated in the rarer medium of refractive index g,

whose image | is also formed in the same rarer medium. The refractive index of the denser
medium is s, as shown in the figure.

Hy

»

Wi sind = g, siny ----- (1)
In ANOC
i=q+y
sini =sina+siny

If @ and yare very small, then we have
NM NM NM NM

OP CP -u R

-
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- 1 1
~sini=NM [nu +-§) (2?
In ANCI
r=y+f
sinr =siny+sin §

If yand f are very small, then we have
sinr=NM+NM=NM+NM= NM NM
cP 1P R -y R v

. l - 1
= NM| <5t aaee
sinr M(R vJ (3)

Putting (2) and (3) in (1} we have
M NM (:_l_;+l) = pi, NM (-!-—--I—J

R} R v
o IO O o Y Y
u R R v
ML B
u v R R
T N Sl
uov R

Refraction at the convex Spherical sarface (Object lies in denser medium, Image in the
rarer medium): Let O be a point object situated in the denser medium of refractive index x,

whose image [ is formed in the rarer medium of refractive index u, as shown in the figure,

Wy SINE = J SIAE ewmens (1)
In ANOC
y=a+i
i=y—-a
sini =siny -sing

If y and o are very smatll, then we have
.. NM NM NM NM _NM NM
=P T oP -R - u R

W
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1 1
sini= NM| ——— | «ommurm 2
[u RJ (2)
In ANCI
r=y+ff
sinr =siny +sin §
. M NM
sinr = 4
CN NI

If yand B are very small, then we have
NM . NM NM N NM
P ~R v

. 11
sinr = NM(;mi) S— )

siny =

Putting (2) and (3) in (1) we have
11 11
NM|——— =y NM|~—-—
& (u RJ # (v R]

B B A B
U R v R

KL KB B A
v u R R

Mt b
Y u R

Refraction at the convex Spherical surface (Object lies in denser medium, Image in the
denser medium): Let O be a point object situated in the denser medium of refractive index
4, whose image | is also Tormed in thé same denser medium. The refractive index of the rarer

medium is g as shown in the figure.

Hy

", sind = gy sing =---=-- (1)
In ANOC
a=i+y
i=a-y
sini =sina -siny
.. NM NM
sini = —————

NG CN
If & and y are very small, then we have
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sin;=NMHNM=NMmNMzNM_NM
OP CP -y -R R u

sini = NM [l- »-l~] e (2)
R u

In ANCI
B=r+y
r=f-y
sinr =sinf -siny
NM NM

sinr=———-——

NI CN
If Band yare very small, then we have
NM NM NM NM NM NM
P CP -v -R R v
smr=MM(L—l}mnuG)
R

v
Putting (2) and (3) in (1} we have

sinr =

f1 1 1 1
NM| —~——|= gy NM| =~
H, [R uJ H (R v)
BB _HA A
R u R v
I o SO T
v u R R
ﬂ1+_{{g~ Hy —

v ou R

Refraction at the concave Spherical surface (Object lies in rarer medium): Let O be a
point object situated in the rarer medium of refractive index 4, whose image | is also formed

in the same rarer medium, The refractive index of the denser medium is u, as shown in the
figure,

a4y sini = g, sing - (1)
In ANOC
y=i+a
i=y-a
sini = siny ~sina

W
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NM NM

$ini = wme— — —n

ON
If yand « are very small, then we have
NM WM _ N NM _NM _NM
CP OP -R -u u R

smizhmffl—lq-nnu(ﬁ
1

sini =

R
In ANCI
y=r+f
r=y~pB

sinr =siny —sin 8

If yand B are very small, then we have
NM NM NM NM _NM _NM
CP IP ~R -v v R

sinr = NM(~ - —I-J N )
v R

sinr =

Putting (2) and (3) in (1) we have

et ——— S R

Refraction at the concave Spherical surface (Object lies in rarer medium): Let O be a
point object situated in the denser medium of refractive index u, whose image 1 is also

formed in the same denser medium. The refractive index of the rarer medium is 4, as shown
in the figure.

"y SINE = g SNy ceeee (1)

In ANOC
i=a+y




sini =sina +siny

NM NM
$iNJ = — o ——.
NO CN

If @ and y are very small, then we have
.. NM NM NM NM NM
sini = + = + = -
oP CP ~u R R u

ini=npml L)
sm:—NM[R ] (2)

u
In ANCI
r=fity
sinr =sin 8 +siny

If fand yare very small, then we have
NM+NM_NM+NM__NM~NM
P CP —-v R R v
sinr = NM («I- Hl} mowumne (3)

R v

Putting (2) and (3) in:(1)} we have
1 1 I 1

|2 g NM | =L
#zNM[R u) ﬂ1. (R ]

sinr=

v
B th _th
R u R v
o K _ B A
v u R R
My + Hy My
v oou R
Note:
—H
(1) When object lies in rarer medium, we have — :"_;L + % = EZ—R—'-
p —
(2) When object lies in denser medium, we have — ﬁv’— + -%— = WLRE&

AP
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Lens maker’s formula:

Let us consider the upper half of the lens which is equivalent to a prism. Its refracting angle is
at the top. Let OM be the incident ray and NI be the emergent ray. AP and AQ are tangents at
M and N respectively.

In AEQ],

The angle of deviation3 =08 +y

For small angles@andy, 6 =tan @ and y=tany

Sd=tan@ +tany
0ra=i+-’i=h[l—l)=3'— S
R v u; f

But we know that
S=(u-DA=(u~1a+f) = (2)
Let ML = NS = h, and also for small angles ¢ and B, e =sina and B=sinp

a+ﬁ=sina+sinﬁ=%+j%z— aammean (3)

Where R, and R, are the radii of curvatures.
Putting equations (1) and (3) in equation (2) we have

h h h
s
/ R R
1 11
S =(ﬂ"1)[‘—"‘"—}
f Rl RZ
Rules for drawing images formed by Spherical lenses:
A A
‘ . , Y‘

< of P < ¢ F X =
! /
i

CONVEX LENS {CONCAVE LENS
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B B
CONVEX LENS CONCAVE LENS
A " A

CONVEX LENS CONCAVE LENS
Formation of images by Spherical lenses:
A
F. F
o 3F, }
B
CONVEX LENS
Object beyond 2F. The image is
(i) Between F and 2F (ii) real
(iii) Inverted (iv) smaller
A
F, 2F,
2F, 1 ]
B
CONVEX LENS
Object at 2F. The image is ]
(ii) real

(i) at 2F . .
(iii) Inverted (iv) same size

w
Page 315

Geometrical Optics



F, _2F, |
F, O F, 0,
B
CONVEX LENS
Object between 2F and F. The image is
{1} beyond 2F (ii) real
(it) Inverted (iv) larger
A
O
2F, F, O \ o
I .
B
CONVEX LENS
Object at F. The image is
(1) at infinity (i) real
(iii) inverted (iv} larger
\\\\\\\\\ A
I \\ ™
O
2F, F, (O \
. B
CONVEX LENS
Object between F and O. The image is
(i) behind object (ii) virtual
(iit) erect (iv) larger
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CONCASE LENS
Object in any position. The image is
(i} In front of object (ii) virtual
(i) erect (iv) smaller

Thin lens formula for a convex lens when it forms a real image:

CONVEX LENS

Consider an object QA placed perpendicular to the principal axis of a thin convex lens
between F; and C,. A real, inverted and magnified image IB is formed beyond C, on the
other side of the lens.

AAOP and ABIP are similar triangles.

A0 OP -—u

JAO_OP M D)

"BI P v
Also ANPF; and ABIF, are similar triangles.
NP_FP__RP _ f

S—= = = (2}
BI FI IP-FP v-f
“NP=A0

Equating equation (1) and equation (2) gives
Tu_ S

v ov-f

~uv+uf =vf
Divide both sides by wvf we have _
wo o IR I
wf wyf uvf f v u
LU

v u f

This proves the lens formula for a convex lens when it forms a real image
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Thin Iens formula for a convex lens when it forms a virtual image:

2
G, I FO |P G,
l” f\.

CONVEX LENS
Consider an object OA placed perpendicular to the principal axis of a thin convex lens
between F; and P. A virtual, erect and magnified image 1B is formed on the side of the object.
AAOP and ABIP are similar triangles.
A0 OP -u u

AQ _OP _ZU U ()

"BI IP -~y v
Also ANPF; and ABIF; are similar triangles.
NP _FEP FP

"Bl F IP+FP ~v+f @
NP =AQ
Equating equation {1) and equation (2) gives
v S
v -v+ f
—uw+uf =vf
Divide both sides by uvf we have
w W _ SRR N N 1
uvf wf  uvf f v u
1_1_1
v ou I

This proves the lens formula for a convex lens when it forms a virtual image

Thin iens formula for a concave lens when it forms & virtual image:

* CONCAVE LENS

Consider an object OA placed perpendicular to the principal axis of a thin concave lens. A
virtual, erect and diminished image IB is formed on the side of the object.

AAOQOP and ABIP are similar triangles.
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A0 _OP -u u
i D T ——'L 3

"Bl IP -v ¥
Also ANPF; and ABIF; are similar triangles,

NP _RP_ REP _ -f -f

"Bl ORI FRP-IP —f—(~v) -f+v )

NP = AQ

Equating equation (1) and equation (2) gives

u_~f

v——f+v

~uf +uv=-vf

Divide both sides by uvf we have

_uf+uv =_vf - __1_+i=__1_
wf wf wf v f u

L

v ou f

This proves the lens formula for a concave lens when it forms a virtual image

Linear magnification:
The linear magnrification produced by a lens is defined as the ratio of the size of the image
formed by the lens to the size of the object. It is denoted by m. Thus
_ sizeof theimage _ 4,
size of the object A

Linear magnification for a convex lens:

CONVEX LENS

The linear magnification of a lens can be expressed in terms of object distance » and image
distance v.
AAOP and ABIP are similar triangles.

(BL_IP
40 OP
—_hz=+v _—__>—&—"_.—--1
+h  -u b u
'.ln'--=£'=~‘i

h u

gty

Geometrical Optics Page 319



Linear magnification for a concave lens:

A >
B-”
ks N F,
Cl o Fl » P C2
CONCAVE LENS

AAOP and ABIP are similar triangles.
B _IP
"AO0 oOP

thy_ v _h_y

+h -u h u

h

am=—==

U

Linear magnification in terms of u and f':
1 1 1

v ou f
Mulitiplying both sides by u, we get
i 1 1 u u
— U= U=m— U ——l==
v u f v
£=2+£=f+u
v S f
m:«-‘iz f
u f+u

Linear magnification in terms of v and /:
P11

v ou f
Multiplying both sides by v, we get
1 1 i v v
—p——y=—-y - —=—
v u f u f
Yogr_fov
u rf
m=£=f_v
u f

Power of lens: The power of a lens is defined as the tangent
of the angle at which it converges or diverges a beam of light
falling at unit distance from the optical ceatre. CONVEX LENS
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Smaller the focal length of the lens, more is the ability to bend light rays and greater is its
power.

Or
The power of a lens may also be defined as the reciproca of its focal length
Clearly tans =
f
Ifh=1, then tand = spal
S S

If f=Im, then P= fl_ = idioptre (D)
._ m

Combination of thin lenses in contact:

CONVEX LENS
Let L1 and Ly be two thin lenses of focal length f; and 1 respectively. Let O be a point object
on the principal axis of the lens system.
The first lens L, will form reat i image I’ of O. Using thin lens formula we have
SN DO

(1)

S, v ou

-
L.
-
-

-
-
haedl 9P

\

"r

CONVEX LENSES
The image I’ acts as the virtual object (u = v*) for the second lens L, which finally forms its

real image 1.at distance v. Thus
I B

mml

i = = = msmmenmemneneena (2)
£, v ¥
Adding equation (1) and equation (2) we get
IR S N S S &
L, vow vy '
i 5 = L S (3)
L /R v u
If fis the equivalent focal length, then |
LIl
f v u

w
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From equation (3) and equation (4) we find that
1 1 1

A

.. Equivalent Power, P=P; + P,
For n thin lenses in contact, we have

1t 1 1 i
=—t—t—t..—

P A A

.. Equivalent Power, P=P, + P, +P; +.. P,

Prism: A prism is a transparent medium bounded by the
three plane faces. Qut of the three faces, one is grounded
and the other two are polished. The polished faces are
called refracting faces. The angle between the refracting
faces is called angle of prism, or the refracting angle. The
third face is called base of the prism.

Refraction of light through a Prism:

The figure shows the cross section of a
triangular prism ABC, placed in air. Let A be
the refracting angle of the prism. A ray of
light PQ incident on the refracting face AB,
gets refracted along QR and emerges along
RS. The angle of incidence and refraction at

the two faces are I, }, r; and i, respectively.
The angle between the incident ray PQ and
the emergent ray RS is called angle of deviation, &.
In the quadrilateral AQOR, we have
A+ ZAQO + 0+ LARQ = 360°
Or A+90°+ O +90°=360°
Or A+0+180°=360°
Or A+0= 360°-180°
Or A+0=180° -mmmmmmmmmeeeee (1)

In the triangle QOR, we have
ri+0+r=180% oo (2)
Equating equation (1) and equation (2} we have
rn+04+r=A+0
_ Or 1 +ry3= A cememeemeemennaes 3)
In the triangle EOR, we have
ZREF = ZEQR + ZERQ
Or §=(@i-rpy+{iz2—-r)
Or 8= +i)—(r+nr)
From equation (3) we have
5= (li + 12) —A
Or i} +i3=6+ A ceeoemecmnre- 4)
At minimum deviation,
, ri=ra=r and i+i=i |
_ :
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- From equation (3) we have 2r=A or r =%

And from equation (4) we have 2i=8+ A or i= S+A

. . sinj
The refractive index is yg=—-—
sinr

S+ A

sin 5
CHTTTTA
sin—
_ 2
Angie of deviation in a prism (5): The angle between the emergent ray RS and the direction
of the incident ray PQ is called the angle of deviation, 4.

Angle of minimum deviation in a prism (3, ): The angle between the emergent ray RS and
the direction of the incident ray PQ is called the angle of deviation 6. At minimum deviation
&n, the refracted ray inside the prism becomes parallel to its base.

Plot of angle of deviation (J ) versus angle of incidence
(i ) for a triangular prism:

As the angle of incidence i gradually increases, the angle
of deviation & decreases, reaches a minimum value &y,

and then increases. &, is called the angle of minimum
deviation. It will be seen from the graph that there is only

one angle of incidence i, for which the deviation is &
minimum.

2

Angle of deviation &

cu

-
v

A
Angle of incidence |
Deviation produced by thin Prism:
If uis the refractive index of the prism material, then according to sneli’s law,

LS _h si=pr
sinz, »,
sini, i ,
Similarly y=—2=-1 =D, =un
sinr, 7,

Now S+A=01+i
S+A=pur+ur=u{ri+r)

O+A=puA
Or d=uA-A
Or§=(u~1)A

Thus the deviation & produced by a thin prism depends upon the refractive index y of the
prism material and the angle of the prism A.

Note:
d=(u-1A for small A up to 10°
§=(,+i)~-A for A greater than 10°
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Dispersion of white light: Dispersion is the splitting of white light into its constituent
colours. This band of colouss of light is called its spectrum.

In the visible region of spectrum, the spectral lines are seen in the order from violet to red.
The colours are given by the word VIBGYOR (Violet, Indigo, Blue, Green, Yellow, Orange
and Red)

Dispersion takes place because the refractive index of the material of the prism is different
for different colours (wavelengths). The deviation and hence tke refractive index is more for
violet rays of light than the corresponding values for red rays of light.

Angular dispersion: If §, and J, are the deviations
produced for the violet and red rays and g, and u,
are the corresponding refractive indices of the
material of the small angled prism then,

For violet light, &,= (14, - 1) A
Forredlight, 4 ={u —-DA
L&=&=( -DA-( - DA
S=&=(m—u)A
The angular separation between the two extreme colours (violet and red) in the spectrum is
called the angular dispersion.
.. Angular dispersion =&, - &

Angular dispersion depends upon
(i) angle of the prism and
(ii) nature of the material of the prism

Dispersive power: Dispersive power is the ability of the prism material to cause dispersion.
It is defined as the ratio of the angular dispersion to the mean deviation.

. Dispersive power = gngu!ardls;.aet:swn
mean deviation
_6,-6, =t
S u—l

Nete: The dispersive power @ of a prism depends only on the nature of the material of the
prism. However, angular dispersion and mean deviation both depend on the nature of prism

material and the angle of prism.

Scattering of light: When a beam of light falls on an atom, it causes the electrons in the atom
to vibrate. The vibrating electrons, in turn, re-emit light in all directions. This process is
called scattering.
According to Rayleigh law, the intensity of scattered light (/) varies inversely as the fourth
power of the wavelength of light i.e.,

I

P -;iT
Blue colour of the sky: As sunlight travels through the earth’s atmosphere, it gets scattered
by the atmospheric particies. Light of shorter wavelengths is scattered much more than light
of longer wavelengths. Hence, the bluish colour predominates in a clear sky, since blue has a
shorter wavelength than red and is scattered much more strongly.

m;
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Reddish appearance of the sun at sunrise or sunset: At sunrise or sunset, the sun's rays
have to pass through a larger distance in the atmosphere. Most of the blue and other shorter
wavelengths are removed by scattering, The least scattered light reaching our eyes, therefore,
the sun looks reddish. This explains the reddish appearance of the sun and full moon near the
horizon,

The Human eye: The closest point at which the object is seen most clearly without strain is
called the near point of the eye. This limiting distance is known as, least distance of distinct
vision (D). For an adult with normal eye, this distance is taken to be 25 ¢cm by convention.

Defects of vision and their correction:

Myopia Hypermwtropla
Divinmt Object Near Object @
by } nt of reti Light focused behind
Light focused in front of retina e et
- @
focused on the retisa
o Light jocased ou the retine
Correctad with concave jens Correctad with convex lens

In addition to myopia and hypermetropia, there are also other types of defects in human eye.
These are presbyopia and astigmatism.

Simple Microscope or Magnifying Glass: A simple microscope or a magnifying glass is
just a convex lens of short focal length, held closed to the eye.

Principle: A simple microscope is based on the principle that a converging {ens can form _
magnified images when the object is inside the focal length of the lens. The image formed is

virtual, erect and magnified.

B
When image is formed at the near point: When * .
an object OA is placed between the focus E; and W
the optical centre P of the convex lens, a virtual, k “N

erect and magnified image IB is formed behinfl
the object. The image is seen most clearly when it
is at the near point. .

C; I poO |P \ G,
f-v s} f

v
Magnification m = 5 = 7 =1- .f_

Here v=-D

#
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.'.m=l—£=1+2

f !

When image is formed at infinity: When an object OA is placed at the focus F, of the
convex lens, a virtual, erect and magnified image IB is formed behind the object.

Magnification m=—==~——=]-— A I
u f f \ “\\N
Here v=w=-D -~
-D D _
m=l-——=1+—
f f F; ¥
C o C
“ D>> f thus ?>>I ; 8 \f\‘\. ;
D 3
Som=—
S

Note: The maximum angular magnification is produced when the image is at the near point
and minimum angular magnification is produced when the image is at infinity.

Uses of magnifying glass:

(i} Jeweliers and watch makers use the magnifying glass to obtain a magnified view of tiny
parts of jewellery and watch parts.

(it) In science iaboratories, a magnifying glass is used for reading vernier scales etc.

Compound Microscope: A compound microscope makes use of two converging enses,
Therefore, its magnifying power is much greater than that of the simple microscope. The lens
nearer to the object is called the objective lens and forms a real image of the object. The lens
through which the final image is viewed is called the eyepiece. The image formed by the
objective lens becomes the object for the eyepiece.

Principle: A compound microscope is based on the principle that a converging lens can form
magnified images in the following two ways.
{i) When the object is inside the focal length of the lens, the image formed is virtual, erect

and magnified as in a simple microscope.
(if) When the object is between the focal length f, and 2f, from the lens, the image formed is
real, inverted and magnified.

m
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When image is formed at near point:

v.
A
- o,
= F, 2F, 1 &
2F,0 F, . 3 ‘
......._“.f_.
B/ —
f( "
i .
P '¢'
’ . o
v - -
. - e
s ’-_,-
AT RNIEE L -
Y Y §
------- - "-“:’ ’ D []

Magnification m = v—"(l + 2}
w\ L

Since the focal length of the objective lens is very small, u, » f,. Again the focal length of
the eyepiece is also very short so thatv, ~ L where L is equal to the length of the microscope

tube.
m= -{1—(1 + 2}
fO -f;

When image is formed at infinity:

a

Magnification m = v—"(l + —Q} -
u, A
P D
At infinity, D = o, s0 —>>1
' ng-—jh.x.gz
Also ms= £~ Y4 ..2
fo L

#
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Astronomical Telescope: An astronomical telescope is used for seeing heavenly bodies such
as sun and stars. The astronomical refracting telescope consists of an objective lens of long
focal length f, and an eyepiece lens of short focal length f.. Both lenses are converging.

Final image at the near point:

Objeyy
T

Fmalj

Objective lens Eyepwce lens
Tr‘,_-.'
Magnification m = —‘{‘i[i + A J
S D
Final image at infinity (i.e., normal adjustment):
J‘; QA..A..“);“,_“_““

g,‘@‘cp ,-""'Il‘:,;epiece jens
QObjective lens \‘\6‘1’%
e
Magnification m = lﬁ(} + 1"—)
/. D
At infinity, D=0, s0 % <<}
wom=le
S

Length of tube of the telescope L= f, + f,

L
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PHYSICAL QPTICS

‘Wavefront: Particles of a light wave which are equidistant from the light source and vibrate
in the same phase constifute a wavefront.

Or
A wavefront is the locus of points (wavelets) having the same phase of oscillations.

Wavefronts 57 aliggeen

(m’(
(e

aftertime ¢
Wavelet: A wavelet is the point of disturbance due to propagation of light.

Ray: An arrow drawn perpendicular to a wavefront in the direction of propagation is called a

ray'.
Ray Wavefronts

Spherical wavefronts Plane wavefronts

Types of wavefront: A point source of light at a finite distance in an isotropic medium (a
medium in which the waves travel with the same speed in all directions) emits a spherical
wave front (figure a). A point source of light in an isotropic medium at infinite distance will
give rise to plane wavefront (figure b). A linear source of light such as a slit illuminated by a
lamp, will give rise to cylindrical wavefront (figure c).

° Ray Ray Ray
: ey
o i

(a) ) (c)

L 4
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A spherical wavefront can be converging or diverging.

Converging wavefronts Diverging wavefronts

Refraction of a plane wave by a thin prism, a convex lens and Reflection of a
plane wave by a concave mirror:

y
v v ¥ ¥ W

> Wavefranty
Wavebonis Wavefonts ¥
. Comes i Concave mimar
Huygen’s principle:
According to Huygens’ principle,
1) Each and every point on the Primary wavefront -Secondary wavefront
given wavefront, called “primary N Or Primery wavelet
wavefront,” acts as a source of new y
TNt Secondary wavelets

disturbances called “secondary
wavelets” that travel in all
directions with the velocity of light
in the medium. :
2) A surface touching these Swﬁih:m
secondary wavelets tangentially in

the forward direction at any instant

gives a new wavefront at that

instant, which is known as the

secondary wavefront.

Note:

i) Every point in the primary
wavefront serves as the source of _ ' -
spherical secondary wavelets, such that the primary wavelet at the later time is the envelope
of these secondary wavelets.

if) Backward wavefront is rejected. Why?

Amplitude of secondary wavelet is proportional to % (I+cos#). Obviously, for the backward
wavelet § = 180° and (1+cosf) is 0. So the amplitude of the backward wavefront is zero.

L ___________________________________ ./
Physical Optics Page 330



Laws of Reflection at a Plane Surface base on Huygens' Principle;

if ¢ be the speed of light in air, 1 be the time taken by light to gofromBtoCorAtoDorE
to G through F, then

=E+.P£ ;N ;N
c Fof t 1
(= AFsini+ FCsinr ; .
< ¢ ': ’
(= AFsini+ FCsinr
c

= AFsini+(AC - AF)sinr

c
. AFsini+ ACsinr — AFsinr
S
(= ACsinr + AF(sini—sinr)

¢
For rays of light from different parts on the incident wavefront, the values of AF are different.
But light from different points of the incident wavefront should take the same time to reach
the corresponding points on the reflected wavefront.
So, ¢ should not depend upon AF. This is possible only if
sini-=sinr=0.
ie, sinf=sinr or i=r

Laws of Refraction at a Plane Surface base on Huygens® Principle:

If ¢ be the speed of light in air, v be the speed of light in the medium, ¢ be the time taken by
lightto go fromBtoCorAtoDorE
to G through F, then

EF FG
f=——
c v
AFsini FCsinr
1= +
¢ v
‘= AFsini+(AC—AF')sinr
c y
(= AFsini . ACsinr AFsinr
¢ v y
;- ACsinr +Ap[m_smr)
y ¢ v

For rays of light from different parts on the incident wavefront, the values of AF are different.
But light from different points of the incident wavefront should take the same time to reach
the corresponding points on the refracted wavefront.
So, ¢ should not depend upon AF. This is possibie only if

sinj sinr

o =0
c v
sini sinr
Or —=—
c y

m
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sini ¢
Or —=—-=yu
sinr v

Coherent sources of light: Sources of light that emit continuous light waves having same
wavelength, same frequency, and in same phase or having a constant phase difference are
known as coherent sources of light.

Two independent sources of light cannot be coherent. Two coherent sources of light can be
obtained from a single source of light, by reflection, refraction, etc.

Coherent sources can be produced by two methods:

1) By division of wavefront (Young’s Double Slit Experiment, Fresnel’s Biprism and Lloyd™:
Mirror)

2) By division of amplitude (Partial reflection or refraction)

Incoherent sources of light: When the phase difference between the two vibrating sources
changes rapidly with time, the two sources are known as incoherent sources of light.

Interference of light waves: The redistribution of light energy on account of superposition
of light waves from two coherent sources of light is known as interference of light.

Constructive interference: For
constructive interference at a point, the
phase difference between the two waves
reaching that point should be zero or an
even integral multiple of n. In other
words, the path difference between the
two waves reaching the point should be
zero or an integral multiple of
wavelength .

Destructive interference: For
destructive interference at & point, the
phase difference between the two
waves reaching that particular point
should be an odd integral muitiple of n.
In other words, the path difference Destructive Interference E =E, - E,
between the two waves reaching the

point should be an odd integral multiple of half-wavelength A/2.

Theory of Interference of Waves Or Analytical treatment of interference:
The waves are with same speed, wavelength, frequency, time period, nearly equal
amplitudes, travelling in the same direction with constant phase difference of ¢, w is the
angular frequency of the waves, a, b are the amplitudes and E., E; are the instantaneous
values of Electric displacement.

E, = a sin wt

Ey= b sin (o + §)
Applying superposition principle, the magnitude of the resultant displacement of the waves is

E=E+E

E=asinot+bsin(wr+¢)
T e e e
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E= asin of + bsin of cos ¢+ b cos o sin ¢
E=(a+ bcos ¢) sin of + b sin ¢ cos f

Putting @+ 5 ¢os.¢= 4 oS @ --wnmmmeun(1)
bsin ¢= A sin @ omeevenea(2)
We get E= A sin{at+ 6§)
where E'is the resultant displacement, 4 is the resultant amplitude and 8 is the resultant phase
difference.
Squaring and adding equation (1) and equation (2) we have
(A cos 8) + (4 sin 6y =(a+ b cos @ + (b sin o’
A* (cos’ 6+sin’ 8) = a® + b% cos® ¢+ 2 a bcos g+ b sin’ ¢
A =d* +2abcos g+ b’ (sin’ ¢ + cos® ¢)
Al=ag*+2abcos o+ b
LA= Jaz +b?+2abcos ¢
Dividing equation (2):by equation (1) we have

Asin@ _ bsing

Acosf@  a+beosg

(anf = bsing

a+bcosg
~8=tan”! M
a+bcosg

Intensity I is proportional to the square of the amplitude of the wave:
T A7
s laat+b +2abcosd

Condition for Constructive Interference of Waves:
For constructive interference, I should be maximum which is possible only if cos ¢= +1
wlwa® +b*+2abcosg Constructive Interference
I, ca +b’ +2ab={(a+b}

o p=2nm wheren=0,1,2,3,.
And the corresponding path difference is

A ¢ A
A 2 27?¢
A
Or =-——2n7 = RA
2r

Condition for Destructive Interference of Waves: o _ .
For destructive interference, / should be minimum which is possible only if cos ¢=-1

clea’+b* +2abcosd

] . xa’ +b?-2ab=(a~b)

;. ¢=Q@n-1n wheren=12, 3.
And the corresponding path difference 1s

M
Page 333

Physical Optics



é,_‘;_ :9A=—'-?”—¢
A 27z ir

Or A=Q@n-Dr=@n-H2*
27 2

Comparison of intensities of maxima and minima:

Jasd) [[3”)]
]m {a—-b) [b(g IH
Lw,bz( )2 (§+l]1 (r+1)
)

a. . .
Where r = 3 is the ratio of the amplitudes.

Resultant Intensity Ig:
A'=a’ +b* +2abcosg
wlca® and I, b’
l,=A"=a’ +b" +2abcosé
ly=1+1,+2I I, cosé
If I,=1,=1, and I, =1 then
1=!0+10+2,/1 I, cosg =21, +21,cos¢ =21,(l1+cosg)

I=21 (2(:052 ¢) 4], cos’ = ¢
2 2

The intensity of bright points is 4/,and at dark points is zero. Therefore the average intensity

is 1, = 410(%) =21,

Note: °~sin’@+cos®@ =1, Therefore the average value of sin’8 and cos’ @ is -%

Relation between Intensity (/), Amplitude (a) of the wave and Width (w) of the slit:

...Iaca2

And axw =alaxw
el _w
”!z “‘7"22 h“’z

e e
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Young’s Double Slit Experiment: The waves from S, and S, reach the point P with some
phase difference, and hence path difference is

A= Szp - S;P
U (SPY = D+ {y + (&)}
And (SP)’ = [D?+ {y - (/2)}"]
(S2PY - (SiPY = [D? + {y + (@/2)}*] - [D? + {y - /2)}}}]
(S;P — S;PY S3P + $1P) = [D? + [y + (d/2) + 29(d/D)}] - [D? + {y? +{d/2)* - 2y(d/2)})
A(S:P + 8Py =DM+ ¥ +(d/2)* + 2y(d/2) ~ D ~ y* - (d/2)* + 2y(d/2)
A ( S;P + §P) = 2y(d/2) + 2y(d/2)
A(S;P+8P)=2yd
Ifd<<D then S;P=8P=D

~A(2D) = 2yd
Or . A= —)E
D
Positions of Bright Fringes:
For a bright fringe at P,
Az%qznﬂ. wheren=0,1,2,3, ...
d [

For »n=0, y,=0 central bright fringe (zero order bright fringe)
n=1, y= %’l first bright fringe (first order bright fringe)
n=2, y,= 2D4 second bright fringe (second order bright fringe)

d
n=3 y,=2%  third bright fringe (third order bright fringe)
L] = d
n=n, y,= nbA - bright fringe (n™ order bright fringe)
) ” d

w
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Positions of Dark Fringes:

For a dark fringe at P,
:&:—)ic-i-=(2n-l)i wheren=1,2,3, ...
D 2
y= (2n-1Hbi
2d
DA i .
For n=1, vy = 57 first dark fringe (first order dark fringe)
DL ' ) .
n=2 y,= > second dark fringe (second order dark fringe)
5DA . . . .
n=3 y,= EYi third dark fringe (third order dark fringe)
n=ny, = Q%é)gi n® dark fringe (n' order dark fringe)

Expression for Bright Fringe Width (5, )
_@2n=1Di_ 2(n-1-11DA

ﬂbﬁm =¥u ~¥Yna 2d °d ‘_Iﬂbridn‘T Yo~ Yo
_(2n-1Di (2n-3)Di n

b =5 4
_2nDi DA (2nDi 3Di

M'“‘ir?g'(?'aj o

8 _Di 3Dk

e T od 2d

.ﬁm_%"

Expression for Dark Fringe Width ( 5, ):

o .. _nhDAi_(a-1Di
Bux =Ye ~You 7 4
5 2&[_9&_%)
k4 d d

D
ﬂm“_d"“

In Young's interference pattern, dark fringes are situated
in-between bright fringes and vice-versa. All the bright
and dark fringes are of equal width. -

Note: When we use white light instead of monochromatic source of light then the
interference fringes will be coloured and the central maximum will be white in colour.
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Distribution of Intensity:

Suppose the two interfering waves have same
amplitude say ‘a’, then
Inex 0 (@ + 0¥ te., Insadd

All the bright fringes have this same intensity.
Inin=10

All the dark fringes have zero intensity.

Interference pattern: The pattern of bright and dark fringes on the screen is called an
interference pattern.

Conditions for sustained inteMerence:

1) The two sources producing intérference must be soherent.

2) The two interfering wave ttains must have the same plane of polarisatien.

3) The two sources must be very close to each other and the patiern must be observed at a
larger distance to have sufficiemn width of the fringe.

4) The sources must be monochromatic. @therwise, the fringes of d:ﬂ'erent colours will
overlap.

5) The two waves must be havmg same amphtudc for better contrast between bright and dark
fringes.

Diffraction of light:
Fhe phenomenon of bending of light around the corners and the encroachment of light
within the geometrical shadow of the opaque obstacles is called diffraction.

Shadow
Source Source Shadow
-
Types of diffraction:
Diffraction of light is of two types viz

(1) Fragnbofer diffraction: In the Fraunhofer diffraction, the source and the screen are at
infinite distances from the obstacle producing diffraction. Hence in this case the wavefront
undergoing diffraction is plane. The diffracted rays which are parallel to one another are
brought to focus with the help of a convex lens.

(2) Fresad diffraction: In the Fresnel diffraction, the source and the screen are at finite
distances from the obstacle producing diffraction. In such a case the wave front undergoing
diffraction is either spherical or cylindrical.

Diffraction of light at a single slit (Frannbofer diffraction):

(1) At an angle of diffraction 8 = 0°:

o ____________________________________________________|]
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2

O Bright fringe

\ A A A AR AN

g

Plane s}y ' Db
Wavefront

Screen

The wavelets from the single wavefront reach the centre O on the screen in same phase and
hence interfere constructively to give Central or Primary Maximum (Bright fringe).

(2) At an angle of diffraction 8 = 8;:
The slit is imagined to be divided into 2 equal halves.

A
. v; >» P, Dark fringe
di 40 Bright fringe
‘ Y gh fring
e
Plane  s}it ! D
Wavefront Screen

The wavelets from the single wavefront diffract at an angle &, such that BN is A and reach the
point P,. The pairs (0,6), (1,7), (2,8), (3,9), (4,10}, (5,11) and (6,12) interfere destructively
with path difference A/2 and give First Secondary Minimum (Dark fringe).-

(3) At an angle of diffraction § = 6.:
The slit is imagined to be divided into 4 equal parts.

w:
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f

Plane
Wavefront

Screen

The wavelets from the single wavefront diffract at an angle #, such that BN is 2), and reach
the point P. The pairs (0,3), {1,4) (2,5), (3.6), {4.7), (5.8), (6,9), (3,10), (8,11} and {9,12)
interfere destructively with path difference A/2 and give Second Secondary Minimum (Dark
fringe). , : )

(4) At an angle of diffraction 8= 8,":
The slit is imagined to be divided into 3 equal parts.

Plzme Sﬁt Y D
Wavefront

Screen

The wavelets from the single wavefront diffract at an angle ;" such ¢hat BN is 30/2 and reach
the point P,*. The pairs (0,8), (1,9), (2,10), (3,11) and (4,12) interfere constructively with path
difference A and (0,4), (1,5),(2,6), ...... and (8,12)interfere destructively with path
difference A/2. However due to a few wavelets interfering constructively First Secondary
Maximum (Bright fringe) is formed.

{2000
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Diffraction at various angles: Central Maximum is the brightest fringe. Diffraction is not
visible after a few order of diffraction.

. R'BERFPE O RRBEPE

1

Fraunbofer diffraction:

Theory: The path difference between the top wavelet and the bottom wavelet is BN,
If 8 is the angle of diffraction and ‘d’ is the slit width, then BN = d sin &

Plane-}

Wavefront

To establish the condition for secondary minima, the slit is divided into 2, 4, 6, ... equal parts
such that corresponding wavelets from successive regions interfere with path difference of
2/2. Or for n™ secondary minimum, the slit can be divided into 2n equal parts.

For 3], d sin 6} =}

For @;, d sin6; =2\

For @, d sin 8, = nl

Since 8, is very small,
d Gy =nk
G=mrh/d (=123,.... )

To establish the condition for secondary maxima, the slit is divided into 3, 5, 7, ... equal parts
such that corresponding wavelets from alternate regions interfere with path difference of A.
Or for ™ secondary maximum, the slit can be divided into (2n + 1) equal parts.

For 8,°, dsin 8," =302

For &, d sin @y =502

For 8,’, dsin 8y’ =(2n+ 1)A2

Since ;' is very small,

g
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d6’=(2n+1A/2
8’ =Qn+ip/2d (n=1,23,..... )

Width of Central Maximum (B cotra) mazimum):

P, Dark fringe
Y1
| YO Bright fringe
Plane) : y
Wavefront - Shit D Soreen
tan 8, = vw/D
or 8=y, /D (since 8 is very small)
d sin 3[ =)
or§=A/d (since 8 is very small)
D d "=
Since the Central Maximum is spread on either side of O, the width is
2DA '

 en—

Angular width of the central maximum (@eeacrst maximnm):

4P, Dark fringe
Al---.......-..---..------.-.-..--A---- .............................. yl
di f:onriguﬁ-mge

Plane ) Bt .............................................................. Y

Wavefront Stit P ? ul’;M fringe
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Y A and y, =Dtané,
A af A
Dt&nﬂ,—-——- ::}ta,n61=:i- Or9;=tanl(‘—{‘)
aJGmmlMammum 295

Note: Wavelength of lightis A =dtang, or A =dsiné,

Position of the secondary minima from the central point (Q): As shown in the figure

P, Dark fringe
¥
OBright fringe
Piane) )
Wavefront  Sht Sereen
tan 8, =y, /D
or 8,=y,/D (since &, is very small)
dsin 8, =ni
orf,=nk/d (since 8, is very small)
Yo_mh . _mDi
D d =74
.. _2D4 _3DA _4DA
Y2 a4 ¥y a4 Ya a
Position of the secondary maxima from the central point (O): As shown in the figure
P*, Bright fringe
Y
4 ¥©O Bright fringe
lee} ; )
Wavefront  Slit Screen
tan 6y =y, /D

or 6y =y, /D (since 8, is very small}
dsin Gy = (2n + 1)M/2

L |
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oré'=(2n+1)A/2d  (since 8, is very small)
Yo _Q@n+1 . _(2n+1)AD

D 2d =T
. = 3D . _5D2 . _ DA
= {1 7d ) 2d i= Ty
Difference between Interference and Diffraction:
Interference Diffraction
1 | Interference is due to the Diffraction is due to the superposition of

superposition of two different wave |secondary wavelets from the different
trains coming from coherent sources. [parts of the same wavefront.
2 | Fringe width is generally constant. | Fringes are of varying width.

3 ( All the maxima have the same The maxima are of varying intensities.
intensity.

4 | There is a good contrast between the | There is a poor contrast between the
maxima and minima. _ . maxima and minima.

Polarization: The phenomenon of restricting the vibrations of light to a single plane is
known as polarization of light.

Polarization of Light Waves: When unpolarised light is incident on the polariser, the
vibrations parallel to the crystaliographic axis are transmitted and those perpendicular to the
axis are absorbed. Therefore the transmitted light is plane (linearly) polarised.

The plane which contains the crystallographic axis and vibrations transmitted from the
polariser is called plane of vibration.

The plane which is perpendicular to the plane of vibration is called plane of polarisation.

Plane of Vibration Plane of Polarisation

Iy2 Iy2
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Malus’ Law: According to law of Malus, when a beam of plane
polarized light is incident on the analyser, the intensity of light /
transmitted from the analyser is directly ptoportional to the
square of the cosine of the angle & between the planes of
transmission of the polarizer and analyser. If the transmission
axis of an analyser is oriented at an angle & relative to the
transmission axis of the polarizer, Malus” Law is given by
I=1,cos’6
where 7, is the average intensity of the light entering the analyser.

Casel : When8=0°r180° JI=4

Casell : When8=90°, /=0

CaseIll:  When unpolarised light is incident on the analyser the intensity of the
transmitted light is one-ha!f of the intensity of mczdem light.

(Since average value of cos 29is )

Polarisation by Reflection:

The incident light wave is made of
paralle]l vibrations (r — components) on
the plane of incidence and perpendicular
vibrations {6 — components)
perpendicular to plane of incidence.

At a particular angle 8y, the perallel
components completely refracted,
whereas the perpendicular components T T

partially get refracted and pantially get Unpolarised
reflected, i.e., the reflected components light
are ali in perpendicular piane of vibration

and hence plane polarised. The intensity of wransmitted light through the medium is greater
than that of plane polarised (reflected) light.

Polarised

Unpolarised light

light

Note:
The reflected light is completely plane-polarized in a direction perpendicular to the plane of
incidence.

Polarizing angle: The angle of incidence at which the reflected light gets completely plane-
poiarized is called polarizing angle.

Brewster’s Law:
According to Brewster’s law, when unpolarized light is incident at polarizing angle on the

interface separating air from a medium of refractive index 4, the reflected light is fully
polarized provided the refractive index of the medium is equal to the tangent of the polarizing

angle i.e.,
o Hy =t2nb,
6, +r=90°
r=90°-6,
sinf,

Hy =—
¢ sinr

g
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sing,
sin(90° - 4;)
_siné,
ot = oo e
oy = tan &,

a)ub =

Polaroldr

H - Polaroid is preptared by takmg a sheet of polyvinyl afcohof (fong chin polymer
molecules) and ‘subjecting to a tasge strain. The molecules are oriented parallel to the strain
and the material becomes doubly refracting. When strained with iodine, the material behaves
like a dichroic crystal.

K - Polaroid is prépared by heating a stretched polyvinyl alcoho] film in the preseace of HC/
(an active dehydrating catalyst). When the film becomes slightly darkened, itbehaves like 2
strong dichroic crystal.

Uses of Polaroids!

1) Polaroid Sun Glasses

2) Polatvid Filters

3) For Laboratory Purpose

4) In Head-light of Auternobiles

5) In Fhree -~ Dimensiondl Motion Pictures
6) In Window Panes

7) In Wind Shield in Automobiles

Resolving power: The power or ability of an optical instrument to produce distinctly
separate images of two closely spaced objects is known as resolving power of the optical
instrument.

Rayleigh Criterion: According to Rayleigh, two point objects A and B will be just resolved
when the central maximum of diffraction pattern of object B lies on the first secondary
minimum of diffraction pattern of object A.

{5 s A ey
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Photoelectric Effect: When a ciean metallic surface is irradiated by monochromatic light of
suitable frequency, electrons are emitted. This phenomenon of ¢jection of electrons from
metal surface is called photoelectric effect.

The ejected electrons are called photoelectrons and the current constitated by photoelectrons
is known as photoelectric current.

Hertz and Lenard’s Observations of Photoelectric Effect:

The experimental setup shown in the -
figure was used to study the w p™ Incident
photoelectric effect experimentally. In
an evacuated glass tube, two zinc p= pon
plates C and D are enclosed. Plate C L '—:‘H'_')ﬂ——
acts as the collecting anode and plate D  fhowoclectrons ©

D acts as the photosensitive plate. The -
two plates are connected to a battery

B and an ammeter A. If the radiation ‘
is incident on the plate D through a 7N bl
quartz window W, electrons are Y, _ 'HH!E HH:

ejected out of the plate and current

flows in the circuit. The piate € can be maintained at desired potential (positive or negative)
with respect to plate D With the help of this apparatus, one can study the dqpendcnce of the
photoelectric effect on the following factors:

(1) Intensity of incident radiation,
(2) Potential difference between C and D, and
(3) Frequency of incident radiation.

Note: Glass transmits only visible and infra-red lights but not UV light. Quartz transmits UV
light,

(1) Effect of Intensity of Incident Radiation: The Py
electrode C, is made positive with respect to D, i (md)
Keeping the frequency of light and the potentials
fixed, the intensity of incident light (/) is varied and
the photoelectric current (7) is measured in ammeter.
The photoelectric current is directly proportional to
the intensity of light. The photoelectric current gives
an account of number of photoelectrons ejected per
second.

v

e
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(2) Effect of Potential Difference between C and D: Kecping the intensity and frequency of
light constant, the positive potential of C is '
increased gradually. The photoelectric cusrent
increases with increase in voltage till, for a
certain positive potential of plate C, the current
becomes maximum beyond which it does not
increase for any increase in the voltage. This
maximum value of the current is called saturation
current. — : g
. A - Vs o +}
Make the potential of C zero and make it
increasingly negative. The photoelectric current decreases as the potential is-increasingly
made negative till, for a sharply defined negative potential ¥; of C, the current becomes zero.
The negative potential for which the photoelectric current becomes zero is called the cut-off
or stopping potential (Vs).
When light of same frequency is used at higher intensity, the value of saturation current is
found to be greater, but the stopping potential remains the same. Hence, the stopping
potential is independent of intensity of incident light of same frequency.

(3) Effect of Frequency on Photoelectric Effect: The
stopping potential Vs is found to be changing Nnearly with V, sT
frequency of incident light, being more negative for high
frequency. An increase in frequency of the incident light
increases the kinetic energy of the emitted electrons, so
greater retarding potential is required to stop them
completely. For a given frequency v, Vs measures the
maximum Kinetic energy Enax of photoelectrons that can »
. O Vv, v
reach plate C i.e., 0

14 =—1-mv;“
T2

where m is the mass of electron, ¢ is charge of electron, and vy is maximum velocity of
electron. This means that the work done by stopping potential must be just equal to maximum -
kinetic energy of an electron,

The minimum value of frequency v,,of incident light, below which the emission stops,

however large the intensity of light may be, is called as threshold frequency.
The effect of changing incident frequency v it
can also be studied from the plot of F o

photoelectric current versus potential applied
across CD, keeping the intensity of incident /—-

radiation same. -

From the graph shown in the figure, we see that /
imax i8 same in all cases (for same intensity) and « .
as frequency vincreases, Vs becomes more -V Fa Vo © +V
negative.

Note: The minimum retarding potential at which photoelectric current becomes zero is called
stopping potential.

Dual Nature Of Radiation And Matter Page 347



Laws of Photo¢leetric Emission:

(1) For a given substance, there is & minimum value of frequency of incident light called
threshold frequency below which no photeeiectric emission is possible, howsoever, the
intensity of incident light may be.

(2) The number of photoelectrons emitted per second (i.e. photoelectric current) is directly
proportional to the intensity of incident light provided the frequency is above the threshold
frequency.

(3) The maximum kmetic energy of the photoelectrons is directly proportional to the
frequency provided the frequency is above the threshold frequency.

{(4) The maximum kinetic energy of the photoelectrons is independent of the intensity of the
incident light.

(5) The process of photoelectric emission is instantaneous, i.e., as soen as the photon of
suitable frequency fails on the substance, it emits photoelectrons in just 107 s.

(6) The photoelectric emission is one-to-one i.e., for every photon of suitable frequency one
electron is emitted.

Note: For the same intensity of light and same potential difference (below the potential for
saturation current), the photo electric current increases with the increase in frequency.

Failure of Classical theory to Explain Photoelectric effect:

(1) According to classical theory of electromagnetism, intensity of electromagnetic wave
(light) is a function of amplitude of the wave, and the number of photoelectrons and their
energy should depend upon intensity of light, which is contrary to the experimental resuits.
(2) According to wave theory, the transfer of energy from incident wave to the material
{electrons) takes time. But as seen from the resuits, there is hardiy any time lag in emission of
photoelectrons. Hence emission of photoelectrons cannot be explained on the basis of wave
theory of light. :

Photon theory of light:
An electromagnetic wave travels in the form of discrete packets or bundles of energy called
quanta. One quantum of light radiation is called a photon, which travels with the speed of
light. Energy of a photon is

he

E=hy= 7
where 4 is the Planck’s constant, v is the frequency of the radiation or photon, ¢ is the speed
of light (EM wave) and A is the wavelength.

Properties of photons:
(1) A photon travels at a speed of light ¢ in vacuum.
(2) It has zero rest mass i:e., the photon cannot exist at rest.

hv  hc h

3) The kineti faphotonis, m=—=—=—0-=—

(3) The kinetic mass of a photon is, m pibor iy by
(4) The momentum of a photon is, _E_hv _khe_k
c ¢ ¢cA A

(5) Photons travel in a straight line,

(6) Energy of a photon depends upon frequency of the photon; so the energy of the photon
does not change when photon travels from one medium to another.

(7) Wavelength of the photon changes in different media; so, velocity of a photon is different
in different media.
L "
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(8) Photons are electrically neutral.
(9) Photons may show diffraction under given conditions.
(10) Photons are not deviated by magnetic and electric fields,

Work function ¢#p) of a metal: Work fonction is defined as the maximum energy of the
metal 10 hold the electron in its surface. It depends on the metal used. Its formula is #, = hv,

Threshold frequency (1p): Threshold frequency is defifted as the minimum frequency of EM
radiation required to emit an electron from the surface of the metal.

Since ¢ = Av thenv, ==

Threshold wavelength (4g): Threshold wavelength is defined as #he maximum wavelength
of EM radiation required to emit an electron from the surface of'the metal.

Finstein’s photoeleétrie equafion:
In the photoeleetric effect, Einstein summarizes that some of the energy £ imparted by a
photon is actually used to release in electron from the surface of a metal (i.c., 1o overcome
the binding force) and that the rest appears as the maximum kinetic energy of the emitted
electron (photoelectron). {t is given by

E=K_ +W,

Where E = hv, b

1 : .
K, =-2-mvfm '

and W, = hy,
.'.h|w=-;—mv2 +hv,

This equation is known as Einstein’s photoelectric equation..
The above Emstem s photoelectric equatlon can also be expressed as

—;1'; m-hv hvo-h(v Vo }—(1)
_l_ T per l_L 2
2""' h( 20) hc( 'lo)-—()
eV, =hc(z——g)—'—(3)

Application of Photoelectric Effect:

(1) Automatic fire alarm

(2) Automatic burglar alarm

(3) Scanners in Television transmission

(4) Reproduction of soundin cinesna film

(5) In paper industry to measure the thickness of paper
(6) To locate flaws or holes in the finished goods
(7) In astronemy

(8) To determine opacity of solids and liquids
(9) Automatic switching of street lights

(10} To control the temperatitre of furnace
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(11) Photometry

{12) Beauty meter — To measure the fair complexion of skin
" (13) Light meters used in cinema industry to check the light

{14) Photoelectric sorting

(15) Photo counting

{16) Meteorology

Dual Nature of Radiation and Matter:

Wave theory of electromagnetic radiations explained the phenomenon of interference,
diffraction and polarization.

Quantum theory of electromagnetic radiations successfully explained the photoelectric effect,
Compton effect, black body radiations, X- ray spectra, etc. Thus, radiations have dual nature.
i.e., wave and particle nature,

de Broglie wave: According to de Broglie, a wave is associated with every moving partiote.
These waves are called de Broglie waves or matter waves.

Expression for de Broglie wave:
According to quantum theory, the energy of the photen isE=hv = %c

According to Einstein’s theory, the energy of the photon is E = mc?

Or W ® = e
mc mc p

Where p=mcis momentum of a photon.
If instead of a photon, we have a material particle of mass m moving with velocity v, then the

equation becomnes
L
mv p

which is the expression for de Broglie wavelength.

Conclusion:

1) de Broglie wavelength is inversely proportional to the velocity of the particie. If the
particle moves faster, then the wavelength will be smaller and vice versa.

2) If the particle is at rest, then the de Broglie wavelength is infinite. Such a wave cannot be
visualized.

3) de Broglie wavelength is inversely proportional to the mass of the particle. The
wavelength associated with a heavier particle is smaller than that with a lighter particle.

4) de Broglie wavelength is independent of the charge of the particle.

5) Matter waves, like electromagnetic waves, can travel in vacuum and hence they are not
mechanical waves.

6) Matter waves are not electromagnetic waves because they are not produced by accelerated
charges.

7) Matter waves are probability waves, amplitude of which, gives the probability of existence
of the particle at the point.
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de Broglie wavelength of an electron;

”A:._‘}l..::ﬁ
mv p
b, o my P
K=~£mv == =>p'=2mK Orp=vV2mK
PP PR R
mK
Also A= h
2meV
1= 6.63x107* _12.3x107" 123»

2O NIx10 ) x(1 6510w ¥ vt

Davisson-Germer Experiment: The first experimental proof of the wave nature of electron
was demonstrated in 1927 by two American physicists C. J. Davisson and L. H. Germer. The
basis of their experiment was that since the wavelength of an electron is of the order of
spacing of atoms of a crystal, a beam of electrons shows diffraction effects when incident on
a crystal,

Observation: A beam of electrons emitted by the electron gun is made to fall on Nickel
crystal cut along cubicat axis at a particular angle.

The scattered beam of electrons is received by the detector which can be rotated at any angle.
The energy of the incident beam of electrons can be
varied by changing the applied voltage to the electron
gun.

Intensity of scattered beam of electrons is found to be
maximum when angle of scattering is 50° and the
accelerating potential is 54V.

8+ 50° +0=180°

ie 0=65° :

For Ni crystal, fattice spacing 4=0.91 A

For first principal maximum, = 1

Electron diffraction is similar to X-ray diffraction.
.. Bragg’s equation 2dsin® = nA gives
2(091)sin65° =12

A=165A

. _ S
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Intemity of scattered boam st 43V

Incideat Beam
Incidest Beam

Intensicy of scattored boam at 44 ¥

Y

!
i ‘

Imtensity of scattered beam at 54 ¥

lacident Besm

Intensity of scatierell heash ot 54 V

According to de Broglie’s hypothesis,
h

A=
32meV
12.27
A= A
Jv

..de Broglie wavelength of moving electron at V = 54 voltis 1.67 A which is in close
agreement with 1.65 A.
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ATOMS AND NUCLE!

Thomson’s model of atom: According to this model,
an atom consists of homogenous positively charged
sphere with tiny negatively charged electrons embedded
throughout the sphere as shown in the figure. This
model of the atom is also called ‘plum pudding’ mode).

Limitations of Thomson's atomic model:
(1) Tt could not explain the origin of spectral lines of hydrogen and other atoms.
(2) It could not explain the large angle scattering of alpha particle.

Rutherford’s Alpha Scattering Experiment: Alpha-particle is a nucleus of helium atom

carrying a charge of *+2¢” and mass equal to 4 times that of hydrogen atom. It travels with a
speed nearly 10” ms'' and is highly penetrating.

Leadbox D, D, \ rescone
——— ¥,
> > beam of e @ nucieus
( II a -partiches —
of

Gald
Q-purticie Fotl

Rutherford Experiment | Geiger & Marsden Experiment
Source of a-particle Radon - gsRn"** Bismuth - ;Bi*"

Speed of a-particle 10° m/s 1.6 x 10" m/s

Thickness of Gold foil [ 10°m 21x10"'m

Experimental fact
Observation Conclusion
1 | Most of the a-particles passed It indicates that most of the space in an atom
straight through the gold foil. is empty.
2 | Some of the a-particles were | a-particles being positively charged and
scattered by only small angles, of | heavy compared to electron and could only be

the order of a few degrees. deflected by heavy and positive region in an
atom. It indicates that all the positive charges

and the mass of the atom is concentrated at
the centre called ‘nucleus’.

3 | A few a-particles (] in 9000) were | a-particles which travel towards the nucleus
deflected through large angles directly get retarded due to Coulomb’s force
(even greater than 90°). Some of | of repulsion and ultimately comes to rest and
them even retraced their path. i.e. | then fly off in the opposite direction.

angle of deflection was 180°.

e e ]
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a-particle » —

No. of a-particles

scatiered (V)

Scattering angle (6)

Distance of Closest Approach (Nuclear size): When the distance between a-particle and the
nucleus is equal to the distance of the closest approach (7o), the a-particle comes to rest.

At this point or distance, the kinetic energy of a-particle is completely converted into ¢lectric
potential energy of the system.

Charge on the o - particle = +2¢
Charge on a scattering nucleus = +Ze
1, 1 2z

—mv’ = {> P.E=V(+2e)}
2 47g, 1
1 4z¢
r, = >
4ne, mv

Impact Parameter: The perpendicular
distance of the velocity vector of the a-
particle from the centre of the nucleus
when it is far away from the nucleus is
known as impact parameter.

(i) For large value of b, cot (%) is large and 6, the scattering angle is small. i.e. a-particles
travelling far away from the nucleus suffer small deflections.
(ii) For small value of b, cot [g—) is also small and 6, the scattering angle is large.

i.e. a~particles travelling close to the nucleus suffer large deflections.

(iii) For b = 0 i.e, a-particles directed towards the centre of the nucleus,

cot (g] =0 or g =90° or &=180°. The a-particles retrace their path.

Rutherford’s model of an atom: Based on the results of a-particle
scattering experiment, Rutherford suggested the following picture of the
atom.

(1) Atom may be regarded as a sphere of diameter 10"'%m, but whole of
the positive charge of the atom is concentrated in a small central core
called nucleus having diameter of about 10"m as shown in the figure.

~ Atoms And Nuclei



(2) The electrons in the atom were considered to be distributed around the nucleus in the
empty space of the atom. If the electrons were at rest, they would be attracted by the nucleus.
To overcome this, Rutherford suggested that the electrons are revolving around the nucleus in
circular orbits, so that the centripetal force is provided by the electrostatic force of attraction
between the electron and the nucleus. .

(3) As the atom is electrically neutral, the total positive charge of the nucleus is equal to the
total negative charge of the electzons in it.

Drawback of Rutherford’s model of an atom: Based on the wave theory, an accelerating
charge emits energy. Hence the electrons must emit

the EM radiation as they revolve around the nucleus. A~

As a result of the continuous loss of energy, the radii TII3 compons
of the electron orbits will be decreased steadily. This A SPICTU
would [ead the electrons spiral and falls into the NAA
nucleus, hence the atom would coliapse as shown in R

the figure. '

Bohr’s quantisation condition: A circular orbit can be taken 1o be & statienary energy state
only if it contains an integral number of de Broglie wavelengths, i.e., it must have 2ar = 24

“‘@@@@6@@

where n=1,2,3,...

Bohr’s model of hydrogen atom: Neils Bohr in 1913, modiﬁec.! the Rutherford’s atom
modetl in order to explain the stability of the atom and the emission of sharp spectral lines. He
proposed the following postulates: :

(1) The electrons move only in centain circular orbits, called Stationary states or Energy
Levels. When it is in one of these orbits, it does not radiate energy.

(2) The angular momentum (L) of the electron in the Stationary orbits is quantised i.¢., it is an
integral multiple of ;— where A is the plank's constant. Mathematically,
z

szﬂ and. I = mvr
2z
mvr—--{’—{'-
2x

Where n = 1, 2, 3,.., Principal quantum number

r = Radius of the orbit

m = Mass of the electron
[T TR O ]
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(3) Emission or absorption of radiation occurs only when an electron makes a transition from

one orbit to another.
The Energy of the emitted or absorbed radiation is given by

hv=|E, -E|
Where A is the plank's constant, v is the frequency of the emitted or absorbed radiation, £, is
the final energy state and E, is the initial energy state.

If E,>E  =>Energy is absorbed
If E;, <E, = Energy isemitted
ny ——-,r—»»——«Ef my

nz)"l n:)ni

Radius of the n™ orbit (r, ): Consider one electron of
charge —e and mass m moves in a circular orbit of radius
rn around a positively charged nucleus with a velocity v,
as shown in the figure. The electrostatic force between
electron and nucleus contributes the centripetal force as
given in the relation

.| =|F|
2 2
k=" where k=)
[ ne,
2
Y LA m
rﬂ
From the Bohr's second postulate
nh
mv,r, =-—
: 2x
By taking square of both side of the equation, we get
232
mivir )
4n-
Dividing the equation (2) by equation (1), gives
n*h’
mvlrl  4gt R i
my; N e an’ ke’
r,
o r
dnke’
2
Orr,= n* '—_;!—2
471 mke

The Bohr’s radius aq is defined as the radius of the most stable (lowest) orbit or ground state
(n = 1) in the hydrogen atom
’_m
Atoms And Nuclei . ‘ Page 356



K (6.63x10)?
Qg =N = = - "
C dntmhe’  4x(3.14)7(9.11x107 ¥9x10°)(1.6x10™°)? 5.29x107"'m

or a; = 0.53;\
h2
e p ot —
1]
or,=n'(0.53) A
r, =22 (0.53)A =2.12A r, =31 (0.53)A=4.77A
r, =4°(0.53)A =8.48A r, = 57(0.53)A = 13.25A
Speed of electron im the n™ orbit (v,): From the Bohr’s second postulate we have
mv,r, = ada ory, = nh
2n 2rmr,
nh
v =

V. = = — e
h ch

2ok’ _1f2nke?)_c(2mke’)_ ¢
" nh m n n

2
27ke l is called the fine structure constant.

Frequency of electron in the nth orbit ( /,):

'.'V” =a)nrn =(2Jl'f;')f','
v, 2mke’ 5\
"T2xr, nhQ2mr,) )
e : -
“fn-nhr ) \J

ke’ ke ke’ _ ke
f‘"(nhr.’ f"”(z)hr,’ f’"(J)hr,‘ S (®hr,”

Energy of an electron in the n™ orbit (E,): The total energy of the electron is the sum of its
potential energy and kinetic energy in its orbit.

The K.E of the electron in the n™ orbit = %mvf

F ] 2
xE:%g%:% [Using equation (1)]
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The P.E of the electron in the n™ orbit = km(—e)
r

2

PE=-k-
. ",
The total energy of the electron in the n™ orbit = K.E + P.E
' 2 2 4
AN ...
2r, -, 2r,
ke’ 2n’mk’e’

En=—2 s
4’ mke’
2rimklet (1

For Hydrogen like atom we have

. A
7, =N e
4’ mkZe?
2mkZe’
V” =
nh
E = 22°mhkZ%e! ("
A= nh

Where Z is the proton number.

Spectral series of hydrogen atom: Whenever an electron in a hydrogen atom jumps from
higher energy level to the lower energy level, the difference in energies of the two levels is
emitted as a radiation of particular wavelength. It is called a spectral line. The following are
the spectral series of hydrogen atom.

(1) Lyman series

When the electron jumps
from any of the outer
orbits to the first orbit, the
spectral lines emitted are
in the ultravioiet region of
the spectrum and they are
said to form & series called
Lyman series

(2) Balmer series

When the electron jumps
from any of the outer
orbits to the second orbit,
we get a spectral series
called the Balmer series.
All the lines of this series
in hydrogen have their
wavelength in the visible
region.
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(3) Paschen series

This series consists of all wavelengths which are emitted when the electron jumps from outer
most orbits to the third orbit. This series is in the infrared region.

{4) Brackett seriea

This series consists of all wavelengths which are emitted when the electron jumps from outer
most orbits to the fourth orbit. This series is in the infrared region.

{S) Pfund series

This series consists of all wavelengths which are emitted when the electron Jjumps from outer
most orbits to the fifth orbit. This series is in the infrared region.

Note: The total'numbcr of emission lines from n™ (ny) state to lower state (n;) are
{(n,—nXn,~n +1)
2
The total number of emission lines from n® (n2 = n) state to ground state (n; = [) are
(ny = n Xny, ~n +1) - (n=Dn-141) - n{n-1)
2 2 : 2

Frequency of spectral line: Let the electron makes & transition from the higher energy level
n; to the lower energy level ny, the difference of energy appears in the form of a photon. The

frequency v of the emitted photon is given by
hv=|E, ~E|
'+ E, > E, i.e., there is an emission of photon
hv=E -E =L -E,

2:r’mk2e‘( 1 ] 23’mk2e‘( I ]
hY = w | N e

At n I n;
imkiet {11
hy = ——s—j -
h A
_ 22 mk’e! 1 1
w n} n?
v 2 mk’e! 1
c ok \n n
v 1
we=4 2y—m— =V
c=Av =
v is called the wave aumber
_ 2e'mke [ =R 1 1
VETTR n, nl H n} n’

232,14 '
R, = 3_’[_'3;;?__9__ =1.0973x10"m™ is called the Rydberg constant
¢
- 1 1
Lyman series (n, =1) =V =-}=R”(i—;-—;’3—] where n, =2,34,..

D ma.
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Balmer series (n, =2) =V = —’l;{- = R,,[%—;l; where n, =3,4.5,...
1 (1 1)
Paschen series (n, =3) =V=—=R, | -—| wheren =456,.
A 3" n
) : 1 (1 1)
Brackett series (n, = 4) =>;7z1— =Ry yEam where n, =5,6,7,...
Aoy B :
j (1 1)
Pfund series (n, =5} =vV=—=R,|5—-— | wheren =678,..
A \S n J

Energy level diagram for hydrogen atom:
2nimkie [ 1
Energy of the electron in the first orbit wheren=11is
2 1,4 b -3 L AW 1944
2n’mk’e [iJ=__2(3.14) O 11x107)9x10°)*(1.6x107°) _ . o (o9

E =-
‘ AT ) (6.63x107)*
21.76x 107"
t ="‘WGV =~13.6eV
E = E;— = --}-§~;£eV
n n
E=-30_34er E=-Bfoiser £ =-DBfaosser
2 3 4
OeV Iim OO
n=%
-0.85eV nw=4
-1.51eV n=3
-3.4eV nw2
-13.6eV n=}

Excitation energy: Excitation energy is defined as the energy required by an electron to
jump from the ground state to any one of the excited state.

Examples:

First excitation energy of hydrogen is AE = E, — E, = {~-3.4~(~13.6)}eV =10.2¢V
Second excitation energy of hydrogen is AE = E, ~ E, = {-1.51~(-13.6)}eV =12.09¢V
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lonisation energy: [onisation energy is defined as the energy required by an electron in the
ground state to escape completely from the attraction of the nucleus.
Example:

lonisation energy of hydrogen is AE = E, — E, = {0 ~(-13.6)}eV =13.6eV
Ground state: Ground state is defined as the lowest stable energy state of an atom.

Excited state: Excited state is defined as the energy levels that are higher than the ground
state.

Excitation potential: It is the accelerating potential which gives to a bombarding efectron,
sufficient energy to excite the target atom by raising one of its electrons from an inner to an
outer orbit.

Examples:

First excitation potential of hydrogen is AE = E, ~ E, = {~3.4~(~13.6)}}V =10.2V

Second excitation potential of hydrogenis AE = E, ~ E, = {~1.51~(~13.6)}V =12.09V

lonisation potential: It is the accelerating potential which gives to a bombarding electron,
sufficient energy to ionise the target atom by knocking one of its electrons completely out of
the atom.

Example:

Ionisation potential of hydrogenis AE = £_ - E, ={0-(-13.6)}V =13.6V

Success of Bohr's theory:

(1) It introduced quantum mechanics for the first time.

(2) Bohr's theory made the atom stable.

(3) It can explain the spectral lines of hydrogen atom correctly.

Limitations of Bohr’s theory:

{1) The theory could not account for the spectra of atoms more complex than hydrogen.

(2) The theory does not give any information regarding the distribution and arrangement of
electrons in an atom.

(3) It does not explain, the experimentally observed variations in intensity of the spectral
lines of the element.

(4) When the spectral line of hydrogen atom is examined by spectrometers having high
resolving power, it is found that a single line is composed of two or more close components.
This is known as the fine structure of spectral lines. Bohr’s theory could not account for the
fine structure of spectral lines.

(5) It is found that when electric or magnetic field is applied to the atom, each of the spectral
line split into several lines. The former effect is called as Stark effect, while the latter is
known as Zeeman effect. Bohr’s theory could not explain the Stark effect and Zeeman effect.

s
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Composition of a nucleus: A nucleus of an atom is

made up of protons and neutrons that are Proton

collectively known as nucleons as shown in the

fi gure. ) Neutron

Proton and neutron are characterised by the .

following properties. Elect !

Proton (p) Neutron (n)

Charge (coulomb) +1.6x 107" ' 0
Mass (kg) 1.672x 107 1.675 x 10

Neutral atom:

For a neutral atom, the number of protons inside the nucleus is equal to the number of
electrons orbiting the nucleus. This is because the magnitude of an electron charge equals to
the magnitude of a proton charge but opposite in sign.

Nuclei: Nuclei are characterised by the number and type of nucleons they contain as shown
in Table.

Number .| Symbol Definition
Atomic number V4 The number of protons in a nucleus
Neutron number N The number of neutrons in a nucleus
Mass (nucieon_j number A The nunib-ér of nucleons in a nucleus

The relation between Z, Nand AisA=Z+ N

Nuclide: Any nucleus of elements in the periodic table called a nuclide is characterised by its
atomic number Z and its mass number 4. The number of protons Z is not necessary equal to
the number of neutrons N

Isotopes: The atoms of the element which have the same atomic number () but different
mass number (4) are called isotopes.

Example: A
Isotopes of Hydrogen
‘H: Z=1, A=1, N=0, = Protium(/P)
'H: Z=1, A4=2, N=I1, = Deuterium(;D)
'H: Z=1, A=3, N=2, =Tritium(iT)
Eioclmn....?‘..;‘/ = ///— C N //,—-”'\ .
\ \ \
/ { v/ \
Proton ———ei) } | @ il Neutron
\ 7\ s\ /
\\___“‘___// \\‘_“__// \\______//
Hydeogen Devterum Tritaan
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Isobars: The atoms of the element which have A
the same mass nuinber (4) but different atomic

number (2) are called isobars. :
SCa: Z =20, A =40, N =20 \ /
srdatadnl

Example:
“4r:  Z=18, A=40, N=22 AN =4
Calvhum
Isotones: The atams of the element which have *
the same number of neutrons (¥} are called isotones.

nel: Z=11,  A=37, N=20 -
wK:  Z=19,  A4=39, N=20

Aids to Remember
§ V4 A N
Isotopes | v X X
Isobars x 4 %
Isotones x x v

Atomic mass unit (amu or u): One atomic mass unit is defined as -l-li-th of the actual mass of

carbon-12 atom.
6.023x10” numberof "C atoms=12g

. 12
The massof | C atom = WS’

=1.992678x10 " g
=1.992678x10 kg

lamu = i%x 1.992678x10" kg
. Yamu =1.660565x107" kg

Note:
m, =1.0073 amu =1.6726x10 kg

m, =1.0086 amu =1.6749x10"" kg
m, =1.00055 amu =9.11x107" kg
Mass of Hydrogen atom m,, = m, +m, =1.0078 amu

Electron volt: It is defined as the energy acquired by an electron when it is accelerated
through a potential difference of 1 volt and is denoted by eV.
leV =1.602x10°"J
1 MeV =10%eV =1.602x107"J

Relation between amu and Mel:
wE=mct
m=166x10"kg

T e
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¢=2.998x10%m/s
E=(1.66x10"7)2.998x10*)°J
_qa 66x1077)2. 998:«10’3)2
1.602x107°

E=931x10%V — E=931 MeV
s lamu =931 MeV

Nuclear size: Nucleus does not have a sharp or well-defined boundary. However, the radius
1

of nucleus can be givenby R=R A4 3, where R is the average radius of the nucleus,
"R,=1.2x 10" mis a constant and 4 is the mass (nucleon) number.

Note:
10" m = Ifermi or fin 5 Ry=12fm

Rct_’\/z

Volume of the nucleus:
Let V be the volume of the nucleus

I
V=im?J =izr(R,,A’)"‘ =izr R A
3 3 3

=Vud

Density of the nucleus:
Let m be the average mass of the nucleons
Then mass of the nucieus M = mA
The density p1is given by

p= M _mA  3m

I = 3

V % T R:A 4” Rﬂ
3(1.67x10°7)

43141231077

kg/m® =230x10" kg /m’

Properties of nuclear force:
(1) Strongest interaction
(2) Short-range force
(3) Variation with distance (strongest at the separation = | fm)
(4) Charge independent character
(5) Saturation effect (interact only with neighbouring nucleon)
(6) Spin dependent character (parallel spin is stronger)
(7) Exchange forces {(meson theory)
{(8) Non-central force

Einstein’s mass-energy equivalence: From the theory of relativity, Einstein showed that
mass is a form of energy. Mass and energy can be related by the relation E =mc’ where E is
the amount of energy, m is the mass and ¢ is the speed of light.
The Encrgy of tkg of a substance is-

_ E=1kg - 3x10°)’m/s=9x10"J ,
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Mass defect: The difference between the rest

mass of a nucleus and the sum of the rest masses * <

of its constituent nucleons is called its mass . ®+ ., N .,
defect. The mass of a nucleus (M) is always fess Teitiom maclevs l Neatroa
than the total mass of its constituent nucieons Proton

(Zmy,+Nm,) i.e : )
M, <(Zm,+Nm,), whete M, is the mass of the nucleus, m, is the mass of the proton -
and m, is the mass of the neutron. The mass defect Am is
Am=(Zm,+Nm,}-M,
Am=Zm, +(A-Z)m, - M,
The reduction in mass arises because the act of combining the nucleons to form the nucleus
causes some of their mass to be released as energy. '

Example:
The mass defect for tritium nucleus is
Am=(Zm,+ Nm,}-M,
Am = (1.0073 + 2.0172) amu - 3.0160 amu

Am = 3.0245 amu - 3.0160 amu
Am = 0.0085 amu

Binding energy (BE): It is the energy required to break up a nucleus into its constituent parts
and place them at an infinite distance from one another. Or the energy required to bind the
nucleons together in the nucleus is called binding energy.

BE = Am¢?
Or BE ={Zm, +(A-2Z)m, ~ M }¢’
Or BE ={Zm, +(A~Z)m, ~ M }931.5 MeV
Or BE = {Am}931.5 MeV

Binding energy per nucleon: It is the binding energy divided by the total number of
nucleons. It is denoted by B
Am ¢

A

5-BE
A

Explanation of binding energy curve:

(1) The binding energy per nucleon increases sharply with mass number A upto 20. It
increases slowly after A = 20. For 4 < 20, there exists recurrence of peaks corresponding to
those nuclei, whose mass numbers are multiples of four and t.be.y oor;tain rznt only eqnz:.al but
also even number of protons and neutrons. Example: JHe*, (8¢%, 6C*2, 40", and 1oNe™. The
curve becomes almost flat foyp mass number between 40 and 120. Beyond 120, it decreases
slowly as A4 increases. '

(2) The binding energy per nucleon reaches a maximum of 8.8 Me¥ at 4 = 36, corresponding
to the iron nucleus (;sFe*®). Hence, iron nucleus is the most stabde.

(3) The average binding energy per mucleon is about 8.5 MeV for nuclel having mass number
ranging between 40 and 120. These elements are comparatively more stable and non

radioactive.

L A e
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A A 4]
o= X+ e+ v, + 0

(parent) (daughter) (B') (neutrino) (energy)

The emission of ﬂ* or (,)e)is accompanied with the release of neutrino v, , a mass less and

chargc less particle w1th half mtegral spin
lpnt Jetv, +Q

Gamma ray (y):

(1) Gamma rays are high energy photons (electromagnetic radiation).

(2) Emission of gamma ray does not change the parent nucleus into a different nuclide, since
neither the charge nor the nucleon number is changed.

(3) A gamma ray photon is emitted when a nucleus in an excited state makes a transition to a
ground state.

(4) It is uncharged (neutral) ray and zero mass.

(5) The difference between gamma-rays and x-rays of the same wavelength is; gamma-rays
are a result of nuclear processes, whereas x-rays originate outside the nucleus.

Example of ydecay is: 071" - 3 Ti+y

Comparison of the properties between alpha particle, beta particle and gamma ra

Alpha Beta Gamma
Charge +2¢ -leor+le 0
Deflection by electric and magnetic fields Yes Yes No
lonization power Strong Moderate Weak
Penetration power Weak Moderate Strong |
Ability to affect a photographic plate Yes Yes Yes
Ability to produce fluorescence Yes Yes Yes

Nuclear energy levels: The nucleus, like the atom, has discrete energy levels whose location
and properties are governed by the rules of quantum mechanics. These are nuclear stationary
states. The stationary state of lowest energy is called the ground state. When a nucleus makes
a transition from some higher energy level to a lower energy level, the difference of energy is
emitted as a photon in gamma-ray region of the electromagnetic spectrum.

Radioactive decay law: For a radioactive source, the decay rate (- %] is directly

proportional to the number of radioactive nuclei N remaining in the source.
dN

——a N

di
dN

d
Negative sign means the number of remaining nuclei decreases with time and A is the decay

constant.
an
L= dt _ decay rate

N number of remaining radioactive nuclei

e R R
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Hence the decay constant is defined as the probability that a radioactive nucleus will
one second. Its unitis s,

Mathematical treatment of decay law: Let N, be the number of radicactive ato:
initially and N, the number of atoms at a given mstant 1. Let 4N be the number of at
undergoing disintegration in a small interval of time dt. Then the rate of disintegratioq is

i ML TR0,

—— e R |
x AN (1)
where A is a constant known as decay constant or disintegration constant. The negative sign
indicates that N decreases with increase in time.

Equation (1) can be written as

f_fiz;—,‘{‘d;
Ndh’ f
— = A {dt
vk
ltog N, = -4}
logN ~log Ny = -4t
N
log}: =-At
—AL = e-'u
. N,
=>N=Nge*

This is the exponential law of radioactive decay

From the equation (1), the graph of N, (the number of remaining radioactive nuclei in a
sample) against the time ¢ is shown in figure.

Half-life (T)): Half-life is defined as the time taken for a sample of radioactive nuclides to
disintegrate to half of the initial number of nuclei

From the equation N = Nye ™

When =7,

2
N " l -l
"i‘g'zNoear”: (k E:e
2= Or In2=Ine'™
in2
In2=4T, Or 7},,--—;-
0693
2Ty = T
The half-life of any given radioactive nuclide is constant, it does not depend on the number of
remaining nuclei.

The units of the half-life are second (s), minute (min), hour (hr), day (d) and year (y). Its unit
depends on the unit of decay constant.

Table shows the value of half-life for several isotopes.

W
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Jsotope " Half-life
”Um g 4-5x'109ym
wha™ | 1.6 x 10’ years
o P 138 days
wTH™ 24 days

o R 3.8 days

o B 20 minutes

Average-life or mean life (r): The mean life of a radioactive substance is defined as the
ratio of total Jife time of all the radioactive atoms to the total number of atoms in it.

The mean life calculated from the law of disintegration shows that the mean life is the
reciprocal of the decay constant: :
11 1

1 0 693 0. 4593T”2
o Tnz

=1.443 T,

=>1>T,,

Activity of radioactive sample 4: The activity of a radioactive substance is defined as the
rate at which the atoms decay. If N is the number of atoms ptesent at a certain time ¢, the
activity 4 is given by

The unit of activity is becquerel named after the scientist Henri Becquerel

+"+ ] becquerel = | disintegration per second

The activity of a radioactive substance is generally exprcssed in curie. Curie is defined as the
quantity of a radioactive substance -which gives 3.7 x 10" disintegrations per second or

3.7 x 10" becquerel. This is equal to the activity of one gram of radium.

Natural radioactivity: It is the phenomenon of spontaneous emission of a, B and v
radiations,

Artificial or induced radioactivity: It is the phenomenon of inducing radioactivity in certain
stable nuclei by bombarding them by suitable high energy particles.

Nuclear fission: Nuclear fission is defined as a nuclear reaction in which a heavy nucleus
splits into two lighter nuclei that are almost equal in mass with the emission of neutrons and

energy.
Or

The process of breaking up of the nucleus of a heavier atom into two fragments with the
release of large amount of energy is called nuclear fission.

(1) Nuclear fission releases an amount of energy that is greater than the energy released in
chemical reaction.

(2) Energy is released because the average binding energy per nucleon of the fission products
is greater than that of the parent.

g T e e
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Spontaneous Fission: Some radioisotopes
contain nuclei which are highly unstable and
decay spontaneously by splitting into two
smaller nuclei. Such spontancous decays are
accompanied by the release of neutrons.

Note: Heawy nudleus has {arger rest mass
energy than that of its two middle-weight
fragments. Such processes are called barrier
penetration

Induced Fission: Fission which takes place only whena nucleus is bombarded with neutron,
praton, or other particle (particle-induced fission) or by gamma-ray excitation (photofission).

Example:
Consider the bombardment of ,, U™ by stow neutrons. One of the possible reaction is

 BUsen - PU > Bralay3in+0

o
- ."""--* -
e
ot
b, S,
NU z;gU' ldlu gn '

Chain reaction: The nuclear fission which once started continues till all the atoms of the
fissionable material are disintegrated is known as chain reaction,

Consider a neutron causing fission in a
uranium nucleus producing three
neutrons. The three neutrons in turn
may cause fission in three uranium
nuclei producing nine neutrons. These
nine peutrons in turn may produce
twenty seven neutrons and so on. A
chain reaction is a self propagating
process in which the number of
neutrons goes an muitiplying rapidly
almost in a geometrical progression.
Twao types of chain reactions are
passible, In the uncontrolled chain
reaction, the number of neutrons
multiply indefinitely and the entire
amount of energy is released within a
fraction of a second. This type of chain reaction takes place in atom bombs.

In the controlled chain reaction the number of fission producing neutron is kept constant and
is always equal to one. The reaction is sustained in a controlled manner. Controlled chain

reaction is taking place in a nuelear reactor.

Nuclear fusion: Nuclear fusion is defined as & type of nuclear reaction in which two light
nuclei fuse to form a heavier nucleus with the release of large amounts of energy.
W
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(1) The energy released in this reaction is called thermonuclear energy.
Exampies of fusion reaction releases the energy are

‘H+lH >} Hesin+Q
‘H+H~>»He+ H +Q

(2) The nuclear fusion reaction can occur in fusion bomb D?H"m‘ *T;";'”
and in the core of a star. ‘ \ '
(3) Deuterium-tritium fusion is other example of fusion Fusion
reaction whete it can be represented as shown in the reection
diagram. VRN

Rpnapae Neutron
Note: pHe on

(1) The two reacting nuclei in fusion reaction above

themselves have to be brought into collision.

{2) As both nuclei are positively charged there is a strong repulsive force between them,
which can only be overcome if the reacting nuclei have very high kinetic energies.

(3) These high kinetic energies imply temperatures of the order of 10® K.

Thermonuclear energy: The energy released during nuclear fusion is known as
thermonuclear energy.

Nuclear fusion in the sun: (proton-proton cycle): This is
the nuclear fusion process which fuels the Sun and other
stars which have core temperatures less than 15 million
Kelvin. A reaction cycle yields about 25 MeV of energy.

Note: The sun is a small star which generates energy on its
own by means of nuclear fusion in its interior. The fuel of
fusion reaction comes from the protons available in the sun.
The protons undergo a set of fusion reactions, producing
isotopes of hydrogen and also isotopes of helium. However,
the helium nuclei themselves undergo nuclear reactions
which produce protons again. This means that the protons go
through a cycle which is then repeated. Because of this
proton-proton cycle, nuclear fusion in the sun can be self
sustaining. The set of fusion reactions in the proton-proton
cycle can be illustrated by the figure -

Nuclear fusion in the sun: CNQ (Heavier than the sun): In stars with central temperatures
greater than 15 million Kelvin, carbon fusion is thought to take over the dominant role rather
than hydrogen fusion. A star like Sirius with somewhat more than twice the mass of the sun
dertves almost all of its power from the carbon cycle. The carbon cycle yields 26.72 MeV per
helium nucleus.

Note: The main theme of the carbon cycle is the adding of protons, but after a carbon-12
nucleus fuses with a proton to form nitrogen-13, one of the protons decays with the emission
of a positron and a neutrino to form carbon ~13. Two more proton captures produce nitrogen-
14 and then oxygen-15. Another neutron decay leaves nitrogen-15. Another proton capture
produces oxygen-16 which emits an energetic alpha particle to return to carbon-12 to repeat
]
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the cycle. This last reaction is the main source of energy in the cycle for the fueling of the
star.

__Comparison between fission and fushon

o Fission » - Fusion

Splitting a heavy nucleus into two Combines two small nuclei to forma

small nuclei, larger nucleus.

It occurs at \emperature that can be It occurs at very high emperature

controlled. 'K, . A

Easier to control and sustain. Difficult to contrel and a sustain
controlied reaction has not yet been
achieved.

Neutrons are needed in fission process | Protens are needed jn fusion process

Note: The similarity between the fission and fusion reactions is that both reactions produces
energy.

RS S e
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ELECTRONIC DEVICE

Classification of Solids: Solids can be classified on the basis of (a) conductivity and
(b) energy bands.

Metals and Insulators: Solids that have very low resistivity and very high electrical
conductivity are known as metals and solids that have very high resistivity and very low
electric conductivity are known as insulators,

Semiconductors: Solids whose resistivity or conductivity is intermediate between metals and
insulators are known as semiconductors,

Compound semiconductors: Semiconductors that have more than one type of atoms as their
constituent particles are known as compound semiconductors. Compound semiconductors are
further classified as inorganic, organic, and organic polymer semiconductors.

Energy band: The collection of closely spaced energy levels is known as energy band. The
lower energy band of filled levels is called the valence band, while the upper energy band of
empty levels is called the conduction band. The energy gap between the valence band and the
conduction band is called the forbidden energy gap.

% % —Conduction Band

g g %

§ Forbidden energy gap § Forbidden energy gap

g . g <—-—Ferml level
= = Valence Band

Fermi level: The highest energy level which an electron can occupy in the valence band at
0K is called Fermi level.

Metals: In metals, the conduction band is either partially filled (figure a) or overlaps (figure
b) the valence band. There is no forbidden energy gap between the valence and conduction
bands. Even if a small electric field is applied, free electrons start moving in a direction
opposite to the field and hence metals behave as good conductors of electricity.

@) )

Insulators: In insulators, the valence band is completely
filled, the conduction band is empty, and the forbidden gap is
quite large (E; >3 eV), as shown in the figure. For exampie,
diamond is an insulator and the forbidden energy gap for
diamond is £, = 6 eV. If an electric field is applied across the
ends of an insulator, no electron is able to go from the

Electron energles
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valence band to the conduction band due to the very high band gap. That is why insulators
behave as poor conductors of electricity.

Semiconductors: A semiconductor is a meterial whick has almost filled valence band and
nearly empty conduction band with a small energy gap( Eg=1 eV ) separating the two.

CONDUCTION BAND l CONDUCTION BANG |

- .-

GERMANIUM CRYSTAL SILUCON CRYSTAL

i

Properties of semiconductors :

(1) They have crystalline structure.

(2) The resistance of the semiconductor decreases with the rise in temperature i.e., they have
negative temperature coefficient of resistance.

(3) They are formed by covalent bond. .
(4) The number of electrons available for conduction can be increased enormously when

suitable metallic impurity (eg, arsenic, gallium etc.) is added to a semiconductor.

BAND ENERGY
BAND ENERGY

Effect of Temperature on Semiconductors :
(1) At absolute zero: At absolute zero, the covalent bonds are very strong and there are no
free electrons in the conduction band. Therefore the semiconductor crystal behaves as a

perfect insulator,

| conpucon sano
FORBIODEN SAND 1.3 oV
Telt otet | VALENCE BAND

BAND ENERGY

SILICON CRYSTAL

(2) Above absolute zero: Above absolute zero there is a finite probability that an f:lectron in
the lattice will be knocked loose from its position, leaving behind an clectron deficiency
called a "hole®. If a voltage is applied, then both the electron and the hole can contribute to a

small current flow.

ettt g
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Intrinsic semiconductor: A semiconductor in an extremely pure form is known as an
intrinsic semiconductor or an undoped semiconductor or an i-type semiconductor.

In an intrinsic semiconductor,

the number of free electrons (n,) sl 2 CONDUCTION BAND
in conduction band is exactly ELECTRON w FORBIDDEN BAND L1 oV
equal to the number of holes P VALENCE BAND
(n) in the valence band S
o Ne = Ny =N ]
OF N Ny =Ny Ng = (ﬂ.‘)z HOLE SHLICON CRYSTAL
Or N =n;

Where n, = number density of free electrons in conduction band .

ny = number density of holes in the valence band

n; = number density of intrinsic carriers (free electrons or holes)

Doping a Semiconductor:

(1) Doping is the process of deliberate addition of a very small amount of impurity into an
intrinsic semiconductor.

(2) The impurity atoms are called ‘dopants’.

(3) The semiconductor containing impurity is known as Impm or extrinsic semiconductor’.

PENTAVALENT ' TRIVALENT
IMPURITY ATOM IMPURITY ATOM

[
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Methods of doping:

(1) Heating the crystal in the presence of dopant atoms.

(2) Adding impurity atoms in the molten state of semiconductor.
(3) Bombarding semiconductor by ions of impurity atoms.

Extrinsic semiconductor:

A semiconductor whese conductivity is mainly due to impurity is called the extrinsic
semicondusctor. Extrinsic semiconductors are of two types.

(1) n-type semicanductor

{2) p-type semiconductor

(1) n-type semiconductor: When a shall amount of pentavalent impurity is added to a pure
semiconductor, then it is known as n-type Semiconductor.

ELECTRON, CONDUCTION BAND
o
o
£
[}
&
i
z
&
/
HOLE
PENTAVALENT
IMPURITY ATOM

In n-type semiconductor the following points may be noted:
(i) By the addition of pentavalent impurity many new free electrons are preduced.
(ii) Few hole-electron pairs are generated at room temperature due to thermal energy.
However, the number of free electrons provided by the pentavalent impurity far exceeds the
number of holes,
(iii) For n-type semiconductor r,n, =n’
Where n, = number density of free electrons it conduction band

n, = number density of holes in the valence band

m =  pumber density of intrinsic carriers (free electrons or boles) '
(iv) In n-type semiconductor, the number density of electrons (n) in conduction band is
approximately equal to that of donor atoms (Ny) but is very large as compared to the number
density of holes (n;) in the valence band i.e., n, » N, >>n,

W
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(2) p-type semiconductor: When a small amount of trivalent impurity is added to a pure
semiconductor, then it is known as p-type Semiconductor.

ELECTB_Q! hiDNDUCT!ON BAND
. |

BAND ENERGY

LEVELS

VALENCE BAND

HOLE

TRIVALENTY
IMPURITY ATOM

In p-type semiconductor the following points may be noted:
(i) By the addition of trivalent impurity many new holes are produced.
(ii) Few hole-electron pairs are generated at room temperature due to thermal energy.
However, the number of holes provided by the trivalent impurity far exceeds the number of
free electrons.
(iii) For p-type semiconductor nn, = n}
Where n, = number density of free electrons in conduction band

ny, = number density of holes in the valence band

n; = number density of intrinsic carriers (free electrons or holes)
(iv) In p-type semiconductor, the number density of holes () in valence band is
approximately equal to that of acceptor atoms (N,) but is very large as compared to the
number density of electrons (n,) in the conduction band i.e., n, = N, >>n,

Majority and Minority Carriers:

In n-type semiconductor, free electrons are considered to be the majority carriers. Since the
majority portion of current in n-type material is by the flow of free etectrons, and the holes
are the minority carriers.

In the p-type semiconductor, holes outnumber the free electrons. Therefore, holes are the
majority carriers and free electrons are the minority carriers.

pn junction (Semiconductor diode): A pn junction is a thin region between a p-type and an
n-type semiconducting material across which a potential barrier exists.

pn junction

v

Diode

Potential barrier: This potential prevents further diffusion of holes and electrons across the
junction and ensures zero current through the junction. It is also referved to as the barrier
potential.
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Depletion layer: Since no charge carrier can remain in this region ( i.c., the region is
depleted of mobile charges), it is also called the depietion layer or depletion region or space
charge region. -

Note:

(1) As soon as pn junction is formed, potential barrier V¢ appears across the junction and it
seems as if some fictitious battery of magnitude V, is connected across the junction with its
negative terminal connected to p region and the positive terminal to n region as shown in the
figure.

(2) The potential barrier does not allow the current carriers (free electrons and holes) to cross
the pn junction. Due to the presence of V, across the junction, an electron requires an energy
eV to cross the junction from n region to p region and an equal amount of energy is required
to move a hole from p region to n region to cross the junction.

(3) The width of depletion layer is very small (d ~ 10" m). The value of basrier potential ¥; is
about 0.7 V for silicon and about 0.3 V for germanium semiconductor (Average Vo = 0.5V),
This means that barrier electric field E set up by V; across the junction is very high.

T 10t
V-1 characteristics of a pn junction diode: -
The variation of current as a function of applied voltage is known as the V-I characteristics of

the pn junction diode.

pn junction diode under forward bias and forward characteristics of the pn junction
diode: When a pn junction diode is biased such that the positive terminal of the battery is
connected to the p-side and negative terminal of the battery is connected to the n-side, the pn
junction diode is said to be forward biased.

p n 'E' »
-é | Eﬁ*r
=
. . +°.... §d.
g
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FORWARD VOLTAGE (V) »urir

The minimum forward voltage after which the current through the pn junction diode
increases rapidly with the voltage is known as threshold voltage or knee voltage.
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pn junction diode under reverse bias and reverse characteristics of the pn junction
diode: When a pn junction diode is biased such that the positive terminal of the battery is
connected to the n-side and negative terminal of the battery is connected to the p-side, the pn
junction diode is said to be reverse biased.

pn
P : "
é BREAKDOWN 1
: -°+ VOUTAGE
i Vy) 10
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The reverse voltage Vy, at which the current through the pn junction diode becomes infinite
(or very large) and the diode breaks down is known as the breakdown voltage.

pn Juanction Diode as Rectifier: The process of converting alternating current into direct
current is called ‘rectification’. The device used for rectification is called ‘rectifier’. The pn
junction diode offers low resistance in forward bias and high resistance in reverse bias.
Therefore a diode can conduct well only in one direction i.e., when forward bias.

pn Junction Diode as a Half Wave Rectifier: During the first half cycle when a.c voltage at
A is positive, the diode D conducts. In the next half cycle when the voltage at A is negative,
the diode does not conduct. Therefore during the first half cycle current flows through the
load resistance Ry, and during the second half cycle there is no output as shown in the figure.
Since the voltage across the load appears only during the positive half cycle of the input a.c.,
this process is called half-wave rectification and the arrangement used is called half-wave

rectifier,

Disadvantages of Half Wave Rectifier:
(1) Filter circuit is required to produce steady direct current.
(2) Circuit delivers a.c output power only for half time period, therefore the output is low.

0L
A

N

pn Junction Diode as a Full Wave Rectifier: During the positive half cycle of the
secondary voltage, S, of the secondary becomes positive and S; negative. Diode D, becomes
forward biased and D, becomes reverse biased. Therefore during positive half cycle D,
conducts and D, does not conduct. The current flows through diode D, load resistance Ry
and upper half of secondary S;. During the negative half cycle of the secondery voltage, S, of
the secondary becomes negative and S; positive. Diode D becomes reverse biased and D;
becomes forward biased. Therefore during negative half cycle D; conducts and D; does not

PR e e
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conduct. The current flows through diode D;, load resistance Ry and lower haif of secondary
S». Since output voltage across the load resistance RL is obtained for both half cycles of input
a.c., this process is called full-wave rectification and the arrangement used is called full-wave

rectifier.

Disadvantages of Full Wave Rectifier:

(1) Filter circuit is required to produce steady direct current. _

(2) Each diode utilises only one half of the transformer secondary voltage, therefore d.c.,
output is small.

(3) The diode used must have high break down voltage.

Zener diode: A properly doped junction diode which has & sharp
breakdown voltage is called Zener diode. Symbol of zener diode is shown
in the figure,

Principle of zener diode: The ) AAANS [~~~ £+
basic principle of Zener diode is M R 1z &

the Zener breakdown. When a
diode is heavily doped, its
depletion region will be narrow.
When a high reverse voitage is
applied across the junction, there _ .+ N A
will be very strong electric field

at the junction, and the electron hole pair generation takes place. Thus heavy current flows.
This is known as Zener break down. A Zener diode in a forward biased condition acts as a
normal diode. In reverse biased mode, after the break down of junction, current through diode
increases sharply, but the voltage across it remains constant. This principle is used in voltage

regulator using Zener diodes.

——
A |

L

Zener diode as a voltage regulator: When REVERSE BIAS (V)
a Zener diode is operated in the reverse 0 3 6 4 2 O
breakdown region, the voltage across it ‘__}_“, LA
remains practically constant (equal to the BREAKDOWN s 5
breakdown voltage V) for a large change VOLTAGE -
in the reverse current. The use of Zener (ZENERVOLTAGE V,) T2
diode as a d.c. voitage regulator is based on 1.8 g
this fact. =
+-20 5
Note: +-25 E
(1) A Zener diode is like an ordinary diode \

except that it is properly doped so as to
have a sharp breakdown voltage calied zener voltage V;
0
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(2) A Zener diode is always connected, in the reverse biased.
(3) When connected in forward biased, it behaves like ordinary diode.

Photodiode: An optoelectronic device in which current-carriers W\
are generated by photons from the incident light is known as a
photodiode. It is sensitive to low light conditions. A photodiode
is designed to respond to photon absorption, and is operated in a
reverse biased pn junction mode

¥

Principle:
(1) A reverse biased pn junction diode has a very low i,
reverse current. It is referred as dark current.

R%

4

(2) When light falls, additional electron-hole pairs are

generated in both p and n region. It produces a very large 3‘

change in minority carrier concentration and hence

increases the reverse current through the diode. This

current varies almost linearly with the light flux. - “IHI

Working:

Under no light condition, a sufficient reverse voltage is applied to photodiode to get constant
current, independent of magnitude of reverse bias. This reverse saturation current is called
dark current. Light is absorbed in the depletion region (intrinsic region) generates electron-
hole pairs, which contribute to the photo current. The photo current is proportional to the
incoming light intensity over a wide range of optical powers.

Note: To improve the absorption of light, an intrinsic (undoped) layer is introduced between
n and p region. Devices with an intrinsic layer I are called P-1-N photodiodes.

Uses of photodiode:

(1) It can turn ON and OFF in nanoseconds, It is used as ON/OFF switch at a very fast rate.
(2) In modern optical communication system, fast and sensitive photodiodes play important
role.

(3) In light detection

{4) In light operated switches.

(5) Reading of computer punched cards.

(6) They find many uses in instrumentation, control and automation.

(7) Depending on applications many variation of photodiodes are developed such as P-I-N
photodiodes, velocity-match photodetectors, Avalanche photodiodes, metalsemiconductor-
metal photodetectors.

Solar cell: An optoelectronic device

which is used to convert sun light

into electrical energy is known as a

solar cell. The pn junction of a solar

cell is not biased with any external

voltage source. It works at bright METAL rn@.
light conditions. N

FRONT CONTACT
(METAL GRID)

by SNNPANY

‘ N
O
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Principle:

When light falls, additional electron-hole pairs are generated in both p and n region. It
produces a very large change in minority carrier concentration and hence increases the
reverse current through the cell.

Uses of solar cell: Solar cells are used to supply power to electronic devices, in space
vehicles and artificial satellites.

Light Emitting Diode (LED): A light emitting diode {LED) is a forward biased pn junction
diode, which emits visible light when energized.

Working: When a junction diode is forward biased. electrons from n-side y,
and holes from p-side move towards the depletion region and
recombination takes place. When an electron in the conduction band ‘@_
recombines with a hole in the valence band, energy is released. In the

case of semiconducting materials like gallium-arsenide (GaAs), gallium-phosphide (GaP) and
gallium-arsenide-phosphide (GaAsP), a greater percentage of energy is given out in the form
of light. If the semiconductor material is transluscent, light is emitted and the junction
becomes a light source (turned ON). The LED is turned ON, when it is forward biased and it
is turned OFF, when it is reverse biased. The colour of the emitted Jight will depend upon the
type of the material used. By using gallium-arsenide-phosphide and gallium-phosphide, a
manufacturer can produce LEDs that radiate red, green, yellow and orange. The symboi of
LED is shown in the figure.

Uses of LED: LED:s are used for instrument displays, calculators and digital watches.

Junction Transistor: Transistor is a

confbination 'of two words ‘transfer’ and N Y Emitter Collect
‘resistor’ which means that transfer of

resistance takes place from input to / l \ Base

output section. Emitter Base Collector

It is formed by sandwiching one type of \

extrinsic ser‘mqonduc'tor between other P E [ P, co
type of extrinsic semiconductor. mitter e

n-p-n transistor contains p-type e
semiconductor sandwiched between two

n-type semiconductors.

p-n-p transistor contains n-type semiconductor sandwiched between two p-type

semiconductors.

Action of n-p-n Transistor: >
n P n
&0 6 o8 ;@"@"@:e:c
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In n-p-n transistor, the arrow mark on the emitter is coming away from the base and
represents the direction of flow of current. It is the direction opposite to the flow of electrons
which are the main charge carriers in n-type crystal.

The emitter junction is forward-biased with emitter-base battcry Via. The collector junction is
reverse biased with collector-base battery Vec.

The forward bias of the emitter-base circuit helps the movement of electrons (majority
carriers) in the emitter, and holes (majority carriers) in the base towards the junction between
the emitter and the base. This reduces the depletion region at this junction.

On the other hand, the reverse bias of the collector-base circuit forbids the movement of the
majority carriers towards the collector-base junction and the depletion region increases.

The electrons in the emitter are repetled by the negative terminal of the emitter-base battery.
Since the base is thin and lightly doped, therefore, only a very small fraction (say, 5%) of the
incoming electrons combine with the holes. The remaining electrons rush through the
collector and are swept away by the positive terminal of the collector-base battery.

For every electron-hole recombination that takes place at the base region one electron (i.e.,
only one electron combine with one hole) is released into the emitter region by the negative
terminal of the emitter-base battery. The deficiency of the electrons caused due to their
movement towards the collector is also compensated by the electrons released from the
emitter-base battery.

The current is carried by the electrons both in the external as well as inside the transistor.

L=h+1L
Action of p-n-p Transistor:
i L > Pr \P
e&&{&m&&&& BUR:
O O b B! B = O B+
S e ceidic e g6 Loy
G660 866 66|, |
J\I i N ¢ {
; T H HHfH
oY Vee

v,
H —HHHE "
Ves v,
In p-n-p transistor, the arrow mark on the emitter is going into the base and represents the
direction of flow of current. It is in the same direction as that of the movement of holes
which are main charge carriers in p-type crystal.

The emitter junction is forward-biased with emitter-base battery V. The collector junction is
reverse biased with collector-base battery Vec.

The forward bias of the emitter-base circuit helps the movement of holes (majority carriers)
in the emitter and electrons (majority carriers) in the base towards the junction between the
emitter and the base. This reduces the depletion region at this junction.

On the other hand, the reverse bias of the collector-base circuit forbids the movement of the
majority carriers towards the collector-base junction and the depletion region increases.

The holes in the emitter are repelled by the positive terminal of the emitter-base battery.
Since the base is thin and lightly doped, therefore, only a very small fraction (say, 5%) of the
incoming holes combine with the electrons. The remaining holes rush through the collector
and are swept away by the negative terminal of the collector-base battery.

For every electron-hole recombination that takes place at the base region one electron (i.e.,
only one electron combine with one hole) is released into the emitter region by breaking the
covalent bond and it enters the positive terminal of the emitter-base battery. The holes

w
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reaching the collector are also compensated by the electrons released from the collector-base
battery.
The current is carried by the electrons in the external circuit and by the holes inside the
transistor.

le=h~+1

p-n-p Transister Characteristics in Common Base (CB) Configuration: The plot between
I and V¢ for fixed V. is called input characteristics while the plot between Jc and V., for
fixed /. is called output characteristics for the cotnmon base configuration.

- p *)=
4
L A
I3 Ew
Va (8N .
*
L (mA)
L=20mA
L=10mA
J ' I,= OmA
0 V, (Volt) 0 Va (Voit)
Input Characteristics Output Characteristics

Current Amplification Factor or Current Gain:
(1) Direct current (dc) gain: K is the ratio of the collector current (/) to the emitter curvent

(1) at constant collector voltage (V)
w, =[-§-‘-] at constant Vp

(2) Alternating current (ac) gain: It is the ratio of change in collector current (AL) to the
change in emitter current (AlL) at constant collector voltage (V).

Q. = (—i‘—{i—] at constant Ve
N‘

Alternating voltage gain: It is the ratio of change in‘output voltage (collector voltage AVe)
to the change in input voltage (applied signal voltage AV,),

AV, Al xR, . .
= £ {m) —E£ = @, X resistance gamn
i (AV, ] (M‘XR,

Input resistance (r;): Ratio of change in base-emitter voltage (A¥x) to the resulting change
in emitter current (Al.) at constant collector base voltage (Veb).

AV,
y, =(-—§"—‘-] at constant Vep

5000 S A
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Output resistance (r,): The ratio of change in collector-base voltage (A¥;) to the change in
collector current (Al,) at constant emitter current (1.

AV,
r, = (—37:—*] at constant /,
p-o-p Transistor Characteristics in Common Emitter (CE) Configuration: The plot
between J, and V. for fixed V.. is called input characteristics while the plot between /¢ and
V.. for fixed J is called output characteristics for the common emitter configuration.
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% |
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I mA) u oy on I, (mA) 1,=90 pA
- 1, = 60 pA
L, =30pA
H
0 ' V,. (Volt) 0 V. (Volty
Input Characteristics Output Characteristics

Current Amplification Factor or Current Gain:
(1) Direct current (de) gain: It is the ratio of the collector current (Z;) to the base current (%)

at constant collector volitage (Vo)

B = (-;i] at constant V.

&
(2) Alternating current (ac) gain: It is the ratio of change in collector current (Al;) to the
change in base current (Aly) at constant coliector voltage (V..).

AI -
=| —=% | atsonstant V
ﬁac ( A.lb ] o
Alternating voltage gain: It is the ratio of change in output voltage (collector voltage AV.)
to the change in input voltage (applied signal voltage AV,).

AV, Y {AI xR ) .
A, = L P = B x resistance gain
Veae [AV, ) ( !rbe! ] ﬂac g

Input resistance (#;): Ratio of change in base-emitter voltage (AVy) to the resulting change
in base current (Ay) at constant collector emitter voltage (V).

= éﬂ‘f- at constant V.
Al

%
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Output resistance (r,): The ratio of change in collector-emitter voltage (AV,.) to the change
in collector current (Al,) at constant base current ().

r o= éz"— at constant J
o A] b

¢

Show that g > a:

1} 11
'.'a=[—1f—), ,B-——{}f—) and I, =141,
t [
I,>1,
~Bra

So current amplification in CE configuration is greater than that in CB configuration.

Relation between a and £:

I, =1+,
Dividing the above equation by /,, we get
Ie ]b 1:
e 3
. I 1,
Or—{’—=£"~+1
!C IC
d 1
But o =| -£ and g={ <
(!eJ ﬂ ("’b}
@ f A
.'.cz:——g-«- andﬁz——a——
1+ 48 -~

p-n-p transistor as Common Emitter Amplifier: ' o .

Input section is forward biased and output section is reverse biased with biasing batteries Vg,
and ch.

The currents L, I, and . flow in the directions shown such that

L=l+Lk 1)
IRy is the potential drop across the load resistor R;.
By Kirchhoff's rule,
Vu = V['c - Ic RL """ "(2)

1o
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P
L B\
E
% Vo R3IR,
Input Signal l l ~.:x:~
Vi = M =-Vec .V, Outpat Amplified
> + 1 . Sigeal
Positive Half cycle:

During the positive half cycle of the input sinusoidal signal, forward-bias of base and emitter
decreases (since n-type base becomes less negative and p-type emitter becomes less positive).
This decreases the emitter current and hence the collector current. In consequence, the
voltage drop across the load resistance R, decreases. From equation ¢2), it follows that V.,
increases. But, since p-type collector is negatively biased, therefore, increase means that the
collector becomes more negative w.r.t. base and the output goes below the normal value.

So, the output signal is negative for positive input signal,

Negative Half cycle:

During the negative half cycle of the input sinusoidal signal, forward-bias of base and emitter
increases, This increases the emitter current and hence the collector current. In consequence,
the voltage drop across the load resistance R, increases. From equation (2), it follows that V.
decreases. But, since p-type collector is negatively biased, therefore, decrease means that the
collector becomes less negative w.r.t. base and the output goes above the normal value. So,
the output signal is positive for negative input signal.

Note: Input and output are out of phase by 180°.

Barkhausen conditions for oscillations: The gain of the amplifier with positive feedback is

givenby A4, = T—A;E , where A is the voltage gain without feedback, 8 is the feedback ratio

and Af is the loop gain. When Af = 1, then 4, —» = This means that output voltage is

obtained even if input voltage is zero, i.e., it becomes an oscillator. The essential condition
for the maintenance of oscillation is

(i) The loop gain A8 =1

(ii) There must be positive feedback i.e., the net phase shift round the laop is 0° or integral
mulitiples of 2m.

(iii) Initially, the loop gain (48 ) must be greater than unity.

These are called the Barkhausen conditions for oscillations.

Transistor as an Oscillator (p-n-p): An oscillator is a device which can produce undamped
electromagnetic oscillations of desired frequency and amplitude. It is a device which delivers
a.c. output waveform of desired frequency from d.c. power even without input signal
excitation.

W
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Tank ¢ircuit containing an indactance L and a capacitance C connected in paraiiel can
oseillate the energy gwcn 10 1t between electrostatic and magnetic energies. However, the
os¢illations die away since the amplitude decreases rapidly due to inherent electrical
resistance i the cireuit.
In order to obtain undamped oscitlations of constant amplitude, transistor can be used to give
regenerative or pesitive feedback fiom the output circuit to the input circuit so that the circuit
losses can be compensated.
When key K is dlosed, collestor currens begins to grew through the tickler coil L', Magneﬂc
flex linked with L’ as well a5 L increases as they are inductively coupied. Due to change in
magnetic flux, induecd EMF is set up insuch a direstion that the smitter-base junction is
forwasd biased. This increases the emitter current and hence the collector cayent.
With the increast in collector eurrent, the magnetic flux across L® and L increases. The
process continues till the collector cursent reaches the saturation value. During this process
the upper plate of the capacitor C gets positively charged.
At thissstage, induced EMF in L becomes zero. The capacitor C starts discharging through the
nductor L.
The emitter currem starts decreasing resulting in the decrease in collector current. Apgain the
magnetic flux clramges i L’ and L but it induces EMF in such a direction that it decreases the
forward bias of emitter-base juncion.
As a result, emitter current furthier decreases and hence collector current also decreases. This
continues till the coector cursent becomes zero. At this stage, the magnetic flux linked with
the coils become zero and hence no induced EMF across L. However, the decreasing current
after reaching zero value overshoots (goes below zero) and hence the cusrent starts increasing
but in the opposite direction. During this period, the lower plate of the capacitor C gets
positively charged. o
This process continues till the curremt reaches the saturation value in the negative dwe‘eflon.
At this stage, the capacitor starts discharging but in the oppesite direction (giving positive
feedback) and the current reaches zero value from negative vaive. The cycle again repeats
and hence the oscillations are produced. The output is obtained across L””. The frequency of
oscillations is given by

1
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Transistor as a switch: An n-p-n silicon transistor is connected in a common-emitter mode
with a load resistance R¢ in the collector circuit. Here Ry is the current limiting resistor to
keep /5 below the maximum allowed value.

Saturation_region

2 3 g
— V, (V)
(1) When V,; increases from 0 to about 0.6 V, the base current /5 and the collector current /¢
are both zero, and the output voltage V, remains equal to the battery voltage Ve (6V). Here
the transistor is not conducting and is said to be cut-off or switch off.

Voo =Ves +1cRe
Or Vg =Vee — I Re
Or Vo=V - 1.R.
Vo=V = (OxR )=V =6V
{(2) When V, increases from about 0.6 V to 1.4 V, Iz and I¢ increases rapidly from zero while
V falls rapidly.

(3) When V, increases from 1.4 V to 6 V, I goes on increasing but soon /- reaches the
maximum and V, falls to nearly zero. In this case the transistor is said to be saturated or
switch on,

Vo=Vee = IcRe

V
Vo= Voo ) p X Re} =V 20 ('-'([c)m ”_R:_:_'c_}
c

Analogue signal: A continuous signa! value which at any instant lies within the range of a

maximum and a minimum value.

v Vv

0 e — ot
_W}

Ansloguesignal Digital signal
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Digital signal: A discontinuous signal value which appears in steps in pre-determined levels
rather than having the continuous change.

Digital Circuit:

An electrical or electronic circuit which operates only in two states (binary mode) namely ON
and OFF is called a Digital Circuit.

In digital system, high value of voltage such as +10 V or +5 V is represented by ON state or 1
(state) whereas low value of voltage such as 0 V or -5V or -10 V is represented by OFF state
or 0 (state).

OR Operation:
OR operation is tepresented by (+).
Its Boolean exprassionis Y = A + B SA
It is read as “Y equals A or B”.
It means that “if A is true or B is true, then Y wili

be true”. Y
. Truthiable — B
Swiigh A Switch B Buib Y {4
OFF _OFF OFF E
OFF ON ____ON
ON OFF _ON
.. ON ON ON
AND Operation:
AND operation is represented by ()
its Boolean expressionis Y= A - B
It is read as “Y equals A and B”, 5 A 5B
It means that “if both A and B are true, then Y
will be true”. )
~ Fyuth table . i Y
Switch A Switeh B Bulb Y E
OFF |  OFF OFF
OFF | ON QFF
ON. | _ OFF QOFF
.__ON _ON ON
NOT Operation: ~
NOT operation is represented by (" Yor{ ).
Its Boolean expression is Y'=A’or A
It is read as “Y equals not A”.
It means that “if A is true, then Y will be
flse”. AT
Truth table 1 »
SwitthA | BulbY {Ht »
OFF ON E Y
ON OFF
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Logic Gates: The digital circuit that can be analysed with the help of Boolean aligebra is
called logic gate or logic circuit. A {ogic gate can have two or more inputs but only one
output. There are 3 fandamental logic gates namely OR gate, AND gate and NOT gate.

Truth Table: The operation of a logic gate or circuit can be represented in a table called the
truth table which contains all possible :nputs and their corresponding outputs. If there are »
inputs in any logic gate, then there will be #° possible input combinations.

Digital OR gate:

An OR gate can have any number of inputs but only one output. It gives high output (1) if
either input A or B or both are high (1), otherwise the output Y is low (0).

Boolean expressionis Y =A + B

Trugéehle _

A B Y=A+B A

0 0 0 %

0 1 !

1 0 I B

TR 1 Logic Symboel
Realisation of OR gate:

The positive voltage (+5 V) corresponds to high input i.e., 1 (state).
The negative terminal of the battery is grounded and corresponds to low input i.e., 0 (state).

Case 1: Both A and B are given 0 input

and the diodes do not conduct current.
Hence no output is across Ry.. i.e., Y =0 5 D [
Case 2: A is given 0 and Bis given 1. D

Diode Dy does not conduct current (cut-off) i ‘
but diode D; conducts. Hence output (5 V) j‘[’ !

i
is available across Ry.i.e., Y =1
L 'i T ,.-/ RI.

Case 3: A is given 1 and B is given 0.
Diode D; conducts current but diode D
does not conduct. Hence output (5 V) is
available across R. i.e., Y = |

Case 4: A and B are given 1. Both the
diodes conduct current. However output (only 5 V) is available across Ry. ie., Y = |

I'I—MHI———°
|

Digital AND gate:

An AND gate can have any number of inputs but only one output. It gives high output (1) if
inputs A and B are both high (1), otherwise the output Y is low (0).

Boolean expressionisY=A-B

Truth table
A B Y=A-B A
0 0 0 v
0 ! 0
1 0 0 B
| 1 N 1 Logic Symbol
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Realisation of AND gate:
The positive voltage (+5 V) corresponds to high input i.e., 1 (state).
The negative terminal of the battery is grounded and corresponds to low input i.e., 0 (state).

Case 1: Both A and B are given § input and the diodes conduct current (Forward biased).
Since the current is drained to the earth,

hence, no output across Ry. ie., Y =0 A o——fG——r
_L

Case 2: Ais given 0 and B is given 1.
Diode Dy being forward biased conducts
current but diode Dy does not conduct.
However, the current from the output B o ’QD
battery is drained through Dy. So, Y =0 !

Y
Case 3: A is given | and B is given Q. = sV L ""-L
Diode D does not conduct current but = I 5V
diode D; being forward biased conducts. = i
However, the current from the output =
battery is drained through D,. Hence, no cutput is available across R;. i.e,, Y=10
Case 4: A and B are given 1. Both the diodes do not conduct current. The current from the
output battery is available across R, . Hence, there is voltage drop (5 V) across Ri. i.e., Y = |

Digital NOT gate:

A NOT gate is the simplest gate, with one input and one output. It gives a high output (1), if
the input A is low (0), and vice versa. Whatever the input, the NOT gate inverts it.

Boolean expressionis Y = A

Truth table
A Y
it
1

A A Y

Oi=t

Loglc Symbeol

Realisation of NOT gate: _
n-p-n transistor is connected to biasing batteries through Base resistor (R,) and Collector

resistor (Ry). Emitter is directly earthed. Input is given through the base and the output is
tapped across the collector.

Case 1: A is given 0 input. In the absence of
forward bias to the p-type base and n-type
emitter, the transistor is in cut-off mode
(does not conduct current). Hence, the
current from the collector battery is available
across the output unit. Therefore, voltage
drop of 5 V is available across Y. i.e., Y= 1
Case 2: A is given | input by connecting the
positive terminal of the input battery. p-type
base being forward biased makes the
transistor in conduction mode. The current
supplied by the collector battery is drained
through the transistor to the earth. Therefore,
no output is available across Y. i.e, Y =0
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NAND gate:
A NAND gate is the combination of an AND and a NOT gate. It is obtained by connecting
the output of an AND gate to the input of a NOT gate.

Boolean expressionis Y= A-B

Truth table
0 it 0 1 Y
0 I 0 1 B
1 0 0 1
Symbol
1 1 1 0 Logie
Circuit;
A
L L
= sy /
— B -— D R.I:I/)
= sv
_ - LY. =
R
A
\/ﬂ_}>b__,y=3 B
B s
NOR gate:

A NOR gate is the combination of an OR and a NOT gate. It is obtained by connecting the
output of an OR gate to the input of a NOT gate.

Boolean expressionisY = A+B

Truth table
A B A+B Y=A+B A
0 0 0 1 Y
0 1 1 0
1 0 1 0 B
i 1 1 0 Logic Symbol

S
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Circuit:

95
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COMMUNICATION SYSTEM

Elements of a communication system: The communication system has three essential
elements:

(1) Transmitter

(2) Communication channel]

(3) Receiver

Communication system
j . - |
Information ' ' User of
Traasmitter Channedl Recetver |r
werce Message! Transm Received | Message Information
signal signal signail 'y sgnsl

Y 3

””””” 1

! Noise !

[ _l

Basics of communication:
(1) Communication: Processing, sending and receiving of information
(2) Information: Intelligence, signal, data or any measurable physical quantity

i) Wire Links
ii) Wireless
iii) Optic Fibres
Source of J Transmitter
information

! Link

i} Speech 1) Osciliators ii) Amplifiers
ii) Pictures iii) Filters iv) Antenna

iit) Words

iv) Codes

v} Symbols _
vi)) g?mmds Destination Receiver

vii) Data .
i} Radio ii) TV iii) Computer iv) Telephone
v) Teleprinter vi) Telegraph vii) Fax viii) Internet

Basic components of a transmitter and a receiver:
Amenna
e 3
=

Microphone

transmitter
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Basic terminology used in electronic communication systems:

Transducer: Any device which converts energy from one form to another is called a
transducer. For example, a microphone converts a sound signal into an electrical signal.

Signals: 1t is the efectrical analog of the information produced by the source. It may be
defined as the single-valued function of time (that conveys the information) and which, at
every instant of time, takes a unique value. Signals can be analog or digital.

Noise: The unwanted electrical signals which get interfered with the information signal
during its propagation through a transmission medium constitute noise.

Transmitter: 1t is a device which processes a message signal into a form suitable for
transmission and then transmits it into the receiving end through a transmission medium.

Receiver: A device that extracts the original signal from the modulated signal is known as
receiver.

Actenuation: The loss of strength of a signal during its propagation through the transmission
medium is called attenuation.

Amplification: It is the process of increasing the amplitude and hence the strength of an
electrical signal by using an electric circuit (consisting of at least one transistor) called the
. amplifier

Range: It is defined as the largest distance between the source and the destination upto which
a signal can be regeived with sufficient strength.

Bandwidth: The range over which frequencies in an information signal vary is f:alled '
bandwidth. It is equal to the difference between the highest and lowest frequencies present in

the signal.

Modulation: Modulation is the process in which some char‘acteri'stic., usually the am?litude,
frequency or phase angle of a high frequency carrier wave, is varied in uccordan_ce W:Ith the
instantaneous value of the low frequency information signal, called the modulating signal.

Demodulation: The process of recovering the original i'nformation gignal from the
modulated wave at the receiver end is called demodulation or detection.

Repeater: A repeater is a combination of a transmitter, an am.pli.fier and a rec‘:civer whic_:h
picks up a signal from the transmitter, amplifies and retransmits it to the receiver sometimes

with a change of carrier frequency.

w
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Bandwidth of signals:

Speech signals: Speech signals contain frequencies between 300Hz to 3100Hz. Such signals
require a bandwidth of 2800Hz (3100Hz - 300Hz) for telephonic transmission.

Music signals: Music signals have frequencies between 20Hz to 20kHz. Such signals require
a bandwidth of about 20kHz (20kHz - 20Hz2)

Video signals: The bandwidth of 4.2 MHz is required for the transmission of pictures.

TV signals: The bandwidth required for g Yo Vot 2V,
transmission of TV signals which contain both \_ /

) e -3 I Vot 2V + 3V
audio and video is 6 MHz. ‘ 1 w*y—-*v-gf'

P . '||' 1

Digital signals: If the signals are digital, they are 4 J .
rectangular in shape. They can be expressed as a 0 } T e
superposition of sinusoidal waves of frequencies ! 4
Vo, 2Vo, 3V, 4Vo... NV, Where v, is the fundamental RS
frequency and n is an integer extending to infinity. L A natall

The bandwidth in this case is infinite

Note: Information of a digital signal is conveyed by the pattern of the pulses, not by their
shape.
Some important wireless communication frequency bands:

Service Frequency bands Comments
Standard AM broadcast | 540 - 1600 kHz
FM broadcast 88— 108 MHz
Television 54 - 72 MHz VHF (very high frequency)
76 — 88 MHz TV
174 - 216 MHz UHF (ultra high frequency)
420 - 890 MHz TV
Cellular Mobile Radio 896 - 901 MHz - | Mobile to base station
840 - 935 MHz Base station to mobile
Satellite Communication | 5.925-6.425 MHz | Uphink
3.7-4.2MHz Downlink

e
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Propagation of Electromagnetic Waves:

Depending on the frequency, radio waves and micro waves travel in space in different ways.
Due to the behaviour of these waves w.r.t. the earth and the atmosphere, then we have

(1} Ground or surface wave propagation

(2) Sky or ionospheric wave propagation

(3) Space or tropospheric wave propagation

(1) Ground wave propagation: The mode of propagation of EM waves in which there is a
strong influence of the ground on the propagation of signal waves from the transmitting to the
receiving antenna is known as ground or surface wave propagation. !t is suitable for low and
medium frequency upto 2 MHz. It is used for local broad casting,

This is used when the transmitting and receiving antenna are located close to the surface of
the Earth. The field component of the wave gets vertically polarized and induces charges on
the Earth’s surface. These constitute a current in the Earth's surface. This results in energy
dissipation and the wave weakens. Due to this, ground waves are not suitabie for very long-
range communication. The energy losses increase for higher frequencies (the impedance of
ground will increase). So it is not suitable for high frequencies. It can be sustained only at
low frequencies (~500-2000 kHz) or for radio broadcast at long wavelength.

(2) Sky or ionospheric wave propagation: The mode of propagation of waves in which the
radio waves emitted from the transmitting antenna reach the receiving antenna afier being
reflected from the ionosphere is known as sky wave propagation. It is suitable for frequency
between 2 MHz to 30 MHz. It is used for long distance radio communication.

The UV and other high-energy radiations coming from the Sun are absorbed by the air
molecules that get ionized and form an ionized layer of electrons and ions around the Earth.
The ionosphere extends from a height of ~80~300 km above the Earth’s surface. The
effective dielectric constant £ and the corresponding refractive index n' in the ionosphere are
related to g and ng as

. n'=n (1 -(Nel / e,me’)]'"?
where e is the electronic charge, m is the mass of electron, and N is the electron density in the
ionosphere. Refractive index of ionosphere is less than its free space value of np and goes on

decreasing as we go away from Earth. So the waves entering the ionosphere are mﬁact.ed
away from the normal till they are totally internally reflected back toward the Earth. Different

frequencies o are reflected from different regions of ionosphere having different values of N,

The maximum frequency, which is just reflected back to Earth, is called critical frequency f;.
j:- - 9( Nm, )I 2

Where Npax is the maximum electron density of the ionosphere. It should be noted that £ is of

the order of 510 MHz. For frequencies greater than £, waves cross the ionosphere do not

return back.

Atmosphere: Except for the layer in upper atmosphere, called iono§phere. which is
composed of electrons and positive ions, the rest of the atmospherg is composcd mostly of
neutral molecuies. Atmosphere is transparent to visible radiation, infrared is unable to pass

through it, and ultraviolet (UV) radiation is blocked by ozone fayer.

e
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80km
to Thermosphere
300 km (lonosphete)
50 - 80 km Mesosphere
! ZI:m Stratospherte
sokm | . __._____i15-3m — Ozonelayer

] Responsible for a1l impartant
Troposphere ji2km  weathes phenomena affecting
Our environmesd

777777777777
Important Terms used in Sky wave propagation:

(i) Critical frequency (f;): The highest frequency above which the ionosphere no longer
returns the sky wave back to earth when transmitted in vertical direction is called critical

frequency.

(i) Critical angle: For a given frequency, the vertical angle above which the sky wave no
longer returns to earth but travels outward into space is called critical angle.

(iii) Skip distance (Dgp): The distance between the transmitting aerial and the point where
the sky wave is first received after returning to earth is called skip distance.

D,, =2h(fm-] -1
1.

where h is the height of reflecting layer of atmosphere, fnax is the maximum frequency of
electromagnetic waves and f; is the critical frequency.

(iv) Skip zone: A region in the ground where no signal can be picked up is called the skip
zone.

Ground wave —.—"
range

Skip distance
Skip zone

(3) Space or tropospheric wave propagation: Space waves travel in (more or less) straight
lines. But they depend on line-of-sight conditions. So, they are limited in their propagation
by the curvature of the earth. They propagate very much like electromagnetic waves in free
space. It is suitable for 30 MHz to 300 MHz. It is used in television communication and radar
communication. It is also called line-of-sight communication.
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This mode is forced on the waves because their wavelengths are 100 short for reflection from
the ionosphere, and because the ground wave disappears very close to the transmitter, owing
to tilt.
The transmitted waves travelling in a straight line directly T
reach the receiver end and are then picked up by the WAVVHAY 2 WAVIM
receiving antenna. The effective range of the broadcast is
essentially the region from P to Q, which is covered by
the line-of-sight.

d=~2Rh
where R is the radius of the Earth, 4 is the height of
antenna above the Earth’s surface as shown in the figure.
For far-away stations, either a repeater is used or 4 is
increased (by locating the transmitter on a satellite)

Height of TV Transmitting Anteana:

Let h be the height of the transmitting antenna, d be the distance (radius) of coverage from
the foot of the tower and R be the radius of the earth.

0T’ = 0Q’ + QT

(R+ hgz =R+ (P + ) agNote: ZTFQ s a right angle )

R+ +2Rh=R+ 1+

d~~2Rh

The maximum line-of-sight distance dy, between the transmitting and receiving antennas is
d, = 2Rk, +|2Rh, |

( }

h
V Earth b

Modulation: Modulation is the process in which some characteri.stic_, usually the amplitude,
frequency or phase angle of a high frequency carrier wave, is varied in accorda:{ce w_llh the
instantaneous value of the low frequency information signal, cailed the modulating signal.

Types of Modulation:

1) Amplitude Modulation
2) Frequency Modulation
3) Puise Modulation

4) Phase Modulation

Production of Amplitude modulation (AM) wave: When the axpplitur._le.of high frcquc':ncy
carrier wave is changed in accordance with the amplitude of the signal, it is called amplitude

modulation. )
Let e, = E_sinw,¢ represent a carrier wave of amplitude £, and e, = E_ sin @,/ represent the

modulating signal of amplitude £,,.

T
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I
E,ve ay Ry
{carvier)
T Voo

In amplitude modulation (AM), the amplitude of the carrier wave £, is varied in accordance

with the amplitude of the modulating signal. So the modulated wave can be represented as
e=(L£ + K E, sine,t)sinwt

K. is proportionality factor which determines the maximum variation in amplitude for a

given signal voltage e,

k-

e=E (14 KEE sine, t)sinw ¢

<

e=FE (1+m, sinw,t)sinaws

. is known as modulation index or modulation factor
”
Amplitude change of carrier wave
Normal carrier wave
E
IfK. =1, m ==
* E

[

Modulation factor m, =

Modulation factor:

&

e

E =E +mE =E +E,_
Emin = Ec —maEc = Ec - Em
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_E-E.
T E+E,
E+E -E+E, 2E E,
*"E +E,+E -E, 2E E
Examples: (1)
Amplitude of carrier wave E, = A{say) t

Amplitude of modulating signal £_ =%A =0.54 Hﬁ T .

Find m in percentage ?
Sol": E  =E +E, =A+054=154
Emm:E ~E =A4-054=054
N ~Ey _154-054 4 1

+E,. 154+054 24 2

—_ mll
ma"'?

som, -:%—xlOO%:SO% {(i.e.,m, <100%)

Or

Examples: (2)
Amplitude of carrier wave E, = 4{say)

Amplitude of modulating signal E, =1 -;- A=1.54

Find m, in percentage ?
Sot™ E,,=E +E, =A+1.54=2.54
E, =E~E =A-154=-05A4
Eopp ~Euy _ 25A~(-054) 34 _
T E TE. 254+(-054) 24
m,=1.5x100%=150% (ie,m, >100%)

com, =1.5x100% = 150%

B
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Examples: (3)
Amplitude of carrier wave E, = A(say) t
Amplitude of modulating signal £E_ = 4 H ' ‘ '

Find m,_in percentage ?

Sol. E, =E +E, =A+A=24 y Xy Y
E, .=E~E , =4-4=0
Epge = Epig _24-0 24
“"E_+E, 24+0 24
som, =1x100% =100%  (i.e..m, =100%)

. N
J

Or

som, =1x100% =100%

Importance of modulation factor: Modulation ,
factor is very important since it determines the AT AT {
strength and quality of the transmitted signal. In an
AM wave, the signal is contained in the vaniations >
of the carrier amplitude. When the carrier is y y w

modulated to a small degree i.e., small m,, the Al \ A
amount of carrier amplitude variation is small.
Consequently, the audio signal being transmitted will not be very strong. The greater the
degree of modulation i.e., m,, the stronger and clearer will be the audio signal. But if the
carrier is over modulated i.e., m, > 100% or m,> 1, distortion will occur during reception.

Need for modulation:

(1) Size of the antenna or aerial: For transmitting a signal, we need an antenna or an aerial.
This antenna should have a size comparable to the wavelength of the signal (at ieast /4 in
dimension) so that the antenna properly senses the time variation of the signal. For an
electromagnetic wave of frequency 20 kHz, the wavelength A is

8
=<2 3X10 _15000m
v 20x10
This means that for the transmission of this signal, the antenna to be used should have a

length of —} = Lsg@ =3750m = 3.75kmwhich is not possible to construct and operate. Hence
direct transmission of such baseband signals is not practical. We can obtain transmission with
reasonable antenna lengths if transmission frequency is high (for example, if v is | MHz or
10° Hz, then A is 300 m and the length of the antenna is 75m). Therefore, there is a need of
translating the information contained in our original low frequency baseband signal into high

or radio frequencies before transmission.
Or

The antenna size should be at least 4/4 in dimension where A is the wavelength of the signal.

M
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(2) Effective power radiated by an antenna: The power radiated from a linear antenna obey
the relation L

()

This implies that for the same antenna iength /, the power radiated increases with decreasing
A, i.e., increasing frequency. Hence, the effective power radiated by a long wavelength
baseband signal would be small. For a good transmission, we need high powers and hence
this also points out to the need of using high frequency transmission.

Or

. 2
Effective power radiated by an antenna is directly proportional to(—;—] where [ is the length

of antenna. So for a fixed antenna length, power radiated by small wavelength or high
frequencies would be large.

Detection of Amplitude Modulated (AM) Wave: The process of recovering the original
information signal from the modulated wave at the receiver end, is called demodulation or

detection.

G C
AM 1% é Lo 2 =
Speaker
e Rectified wave Qutput wave without
AM wave | . radio frequency
| : compoenent

The figure shows a simple detector circuit. The modulated wave of desired frequency is
sefected by the parallel tuned L;C; and is applied to a crystal diode. Asa resull: the output of
the diode consists of positive half cycle of modulated wave as shown. The rectified .
modulated wave is filtered by the capacitor C shunted across the speaker. The capacitor C
acts as a by-passed for carrier waves and the audio frequency voltage is fed to the speaker for
sound reproduction.

#
Page 405

Communication System






W |



| :F..- . L v Ll

—— R ARLALE S e N W % 2
K ¥ j;'"j' 3 -_'....' i . W ‘,1. Y EI . "T:fnlﬂ.t l-‘1 E: I-Dh.l.'l‘ TES
p' . b - LE - " P 1Y J
- i H";I‘: '.‘-l"_t L) '\-., b oty HJH %‘. Iﬂ-lﬂ #L-'ﬁ
- o T by ¥ T, .;'l-:* T 'l‘%ﬂ; j} s
’ ll'.L-*- e [ Y I-l “|- i / ;ﬂ:‘mé
e R ST ST T e
ballee ) o8 T Ny furd 614 — g Rl
sty S S Ml Wit fue i) por
P o L ’ Hmi; ; L7 ] E_'Jil 'il"w
L'= ‘:t. : -j = ]F 25 ﬁ Fll ::1;...-* r‘ : I Pr".. l:. * i \\iql‘_a"_-'—___
ﬁl = - - - T e
Il - _.IJ' iy ,1'11-.!.-& T:j:;': . .I|I'-"l_|rq.-r a8 iy I’ﬁ i'li.ﬂ n;%#‘rﬂ]‘s &l il'_.I’:r ,11111 '_"ul_l- Al
s — s
m P r nlr "*"!1‘ LI ~ ) ﬂ_ j i )
|'“”_ '}1 [ £ 4vf 1) figt ‘I:lr"ih £l ﬂ-g‘ﬂ, :;;-’:;- _ - " 'i'f'{--l-..rg )
m - 1“' P T neind gl “ i M_'ﬂf.
Wy ki dsmd e i L a L) W
I"Iif'l'-'t:.-t ';. '_ ) ? . hl IF‘LH a ‘f; f"}& -d---
[ S | Ilql' _ , e
:.nr it H‘:'i Hifh |I|.._l.-|. 4 ;‘ : f‘_ll?: -tﬂf“ﬂl F‘t'
£ fo) iy % s m P
4t \ okl T T - P
p ity 4 - I
| AT ' lae Ladsd ot
"H f 2 ! i f # L] Iy
o ot hlﬂ ¥ H ti_,-',r fﬂ.—*'*--F & abiis W lemhig ﬁ" :
H 'J T l [hf. - M: s, 'll1
i s Gy Xsy o abx h f

L‘T b .f.‘l-i L r i k F!Mr,}u,l.t e '"_t o = e pankebly,
B cepar’ bbb i A e

¢ ¢ b 3
2 W L—‘-r) 14 ~
ﬂt..ﬂ;:i i+ o AT ?L}T\—/—/

- Fy : e '.".ni'!""‘
""’) Wrdir Mo g e\t e ekl

[
\ P = 1:ﬂ-'||f.fr_.| ke
— "uﬂ-’i!'.i f ':‘HT""
t“" H;J' | e Y & Loy I g ne N et "'J""'

Lt

P {
'.‘.‘E'L;E;rwr;] s

A% T ;!,u k'**"‘;' t‘*#%

He,
L Ml T E!“ {ni' Aif%&
z g 54 lq""?ll x r!'lPﬂ.
3 [ 3k I.-ﬂ-.i_ D 7 g
ary :;m |
Bi-1p [ e p i oY M
G




	Page 1 
	Page 2 
	Page 3 
	Page 4 
	Page 5 
	Page 6 
	Page 7 
	Page 8 
	Page 9 
	Page 10 
	Page 11 
	Page 12 
	Page 13 
	Page 14 
	Page 15 
	Page 16 
	Page 17 
	Page 18 
	Page 19 
	Page 20 
	Page 21 
	Page 22 
	Page 23 
	Page 24 
	Page 25 
	Page 26 
	Page 27 
	Page 28 
	Page 29 
	Page 30 
	Page 31 
	Page 32 
	Page 33 
	Page 34 
	Page 35 
	Page 36 
	Page 37 
	Page 38 
	Page 39 
	Page 40 
	Page 41 
	Page 42 
	Page 43 
	Page 44 
	Page 45 
	Page 46 
	Page 47 
	Page 48 
	Page 49 
	Page 50 
	Page 51 
	Page 52 
	Page 53 
	Page 54 
	Page 55 
	Page 56 
	Page 57 
	Page 58 
	Page 59 
	Page 60 
	Page 61 
	Page 62 
	Page 63 
	Page 64 
	Page 65 
	Page 66 
	Page 67 
	Page 68 
	Page 69 
	Page 70 
	Page 71 
	Page 72 
	Page 73 
	Page 74 
	Page 75 
	Page 76 
	Page 77 
	Page 78 
	Page 79 
	Page 80 
	Page 81 
	Page 82 
	Page 83 
	Page 84 
	Page 85 
	Page 86 
	Page 87 
	Page 88 
	Page 89 
	Page 90 
	Page 91 
	Page 92 
	Page 93 
	Page 94 
	Page 95 
	Page 96 
	Page 97 
	Page 98 
	Page 99 
	Page 100 
	Page 101 
	Page 102 
	Page 103 
	Page 104 
	Page 105 
	Page 106 
	Page 107 
	Page 108 
	Page 109 
	Page 110 
	Page 111 
	Page 112 
	Page 113 
	Page 114 
	Page 115 
	Page 116 
	Page 117 
	Page 118 
	Page 119 
	Page 120 
	Page 121 
	Page 122 
	Page 123 
	Page 124 
	Page 125 
	Page 126 
	Page 127 
	Page 128 
	Page 129 
	Page 130 
	Page 131 
	Page 132 
	Page 133 
	Page 134 
	Page 135 
	Page 136 
	Page 137 
	Page 138 
	Page 139 
	Page 140 
	Page 141 
	Page 142 
	Page 143 
	Page 144 
	Page 145 
	Page 146 
	Page 147 
	Page 148 
	Page 149 
	Page 150 
	Page 151 
	Page 152 
	Page 153 
	Page 154 
	Page 155 
	Page 156 
	Page 157 
	Page 158 
	Page 159 
	Page 160 
	Page 161 
	Page 162 
	Page 163 
	Page 164 
	Page 165 
	Page 166 
	Page 167 
	Page 168 
	Page 169 
	Page 170 
	Page 171 
	Page 172 
	Page 173 
	Page 174 
	Page 175 
	Page 176 
	Page 177 
	Page 178 
	Page 179 
	Page 180 
	Page 181 
	Page 182 
	Page 183 
	Page 184 
	Page 185 
	Page 186 
	Page 187 
	Page 188 
	Page 189 
	Page 190 
	Page 191 
	Page 192 
	Page 193 
	Page 194 
	Page 195 
	Page 196 
	Page 197 
	Page 198 
	Page 199 
	Page 200 
	Page 201 
	Page 202 
	Page 203 
	Page 204 
	Page 205 
	Page 206 
	Page 207 
	Page 208 
	Page 209 
	Page 210 
	Page 211 
	Page 212 
	Page 213 
	Page 214 
	Page 215 
	Page 216 
	Page 217 
	Page 218 
	Page 219 
	Page 220 
	Page 221 
	Page 222 
	Page 223 
	Page 224 
	Page 225 
	Page 226 
	Page 227 
	Page 228 
	Page 229 
	Page 230 
	Page 231 
	Page 232 
	Page 233 
	Page 234 
	Page 235 
	Page 236 
	Page 237 
	Page 238 
	Page 239 
	Page 240 
	Page 241 
	Page 242 
	Page 243 
	Page 244 
	Page 245 
	Page 246 
	Page 247 
	Page 248 
	Page 249 
	Page 250 
	Page 251 
	Page 252 
	Page 253 
	Page 254 
	Page 255 
	Page 256 
	Page 257 
	Page 258 
	Page 259 
	Page 260 
	Page 261 
	Page 262 
	Page 263 
	Page 264 
	Page 265 
	Page 266 
	Page 267 
	Page 268 
	Page 269 
	Page 270 
	Page 271 
	Page 272 
	Page 273 
	Page 274 
	Page 275 
	Page 276 
	Page 277 
	Page 278 
	Page 279 
	Page 280 
	Page 281 
	Page 282 
	Page 283 
	Page 284 
	Page 285 
	Page 286 
	Page 287 
	Page 288 
	Page 289 
	Page 290 
	Page 291 
	Page 292 
	Page 293 
	Page 294 
	Page 295 
	Page 296 
	Page 297 
	Page 298 
	Page 299 
	Page 300 
	Page 301 
	Page 302 
	Page 303 
	Page 304 
	Page 305 
	Page 306 
	Page 307 
	Page 308 
	Page 309 
	Page 310 
	Page 311 
	Page 312 
	Page 313 
	Page 314 
	Page 315 
	Page 316 
	Page 317 
	Page 318 
	Page 319 
	Page 320 
	Page 321 
	Page 322 
	Page 323 
	Page 324 
	Page 325 
	Page 326 
	Page 327 
	Page 328 
	Page 329 
	Page 330 
	Page 331 
	Page 332 
	Page 333 
	Page 334 
	Page 335 
	Page 336 
	Page 337 
	Page 338 
	Page 339 
	Page 340 
	Page 341 
	Page 342 
	Page 343 
	Page 344 
	Page 345 
	Page 346 
	Page 347 
	Page 348 
	Page 349 
	Page 350 
	Page 351 
	Page 352 
	Page 353 
	Page 354 
	Page 355 
	Page 356 
	Page 357 
	Page 358 
	Page 359 
	Page 360 
	Page 361 
	Page 362 
	Page 363 
	Page 364 
	Page 365 
	Page 366 
	Page 367 
	Page 368 
	Page 369 
	Page 370 
	Page 371 
	Page 372 
	Page 373 
	Page 374 
	Page 375 
	Page 376 
	Page 377 
	Page 378 
	Page 379 
	Page 380 
	Page 381 
	Page 382 
	Page 383 
	Page 384 
	Page 385 
	Page 386 
	Page 387 
	Page 388 
	Page 389 
	Page 390 
	Page 391 
	Page 392 
	Page 393 
	Page 394 
	Page 395 
	Page 396 
	Page 397 
	Page 398 
	Page 399 
	Page 400 
	Page 401 
	Page 402 
	Page 403 
	Page 404 
	Page 405 
	Page 406 
	Page 407 
	Page 408 
	Page 409 
	Page 410 
	Page 411 
	Page 412 
	Page 413 
	Page 414 
	Page 415 
	Page 416 
	Page 417 
	Page 418 
	Page 419 
	Page 420 
	Page 421 
	Page 422 
	Page 423 
	Page 424 
	Page 425 
	Page 426 

