SHILLONG COLLEGE
Shillong-793001, Meghalaya

Project on

“Steganography”

Submitted for the partial fulfiiment for the award of the degree of Bachelor
of Computer Applications

By
Banlamshai Lyngdoh Mawphlang
Roll No: P1500064
Regn No: 10463 of 2014-15

Department of Computer Science and Applications

Shillong College, Shillong-793001

‘HMI“’}‘HIH

NORTH EASTERN HILL UNIVERSITY
Certified that this is a bonafide of the project
Entitled

“Steganography”

Submitted for the partial fulfilment for the award of the degree of Bachelor
of Computer Applications
Submitted

By

Banlamshai Lyngdoh Mawphlang
Roll No: P1500064
Regn No: 10463 of 2014-15

\“<\V\\ \“(

GUIDE HEAD OF DEPARTMENT EXAMINER
Mr Donald Thabah Mrs A.Mitri a)'/'
ey
2 L

ég\\?‘r

\ Department of Computer Science and Applications

Shillong College, Shillong-793001

8.

9.

=

Abstract

Introduction

Synopsis

Overview

Methodology

Steganography\ vs Cryptography
Steganography Techniques

System Analysis and Design

Code Analysis

10. User Manuals

11. Acknowledgment

12. Conclusion

|

o

ABSTRACT

Steganography is the art of hiding the fact that communication is taking
place, by hiding information in other information. Many different carrier file
formats can be used, but digital images are the most popular because of their
frequency on the internet. For hiding secret information in images, there exists a
large variety of steganography techniques some are more complex than others
and all of them have respective strong and weak points. Different applications
may require absolute invisibility of the secret information, while others require
a large secret message to be hidden. This project report intends to give an
overview of image steganography, its uses and techniques. It also attempts to
identify the requirements of a good steganography algorithm and briefly reflects

on which steganographic techniques are more suitable for which applications.

(s)
v)

INTRODUCTION

One of the reasons that intruders can be successful is the most of the
information they acquire from a system is in a form that they can read and
comprehend. Intruders may reveal the information to others, modify it to
misrepresent an individual or organization, or use it to launch an attack. One
solution to this problem is, through the use of steganography. Steganography is a
technique of hiding information in digital media. In contrast to cryptography, it
1s not to keep others from knowing the hidden information but it is to keep others

from thinking that the information even exists.

Steganography become more important as more people join the cyberspace
revolution. Steganography is the art of concealing information in ways that
prevents the detection of hidden messages. Steganography include an array of
secret communication methods that hide the message from being seen or

discovered.

Due to advances in ICT, most of information is kept electronically. Consequently,
the security of information has become a fundamental issue. Besides
cryptography, steganography can be employed to secure information. In
cryptography, the message or encrypted message is embedded in a digital host
before passing it through the network, thus the existence of the message is
unknown. Besides hiding data for confidentiality, this approach of information
hiding can be extended to copyright protection for digital media: audio, video and

images.

The growing possibilities of modern communications need the special means of
security especially on computer network. The network security is becoming more
important as the number of data being exchanged on the internet increases.
Therefore, the confidentiality and data integrity are requires to protect against

unauthorized access and use. This has resulted in an explosive growth of the field

[6)
t J

of information hiding Information hiding is an emerging research area, which
encompasses applications such as copyright protection for digital media,

watermarking, fingerprinting, and steganography.

In watermarking applications, the message contains information such as
owner identification and a digital time stamp, which usually applied for copyright

protection.

Fingerprint, the owner of the data set embeds a serial number that uniquely
identifies the user of the data set. This adds to copyright information to makes it

possible to trace any unauthorized use of the data set back to the user.

Steganography hide the secrete message within the host data set and
presence imperceptible and is to be reliably communicated to a receiver. The host
data set 1s purposely corrupted, but in a covert way, designed to be invisible to an

information analysis.

Protecel Namo STEGANOGRAPHY
2. Objective of the project:

This project is developed for hiding information in any image file. The
scope of the project is implementation of steganography tools for hiding
information includes any type of information file and image files and the path

where the user wants to save Image and extruded file.

The goal of steganography 1s covert communication. Sg, a fundamental
requirement of this steganography system is that the hider message carried by

stego-media should not be sensible to human beings.

The other goad of steganography is to avoid drawing suspicion to the
existence of a hidden message. This approach of information hiding technique

has recently became important in a number of application area
This project has following objectives:

e To product security tool based on steganography techniques.

e To explore techniques of hiding data using encryption module of this

project

e To extract techniques of getting secret data using decryption module.

3. Project category-

The Project category is Application base developed in MS Visual
Studio 2008 with Net Framework 3.5. Language used 1s C#.

4. Language and software tool used:

@ Front End: C# |
@ Operating System: Window 7 and above
@ Back End: Microsoft SQL Server 2008
6. Hardware requirement:
@ Operating system: Window 7 and above.
@ Hard disks: 40GB
@ RAM: 256 MB
7. Software requirement:

@® C#

@ .Net Framework

@ MS SQL server 2008

The word steganography comes from the Greek “Seganos” , which mean covered
or secret and — “graphy” mean writing or drawing. Therefore, steganography
mean, literally, covered writing. It 1s the art and science of hiding information
such its presence cannot be detected and a communication is happening. A secrete
information is encoding in a manner such that the very existence of the
information is concealed. Paired with existing communication methods,

steganography can be used to carry out hidden exchanges.

The main goal of this projects it to communicate securely in a completely
undetectable manner and to avoid drawing suspicion to the transmission of a hider

data. There has been a rapid growth of interest in steganography for two reasons:

(9)
¢)

The publishing and broadcasting industries have become interested in techniques
for hiding encrypted copyright marks and serial numbers in digital films, audio

recordings, books and multimedia products

Moves by various governments to restrict the availability of encryption services
have motivated people to study methods by which private messages can be

embedded in seemingly innocuous cover messages.

The basic model of steganography consists of Carrier, Message and password.
Carrier is also known as cover-object, which the message is embedded and serves

to hide the presence of the message.

[10)
L J
Mothodology:

Two types of Encryption are present in this project.

1. Hiding text into an Image and

2. Hiding Files into an Image.

The first one is focus only on text based hiding. The user has three button i.e.
Encrypt, Decrypt, Save. There is also a textbox to input the password, and the

1mage preview picture box.
Steps:

File: is used to open the 1mage the user want.
Text Area: 1s used to input the message to be encrypted.

Password: key to protect the encryption.

Ll

Encrypt: is used to encrypt and save the encrypted text and picture into a
storage media.

5. Decrypt: is used to decrypt the encrypted image and text.

The Second one is focus in hiding files into an image i.e. .txt, .docx, .csv and so
on. The user has two tab options — encrypt and decrypt. If user select encrypt,
application give the screen to select image file, information file and option to
save the image file. If user select decrypt, application gives the screen to select
only image file and ask path where user want to save the secrete file. The
Encryption Process is also protected with a Key (i.e. Password) for better
security of the data and File. In encryption the secret information is hiding in

with any type of image file. Decryption is getting the secret information from

image file.

11

£
| ——

Basically, the model for steganography is shown on following figure:

Cover-object,
C

: F(X,M,K)
Message, M —»| Stego Object, Z

Stego-key, K

Message 1s the data that the sender wishes to remain it confidential. It can be
plain text, ciphertext, other image, or anything that can be embedded in a bit
stream such as a copyright mark, a covert communication, or a serial number.
Password is known as stego-key, which ensures that only recipient who know the
corresponding decoding key will be able to extract the message from a cover-
object. The cover-object with the secretly embedded message is then called the

Stego-object.

Recovering message from a stego-object requires the cover-object itselt and a
corresponding decoding key if a stego-key was used during the encoding process.
The original image may or may not be required in most applications to extract the

message.
There are several suitable carriers below to be the cover-object:

e Network protocols such as TCP, IP and UDP

e Audio that using digital audio formats such as wav, midi, avi, mpeg,

mpi and voc

12

]
)

e F'ile and Disk that can hides and append files by using the slack space

(
L

e Text such as null characters, just alike morse code including html

and java

e Images file such as bmp, gif and jpg, where they can be both color

and gray-scale.

In general, the information hiding process extracts redundant bits from cover-

object. The process consists of two steps:

e Identification of redundant bits in a cover-object. Redundant bits are
those bits that can be modified without corrupting the quality or

destroying the integrity of the cover-object.

e Embedding process then selects the subset of the redundant bits to
be replaced with data from a secret message. The stego-object 1s

created by replacing the selected redundant bits with message bits

Qwi . . TN Y AN ; < r Y g”' “‘,. g, 1 g g ;)
DSLOZANOETAPnY VL TryDLoorapny:

Basically, the purpose of cryptography and steganography is to prov
secret communication. However, steganography is not the same as cryptography.
Cryptography hides the contents of a secrete message from a malicious people,
whereas steganography even conceal the existence of the message. In
cryptography, the system is broken when the attacker can read the secret message.
Breaking a steganography system need the attacker to detect that steganography

has been used.

It 1s possible to combine the techniques by encrypting message using
cryptography and then hiding the encrypted message using steganography. The
resulting stego-image can be transmitted without revealing that secret

information 1s being exchanged.

Over the past few years, numerous steganography techniques that embed
hidden messages in multimedia objects have been proposed. There have been many
techniques for hiding information or messages in images in such a manner that
alteration made to the image is perceptually indiscernible. Commonly approaches

are include LSB, Masking and filtering and Transform techniques.

Least significant bit (LSB) insertion is a simple approach to embedding
information in image file. The simplest steganography techniques embed the bits
of the message directly into least significant bit plane of the cover-image in a
deterministic sequence. Modulating the least significant bit does not result in
human perceptible difference because the amplitude of the change 1s small. In this
technique, the embedding capacity can be increased by using two or more least

significant bits. At the same time, not only the risk of making the embedded

message statistically detectable increase but also the image fidelity degrades.

()
Hence a variable size LSB embedding schema is presented, in which the number
of LSBs used for message embedding/extracting depends on the local
characteristics of the pixel. The advantage of LSB-based method is easy to

implement and high message pay-load.

Although LSB hides the message in such way that the humans do not perceive it,
it is still possible for the opponent to retrieve the message due to the simplicity
of the technique. Therefore, malicious people can easily try to extract the
message from the beginning of the image if they are suspicious that there exists

secret information that was embedded in the image.

Therefore, a system named Secure Information Hiding System (SIHS) is proposed
to improve the LSB scheme. It overcomes the sequence-mapping problem by
embedding the massage into a set of random pixels, which are scattered on the

cover-image.

Masking and filtering techniques, usually restricted to 24 bits and gray scale
image, hide information by marking an image, in a manner similar to paper
watermarks. The technique perform analysis of the image, thus embed the
information in significant areas so that the hidden message is more integral to

cover image than just hiding it in the noise level.

Transform techniques embed the message by modulating coefficient in a transform
domain, such as the Discrete Fourier Transform, or Wavelet Transform. These
methods hide messages in significant areas of the cover image, which make them

more robust to attack. Transformations can be applied over the entire image, to

block throughout the image, or other variant.

[15)
¢ J

timage Steganography and bitmap pictures:

Using bitmap pictures for hiding secret information is one of most popular
choices for Steganography. Many types of software built for this purpose, some
of these software use password protection to encrypting information on picture.
To use these software youmust havea ‘BMP’ format of a pictures to use it, but
using other type of pictures like “JPEG” , “GIF” or any other types is rather
or never used, because of algorithm of “BMP” pictures for Steganography is
simple. Also we know that in the web most popular of image types are “JPEG”

and other types not “BPM” , so we should have a solution for this problem.

This software provide the solution of this problem, it can accept any type of image
to hide information file, but finally it give the only “BMP” image as an output

that has hidden file inside it.

Bitmap type is the simplest type of picture because that it doesn’ t have
any technology for decreasing file size. Structure of these files is that a bitmap
image created from pixels that any pixel created from three colors (red, green and
blue said RGB) each color of a pixel is one byte information that shows the density
of that color. Merging these three color makes every color that we see in these
pictures. We know that every byte in computer science is created from 8 bit that
first bit is Most-Significant-Bit (MSB) and last bit Least-Significant-Bit (LSB),
the idea of using Steganography science is in this place; we use L.SB bit for
writing our security information inside BMP pictures. So if we just use last layer
(8st layar) of information, we should change the last bit of pixels, in other hands
we have 3 bits in each pixel so we have 3*height*width bits memory to write our
information. But before writing our data we must write name of data(file), size of
name of data & size of data. We can do this by assigning some first bits of memory

(8st layer).

(00101101 00011101 11011100)

(10100110 11000101 00001100)

(11010010 10101100 01100011)

Using each 3 pixel of picture to save a byte of data

Steganography system requires any type of image file and the information

or message that is to be hidden. It has two modules encrypt and decrypt.

Microsoft .Net framework prepares a huge amount of tool and options for
programmers that they simples programming. One of .Net tools for pictures and
images is auto-converting most types of pictures to BMP format. I used this tool
in this software called “Steganography” that is written in C#.Net language and
you can use this software to hide your information in any type of pictures without

any converting its format to BMP (software converts inside it).

The algorithm used for Encryption and Decryption in this application provides
using several layers lieu of using only LLSB layer of image. Writing data starts
from last layer (8st or LLSB layer); because significant of this layer is least and
every upper layer has doubled significant from its down layer. So every step we

go to upper layer image quality decreases and image retouching transpires.

The encrypt module is used to hide information into the image; no one can see
that information or file. This module requires any type of image and message and

gives the only one image file in destination.

The decrypt module is used to get the hidden information in an image file. It take
the image file as an output, and give two file at destination folder, one is the same

image file and another is the message file that 1s hidden it that.

Before encrypting file inside image we must save name and size of file in a definite
place of image. We could save file name before file information in LSB layer and
save file size and file name size in most right-down pixels of image. Writing this

information is needed to retrieve file from encrypted image in decryption state.

18

[18)
)

The graphical representation of this system is as follows:

L Start Application]
X

(Hide Text into image]

/\

L Encryption Decryption]

A

A
leage Message J r Image file j

/ \
= E Password]

) P
L Password L No Password J [No Password J
LBMP image flle—] (Image Message]

L Hide Files into Im&%

L Encryption] (Decryption]

‘ l
{ Image Files } [Image file]

- g T [Passwtrd/) ?:Password]

Password No Password J

BMP image file J [Image Files J

)

Message

Hello

sap-4

Password No Password

Password

(
{

20

]
J

No Password

Message

Hello

B
Encryption Process in Hide Files into 1mage

IMAGE FILE INFORMATION FILE

B

Password No Password

Password No Password

INFORMATION FILE\ /

l l IMAGE FILE

(=3
L7)

CODE ANALYSIS

F
A

Home Main Screen Code Analysis

using System;
using System.
using System.
using System.
using System.
using System.
using System.
using System.

using System.

Collections.Generic;
ComponentModel ;
Data;

Drawing;

Ling;

Text;

Windows.Forms;

I0;

namespace MYproject

{

public partial class Forml : Form

{

public Forml ()

{

InitializeComponent() ;

}

int mouseX = 0, mouseY = 0;

bool

mouseDown ;

private void pictureBox3 MouseDown(object sender, MouseEventArgs e)

{

mouseDown = true;

}

private void panell MouseDown(object sender, MouseEventArgs e)

{
}

private void pictureBox3 MouseMove (cbject sender, MouseEventArgs e)

{
i

{

}

f (mouseDown)

mouseX = MousePosition.X - 210;
mouseY = MousePosition.Y - 10;
this.SetDesktopLocation (mouseX, mouseY) ;

private void pictureBox3 MouseUp (object sender, MouseEventArgs e)

{

mouseDown = false;

}

private void panell MouseMove(object sender, MouseEventArgs e)

{
}

private void panell_MbuseUp(object sender, MouseEventArgs e)

{
}

(22)
L)

private void buttonl Click (object sender, EventArgs e)
{

Texttoimageform t = new Texttoimageform();
t.ShowDialog() ;

}

private void panell Paint(object sender, PaintEventArgs e)

{
}

private void button2 Click(object sender, EventArgs e)

{
}

private void pictureBox2 Click(object sender, EventArgs e)
private void Forml Load(object sender, EventArgs e)

private void pictureBoxl Click(object sender, EventArgs e)

{
Application.Exit() ;

}

private void pictureBox2 Click_1(object sender, EventArgs e)
{

if (WindowState == FormWindowState.Normal)

{

WindowState = FormWindowState.Minimized;

}
}

private void pictureBox3 Click(object sender, EventArgs e)
{

}

private void button2 Click_ 1 (object sender, EventArgs e)
{

FiletoimageForm ft = new FiletoimageForm() ;
ft.ShowDialog() ;
}

private void button3 Click(object sender, EventArgs e)
{

}

private void pictureBox3 Click 1(object sender, EventArgs e)

{

(25)
A

private void button5_ Click (object sender, EventArgs e)
{

if (WindowState == FormWindowState.Normal)

{

WindowState = FormWindowState.Maximized;
}
}

private void button4_plick(object sender, EventArgs e)
{

MessageBox.Show ("Files Hidden App");
}

private void pictureBox3 Click 2(object sender, EventArgs e)
{

}

Encrypt Text infc Image

Encrypt Files intfo Image

m
R

using System;

using System.Drawing;

using Systemr.Windows.Forms;
using System.Drawing.Imaging;
using System.IO;

namespace MYproject
{
public partial class Textitoimagelorm @ Form
{
Private Bitmap bmp = null;
Private string extractedText = string.Empty;

public Texttoimageform ()
{

InitializeComponent() ;

private void hideButton Click(object sender, EventArgs e)
{

bmp = (Bitmap)imagePictureBox.Image;
string text = dataTextBox.Text;

if (text.Equals(""))
{

MessageBox.Show ("The text you want to hide can't be empty",
"Warning”} ;

return;

}

if (encryptCheckBox.Checked)

{
if (passwordTextBox.Text.Length < 6)

{

MessageBox.Show("Please enter a password with at least
6 characters", "Warning");

return;

}

else

{
text = Cryptoe.EncryptStringAES (text,

passwordTextBox. Text) ;

}

passwordTextBox.Text = "";
dataTextBox.Text = "";

}

bmp = TexttoimageHelper.embedText (text, bmp);

MessageBox.Show ("Your text was hidden in the image
successfully!", "Done");

notesLabel.Text = "Notes: don't forget to save your new

image.";

(27)
v J
notesLabel .ForeColor = Color.White;

private void extractButton Click (cbject sender, EventArgs e)
{ _

bmp = (Bitmap)imagePictureBox.Image;
string extractedText = TexttoimageHelper.extractText(bmp) ;

if (encryptCheckBox.Checked)
{
try
{
extractedText = Crypto.DecryptStringAES (extractedText,

passwordTextBox. Text) ;

}
catch

{

MessageBox.Show ("Wrong password", "Errorxr");

return;

dataTextBox.Text = extractedText;
}

private void imageToolStripMenulteml Click(object sender, EventArgs
e)

{
OpenFileDialog open_dialog = new OpenFileDialog() ;

open_dialog.Filter = "Image Files (*.jpeg; *.png; *.bmp)|*.Jpg;
*.png; *.bmp";

if (open_dialog.ShowDialog() == DialogResult.OK)
{
imagePictureBox.Image =
Image.FromFile (open dialog.FileName) ;
}
}

private void imageToolStripMenultem Click(object sender, EventArgs

e)

{

SaveFileDialog save_dialog = new SaveFileDialog() ;
save dialog.Filter = "Png Image|*.png|Bitmap Image!*.bmp";

if (save_dialog.ShowDialog() == DialogResult.OK)
{

switch (save_dialog.FilterIndex)
{

case O:

{

bmp . Save (save_dialog.FileName,
ImageFormat.Png) ;
} break;
case 1:

{

bmp.Save(save_dialog.FileName,

ImageFormat.Bmp) ;
} break;

28

SN
h-’

}

notesLabel.Text = "Notes:";
notesLabel .ForeColor = Color.White;

}

private void textToolStripMenuItem_Click(object sender, Eventdrgs

e)
{
SaveFileDialog save dialog = new SaveFileDialog() ;
save dialog.Filter = "Text Files|* txt";
if (save_dialog.ShowDialog() == DialogResult.OK)
{
File.WriteAllText(save_dialog.FileName, dataTextBox. Text) ;
}
}
private void textToolStripMenuIteml_plick(object sender, EventArgs
a)

{
OpenFileDialog open_dialog = new OpenFileDialog():
open_dialog.Filter = "Text Files{*.txt";

if (open_dialog.ShowDialog() == DialogResult.OK)

{
dataTextBox.Text = File.ReadAllText (open dialog.FileName) ;

}

private void Texttoimageform Load(object sender, EventArgs e)

{
}

private void imagePictureBox Click(object sender, EventArgs e)

{
}

private void buttonl Click(object sender, EventArgs e)
{
OpenfFileDialoy open_dialog = new OpenFileDialog();
open_dialog.Filter = “Image Files (*.jpeg; *.png; *.bmp)|*.Jjpg;
*.png; *.bmp";

if (open_dialog.ShowDialog() == DialogResnlt,OK)
{
imagePictureBox.Image =
Image.FromFile(open_dialog.FileName);
}
}

int mouseX = 0, mouseY = 0;
bool mouseDown;

private void panell Paint(object sender, PaintEventArgs e)

{

(")
}

private void panell MouseDown (object sender, MouseEventArgs e)

{

mouseDown = true;

}

private void panell MouseMove (object sender, MouseEventArgs e)

{
if (mouseDown)

{

mouseX MousePosition.X - 370;
mouseY = MousePosition.Y - 20;
this.SetDesktopLocation(mousex, mouseY) ;

private void panell MouseUp (object sender, MouseEventArgs e)
{
mouseDown = false;

}

private void button2 Click(object sender, EvertArgs e)
{
SaveFileDialog save_dialog = new SaveFileDialog();
save dialog.Filter = "Png Image|*.png|Bitmap Image|*.bmp";

if (save_dialog.ShowDialog() == DialogResult.OK)

{
switch (save dialog.FilterIndex)

{

case O0:
{
bmp.Save (save_dialog.FileName,
ImageFormat.Png) ;
} break;
case 1:
{
bmp.Save (save_dialog.FileName,
ImageFormat.Bmp) ;
} break;
}
notesLabel .Text = "Notes:";

notesLabel . ForeColor = Color.White;

}

private void pictureBoxl Click(object sender, EventArgs e)

{
this.Close() ;

}
private void pictureBox2 Click(object sender, EventArgs e)

{

if (WindowState == FormWindowState.Normal)
{

WindowState = FormWindowState.Minimized;

30

private

{

}

private
e)

{

}

private

{

}

private
EventArgs e)

{

}

private

{
}

private

{
}
private

e)
{

void

void

void

void

void

void

void

| S
| W——

notesLabel Click (object sender, EventArgs e)

passwordTextBox TextChanged (object sender, EventArgs

labell Click(object sender, EventArgs e)

encryptCheckBox_ CheckedChanged (object sender,

dataTextBox TextChanged{object sender, EventArgs e)

textBoxl TextChanged(object sender, EventArgs e)

openToolStripMenultem Click (object sender, EventArgs

OpenFileDialog open dialog = new OpenFileDialeog();
open_dialog.Filter = "Image Files (*.jpeg; *.png; * . bmp) | *.3pg;

* png; *.bmp";

if (open_dialog.ShowDialog() == DialogResult.OK)

{

}
}

imagePictureBox.Image =
Image.FromFile (open_dialog.FileName) ;

S

Hiles to

using System;

using System.Drawing;

using System.Windows.Forms;
using System.IO;

namespace MYproject

{

public partial class FiletoimageForm : Form
{
public FiletoimageForm{)
{
InitializeComponent() ;

}

//public values:

string loadedTrueImagePath, loadedFilePath, saveToImage,
DLoadImagePath, DSaveFilePath;

int height, width;

long fileSize, fileNameSize;

Image loadedTruelmage, DecryptedImage, AfterEncryption;

Bitmap loadedTrueBitmap, DecryptedBitmap;

Rectangle previewlmage = new Rectangle(380, 75, 363, 295);

bool canPaint = false, EncriptionDone = false;

byte[] fileContainer;

private Bitmap bmp = null;

private void panel5_Paint(object sender, PaintEventArgs e)

{
}
private void EnImageBrowse btn Click(object sender, EventArgs e)
{
if (openFileDialogl.ShowDialog() == DialogResult.OK)
{
loadedTrueImagePath = openFileDialogl.FileName;
EnImage_tbx.Text = loadedTruelImagePath;
loadedTrueImage = Image.FromFile(loadedTruelImagePath) ;
height = loadedTruelImage.Height;
width = loadedTruelImage.Width;
loadedTrueBitmap = new Bitmap (loadedTruelmage) ;

FileInfo imginf = new FilelInfo(loadedTruelImagePath) ;
float fs = (float)imginf.Length / 1024;
ImageSize_ lbl.Text = smalldecimal (fs.ToString(), 2} + "

+

1<Bll;

ImageHeight lbl.Text = loadedTruelmage.Height.ToString()
" Pixel”;

ImageWidth_lbl.Text = loadedTruelmage.Width.ToString{() + "
Pixel”;)]

double cansave = (8.0 * ((height * (width / 3) * 3) / 3 -
1)) / 1024;) _

CanSave_lbl.Text = smalldecimal (cansave.ToString(), 2) + "
KB";

canPaint = true;

(33)
L)

this.Invalidate() ;
}

private string smalldecimal (string inp, int dec)

{

int i;
for (i = inp.lLength - 1; i > 0; i~--)
if (inpf{i] == *.")
break;
try

{
return inp.Substring(0, i + dec + 1);
}
catch
{
return inp;
}
}

private void EnFileBrowse_btn_Click (object sender, EventArgs e)

{
if (openFileDialog2.ShowDialog() == DialogResult.OK)

{
loadedFilePath = openFileDialog2.FileName;
EnFile tbx.Text = loadedFilePath;
FileInfo finfo = new FilelInfo(loadedFilePath) ;
fileSize = finfo.Length;
fileNameSize = justFName (loadedFilePath) .Length;
}
}
String a;
private void Encrypt btn_Click(object sender, EventArgs e)
{

String text = PasswordText.Text;

if (checkBoxl.Checked)

{
if (PasswordText.Text.Length < 6)

{

MessageBox.Show("Please enter a password with at least
6 characters", "Warning");

return;

}

else

{
text = Crypto.EncryptStringAES (text,

PasswordText.Text) ;

}

a = text;
PasswordText.Text = "*

if (saveFileDialogl.ShowDialog() == DialogResult.OK)
{

saveTolmage = saveFileDialogl.FileName;
}

34

—
N

else
return;

if (EnImage tbx.Text == String.Empty || EnFile tbx.Text ==

String.Empty)
{

MessageBox.Show ("Encrypton information is

incomplete!\nPlease complete them frist.", "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error) ;

}

if (8 * ((height * (width / 3) * 3) / 3 - 1) < fileSize +

fileNameSize)
{
MessageBox.Show("File size is too large!\nPlease use a
larger image to hide this file.", "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error) ;

return;

}
fileContainer = File.ReadAllBytes (loadedFilePath) ;
EncryptlLayer () ;

private void EncryptLayer ()
{

toolStripStatusLabell.Text = "Encrypting... Please wait";

Application.DoEvents () ;
long FSize = fileSize;

Bitmap changedBitmap = Encryptlayer (8, loadedTrueBitmap, O,

(height * (width / 3) * 3) / 3 - fileNameSize - 1, true);
FSize -= (height * (width / 3) * 3) / 3 - fileNameSize
if (FSize > 0)
{
for (int i = 7; i >= 0 && FSize > 0; i--)
{
changedBitmap = Encryptlayer (i, changedBitmap,
i) * height * (width / 3) * 3) / 3 - fileNameSize - (8 - i)), (((9
height * (width / 3) * 3) / 3 - fileNameSize - (9 - i)), false);
FSize —-= (height * (width / 3) * 3) / 3 - 1;
}
}
changedBitmap. Save (saveToImage) ;
toolStripStatusLabell.Text = "Encrypted image has been
successfully saved.";
EncriptionDone = true;
AfterEncryption = Image.FromFile(saveToImage) ;

this.Invalidate() ;

private Bitmap Encryptlayer(int layer, Bitmap inputBitmap,
startPosition, long endPosition, bool writeFileName)

{

Bitmap outputBitmap = inputBitmap;

layer--;

int i =0, j = 0;

long FNSize = 0;

bool[] t = new bool[8];

bool[] rb new bool[8];

bool[]l gb = new bool[8];

bool[] bb = new bool[8];

Color pixel = new Color();

_1;

(((s

- i)

long

*

35

——
S

byte r, g, b;

if (writeFileName)
{
FNSize = fileNameSize;
string fileName = justFName (loadedFilePath) ;

//write fileName:
for (i = 0; i < height && i * (height / 3) < fileNameSize;
i++)
for (J = 0; j < (width / 3) * 3 && i * (height / 3) +
(3 / 3) < fileNameSize; j++)
{
byte2bool ((byte) fileName[i * (height / 3) + j / 31,
ref t);
pixel = inputBitmap.GetPixel (j, i);
r = pixel.R;
g pixel.G;
b = pixel.B;
byte2boel (r, ref rb):;
bytel2bool (g, ref gb);
byte2bool (b, ref bb);
if (J % 3 == 0)

{
rb(7] = £[0];
gb[7] = t[1];
bbl7] = t[2];
}
else if (j % 3 == 1)
{
rb[7] = t[3];
gb[7] = t[4];
bb[7] = t[5];
}
else
{
rb[7] = t[6];
gb[7] = t[7]);

}
Ceolor result = Color.FromArgb({((int)bool2byte (rb),

{(int)bool2byte(gb) , (int)bool2byte(bb)) ;
outputBitmap.SetPixel (j, i, result);

i--;
}
//write file (after file name):
int tempj = j;

for (; i < height && i * (height / 3) < endPosition -
startPosition + FNSize && startPosition + i * (height / 3) < fileSize +
FNSize; i++) ‘ |
for (3 = 0; 3 < (width / 3) * 3 && i * (height / 3) + (j /
3) < endPosition - startPosition + FNSize && startPosition + i * (height /
3) + (j / 3) < fileSize + FNSize; j++)
{ if (tempj !'= 0)
{ .
j = tempj];
tempj = 0;

[36)
v)

byte2bool ((byte) fileContainer [startPosition + i *
(height / 3) + 3 / 3 - FNSize], ref t);

pixel = inputBitmap.GetPixel(3j, i);

r = pixel.R;

g pixel.G;

b = pixel.B;

byte2bool (r, ref rb);

byte2bool (g, ref gb);

byteZ2bool (b, ref bb);

if (5 % 3 == 0)

{

rb{layer] = t[0];
gb[layer] = t[1];
bb[layer] = t[2];

}
else if (j % 3 == 1)
{

rb[layer] = t[3];
gb[layer] = t[4];
bb[layer] = t[5];
}
else
{
rb[layer] = t[6];
gbllayer] = t[7];

}

Color result = Color.FromArgb((int)bool2byte(rb),
(int)bool2byte(gb) , (int)bool2byte(bb)) ;

outputBitmap.SetPixel (j, i, result);

}
long tempFS = fileSize, tempFNS = fileNameSize;
r = (byte) (tempFS % 100);
tempFS /= 100;
g = (byte) (tempFS % 100);
tempFS /= 100;
b = (byte) (tempFS % 100);
Color flenColor = Color.FromArgb(r, g, b);
outputBitmap.SetPixel (width - 1, height - 1, flenColor);

r = (byte) (tempFNS % 100);

tempFNS /= 100;

g = (byte) (tempFNS % 100) ;

tempFNS /= 100;

b = (byte) (tempFNS % 100);

Color fnlenColor = Color.FromArgb(r, g, b);
outputBitmap.SetPixel (width - 2, height - 1, fnlenColor);

return outputBitmap;

private void DecryptLayer ()

{
toolStripStatusLabell.Text = "Decrypting... Please wait";

Appllcation.DoEvents();

int i, jJ = 0;

bool[] t = new booll[8];

bool[] rb = new bool[8];
bool[] gb = new bool[8];
bool[] bb = new bool [8];

() QNG Cg,
L") &

Color pixel = new Color({);
byte r, g, b;

pixel = DecryptedBltmap GetPlxel(WLdth - 2, helght -
long fNameSize = pixel.R + pixel.G * 100 + pixel.B * iﬂngm
byte[]l res = new byte[fSize];

string resFName = "";

byte temp;'

//Read file name:
for (i = 0; i < height && i * (height / 3) < fNameSize; i++)
for (3 = 0; 3 < (width / 3) * 3 && i * (height / 3) + (3 /
3) < fNameSize; j++)
{
pixel = DecryptedBitmap.GetPixel (3, 1);
r pixel .R;
g pixel.G;
b = pixel.B;
byte2bool (xr, ref rb);
byte2bool {g, ref gb);
byte2bool (b, ref bb);
if (3 % 3 == 0)

[

{
t[0] = rbl7]);
t[1l] = gbl7];
t(2] = bb[7];

}
else if (3 % 3 == 1)
{

t[3) = rb[7];
t[4} = gbl71;
t{5] = bb{7];
}
else
{
t[6] = rb[7];
t{7] = gbl7];
temp = bool2byte(t);

resFName += (char)temp;
}

//Read file on layer 8 (after file name):
int tempj = j;
i--;

for (; i < height && i * (height / 3) < f£Size + fNameSize; i++)
for (3 = 0; j < {(width / 3) * 3 && i * (height / 3) + (3 /
3) < (height * (width / 3) * 3) / 3 - 1 & i * (height / 3) + (3 / 3) <
fSize + fNameSize; j++)
i
if (tempj !'= 0)
{
3 = temp];
tempj = 0;
}
pixel = DecryptedBitmap.GetPixel (j, i)

r = pixel.R;
g = pixel.G;
b = pixel.B;

(38)
v)

byte2bool (r, ref rb);
byte2bool (g, ref gb);
byte2bool (b, ref bb);

if (3 % 3 == 0)

{
t{0] = b[7];
ti1l = gbi7};
t[2] = bb[7];

}
else if (3 % 3 == 1)
{

t[3] = rb[7];
t{4] = gb[7];
t[5] = bb[7];
}
else
{
t[6] = rb(71;
t[7} = gbl7]};
temp = boolZ2byte(t);

res{i * (height / 3) + j / 3 - fNameSize) = temp;
}

//Read file on other layers:

long readedOnl8 = (height * (width / 3) * 3) / 3 - fNameSize -
1;

for (int layer = 6; layer >= 0 && readedOnL8 + (6 - layer) *
{(theight * (width / 3) * 3) / 3 - 1) < fSize; layer--)
for (i 0; i < height && i * (height / 3) + readedOnL8 +
(6 - layer) * ((height * (width / 3) * 3) / 3 ~ 1) < fSize; i++)
for (j = 0; 3 < (width / 3) * 3 && i * (height / 3) +
(3 / 3) + readedOnlL8 + (6 - layer) * ((height * (width / 3) * 3) / 3 - 1) <
fSize; j++)

il

{
pixel = DecryptedBitmap.GetPixel(j, i) :
r = pixel.R;
g pixel.G;
b pixel.B;
byte2bool (r, ref rb);
byte2bool (g, ref gb):;
byte2bool (b, ref bb):;
if (3 % 3 == 0)
{

t[0] = rb[layer];
t[1] gbllayer];
t[2] = bb[layer];

}

else if (jJ % 3 == 1)

{
t[3] = rb[layerl;
t[4] = gb[layer];
t[5] = bb{[layer];

}

else

{
t[6) = rbllayer];
t[7] = gb[layer];
temp = bool2byte(t);

[39)
¢ J

. . res[i * (height / 3) + j / 3 + (6 ~ layer) *
((height * (width / 3) * 3) / 3 - 1) + readedOnL8] = temp;
}
}

if (File.Exists(DSaveFilePath + "\\" + resFName))
{
MessageBox.Show("File \"" + resFName + "\" already exist

pPlease choose another path to save file", "Error", MessageBoxButtons.OK,
MessageBoxIcon.Error) ;

return;
}

else

File.WriteAllBytes (DSaveFilePath + "\\" + resFName, res);

toolStripStatuslabell.Text = "Decrypted file has been
successfully saved.";

Application.DoEvents () ;
}

private void byte2bool (byte inp, ref bool[] outp)
{

if (inp >= 0 && inp <= 255)
for (short i = 7; i >= 0; i--)
{
if (inp % 2 == 1)

outpl[i] = true;
else

outp[i] = false;
inp /= 2;

}

else
throw new Exception("Input number is illegal.");

}

private byte bool2byte(bool[] inp)
{
byte outp = 0;
for {(short i = 7; i >= 0; i-~)
{
if (inpl[i])
outp += (byte)Math.Pow(2.0, (double) (7 - 1i));
}
raturn outp;

}

private void Decrypt btn Click(object sender, EventArgs e)
{
String extractedText = a;
if (checkBoxl.Checked)
{
try
{
extractedText = Crypto.DecryptStringAES (extractedText,
PasswordText.Text) ;
}
catch
{

MessageBox.Show ("Wrong password", "Error");

return;

{ ® }
}
if (DeSaveFile tbx.Text == String.Empty || DeLoadImage_tbx.Text
== String.Empty)
{
MessageBox.Show ("Text boxes must not be empty!", "Error”,

MessageBoxButtons.OK, MessageBoxIcon.Error) ;

return;
}
if (System.IO.File.Exists(DeLoadImage tbx.Text) == false)
{

MessageBox.Show("Select image file.", "Error",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation) ;
DeLoadImage tbx.Focus();
return;

DecryptLayer() ;
}

private void DeLoadImageBrowse_btn_plick(object sender, EventArgs
e)
{
if (openFileDialog3.ShowDialog() == DialogResult.OK)
{
DLoadImagePath = openFileDialog3.FileName;
DeloadImage tbx.Text = DLoadImagePath;
DecryptedImage = Image.FromFile(DLoadImagePath) ;
height = DecryptedImage.Height;
width = DecryptedImage.Width;
DecryptedBitmap = new Bitmap (DecryptedImage) ;

FileInfo imginf = new Filelnfo (DLoadImagePath) ;

float £fs = (float)imginf.Length / 1024;

ImageSize lbl.Text = smalldecimal (fs.ToString(), 2) + "
KE";

ImageHeight 1bl.Text = DecryptedImage.Height.ToString() + "
Pixel";

ImageWidth_1lbl.Text = DecryptedImage.Width.ToString() + "
Pixel";

double cansave = (8.0 * ((height * (width / 3) * 3) / 3 -
1)) / 1024;

CanSave_ 1lbl.Text = smalldecimal (cansave.ToString(), 2) + "
KB";

canPaint = true;
this.Invalidate();

}

private void DeSaveFileBrowse_btn Click(object sender, EventArgs e)

{

(a1)
v)

if {(folderBrowserDialogl.ShowDialeog() == DialogResult.OK)
{
DSaveFilePath = folderBrowserDialogl.SelectedPath;
DeSaveFile tbx.Text = DSaveFilePath;

}

private void Forml_Paint (object sender, PaintEventArgs e)
{
if (canPaint)
try
{
if (!EncriptionDone)
e.Graphics.DrawImage (loadedTrueImage,
previewImage) ;
else
e.Graphics.DrawImage (AfterEncryption,
previewImage) ;
}
catch
{
e.Graphics.Drawlmage (DecryptedImage, previewlImage);
}
}

private string justFName(string path)
{
string output;
int i;
if (path.lLength == 3) // i.e: "C:i\\"
return path.Substring(0, 1);
for (i = path.Length - 1; i > 0; i--)
if (path[i] == '\\"')
break;
ocutput = path.Substring(i + 1);
return output;

private string justEx(string fName)

{

string output;

int i;
for (i = fName.Length - 1; i > 0; i--)
if (fNamel[i] == '.')

break;
output = fName.Substring(i + 1);
return output;

}

private void Close btn Click(object sender, EventArgs e)

{
this.Close() ;

}

private void linkLabell LinkClicked(object sender,
LinkLabelLinkClickedEventArgs e)
{

System.Diagnostics.Process.Start("Design By Banlam");

42

Frm——
L —

private void FrmSteganography Load(object sender, EventArgs e)

{
}

private void label3 Click(object sender, EventArgs e)

{
}

private void statusStripl_ItemClicked(object sender,
ToolStripItemClickedEventArgs e)

{
}

private void buttonl Click 1(object sender, EventArgs e)

{

MessageBox.Show("Files Hidden Windows Application");

}

private void button2 Click (object sender, EventArgs e)

{

MessageBox.Show("Load Image : Load any image you want(eg. jpg,
bmp, png). \nload Files : Load a files you want to hide into the selected
image (eg .txt,.doc, .csv,.exe etc)");

}

private

{
}

private

private

{
}

private

{
}

private

{
}

private

void

void

void

void

void

void

void

ImageWidth lbl Click(object sender, EventArgs e)

CanSave _1bl Click(object sender, EventArgs e)

label9 Click(object sender, EventArgs e)

label2 Click (object sender, EventArgs e)

label8 Click{object sender, EventArgs e)

1ab9112_plick(object sender, EventArgs e)

pictureBoxl_Click(object sender, EventArgs e)

43

——
bd

this.Close();

private void pictureBox3 Click (object sender, EventArgs e)
{

if (WindowState == FormWindowState.Normal)

{

WindowState = FormWindowState.Minimized;

}
}
int mouseX = 0, mouseY = 0;
bool mouseDown;
private void panell MouseDown (object sender, MouseEventArgs e)

{
mouseDown = true;

}

private void panell MouseMove (object sender, MouseEventArgs e)
{
if (mouseDown)
{
mouseX = MousePosition.X - 370;
mouseY = MousePosition.Y - 10;
this.SetDesktopLocation (mouseX, mouseY) ;

}
private void panell MouseUp(object sender, MouseEventArgs e)
{

mouseDown = false;

}

private void panell_Paint{ocbject sender, PaintEventaArgs e)

{
}

private void EnImage_ tbx TextChanged(object sender, EventArgs e)
{

}

private void tabPagel_Click(object sender, EventaArgs e)
{

}

private void label8 Click_1l(object sender, EventArgs e)

private void panelZ_Paint(object sender, PaintEventArgs e)

L

e)

Private

{
}

Private

{
}

pPrivate

{
}

pPrivate

{
}

private

{
}
private
{
}

private

{

void

void

void

void

void

void

void

[
&

EnFilq_tbx_TextChanged(object sender, EventArgs e)
labéllO_Click(object sender, EventArgs e)
label?_plick(object sender, EventArgs e)
ImageSize_lbl_Click(object sender, EventArgs e)
PasswordText_TextChanged(object sender, EventArgs e)

passwordTextBox_TextChanged(object sender, EventArgs

checkBoxl_CheckedChanged(object sender, EventArgs e)

Encrypt

ce-:mbi]

45

P
Scmagmomd

Cryploraphy Code

using System;

using System. Text;

using System.Security.Cryptography;
using System.IO;

namespace MYproject
{
public class Crypto
{
pPrivate static byte[] _salt =
Encoding.ASCII.GetBytes("jasdh7834y8hfeur73rshark5214");

/// <summary>
/// Encrypt the given string using AES. The string can be
decrypted using
/// DecryptStringAES(). The sharedSecret parameters must match.
[/ </ summary> ’
/// <param name="plainText">The text to encrypt.</param>
/// <param name="sharedSecret">A password used to generate a key
for encryption.</param>
public static string EncryptStringAES (string plainText, string
sharedSecret)
{
if (string.IsNullOrEmpty(plainText))
throw new ArgumentNullException ("plainText") ;
if (string.IsNullOrEmpty (sharedSecret))
throw new ArgumentNullException("sharedSecret");

string outStr = null; // Encrypted string

to return
RijndaelManaged aesAlg = null; // RijndaelManaged

object used to encrypt the data.

try
{
// generate the key from the shared secret and the salt

Rfc2898DeriveBytes key = new
Rfc2898DeriveBytes (sharedSecret, _salt);

// Create a RijndaelManaged object
aesAlg = new RijndaelManaged() ;
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);

// Create a decryptor to perform the stream transform.
ICryptoTransform encryptor =
aesAlg.CreateEncryptor (aesAlg.Key, aesAlg.IV);

// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())

{
// prepend the IV

msEncrypt.Write(BitConverter.GetBytes (aesAlg.IV.Length), 0, sizeof(int));
msEncrypt.Write(aesAlg.IV, 0, aesAlg.IV.Length);

r 46 1
¢)

using (CryptoStream csEncrypt = new
CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new
StreamWriter (csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText) ;
}
}
outStr = Convert.ToBase64String(msEncrypt.ToArray());
}
}
finally
{
// Clear the RijndaelManaged object.
if (aesAlg !'= null)
aesAlg.Clear() ;
}

// Return the encrypted bytes from the memory stream.
return outStr;

}

/// <summary>

/// Decrypt the given string. Assumes the string was encrypted
using

/// EncryptStringAES(), using an identical sharedSecret.

/77 </summary>

/// <param name="cipherText">»The text to decrypt.</paramn>

/// <param name="sharedSecret">A password used to generate a key
for decryption.</param>

public static string DecryptStringAES(string cipherText, string
sharedSecret)

{
if (string.IsNullOrEmpty (cipherText))
throw new ArgumentNullException('"cipherText") ;
if (string.IsNullOrEmpty (sharedSecret))
throw new ArgumentNullException("sharedSecret");

// Declare the RijndaelManaged object
// used to decrypt the data.
RijndaelManaged aesAlg = null;

// Declare the string used to hold
// the decrypted text.
string plaintext = null;

try
{

// generate the key from the shared secret and the salt
Rfc2898DeriveBytes key = new
Rfc2898DeriveBytes (sharedSecret, _;alt);

// Create the streams used for decryption.
byte{] bytes = Convert.FromBase64String (cipherText) ;
using (MemoryStream msDecrypt = new MemoryStream(bytes))
(// Create a RijndaelManaged object

// with the specified key and 1IV.

aesAlg = new RijndaelManaged() ;

[a7)
¢ J

aesAlg.Key = key.GetBytes (aesAlg.KeySize / 8);

// Get the initialization vector from the encrypted
stream

aesAlg.IV = ReadByteArray (msDecrypt) ;

// Create a decrytor to perform the stream transform.

ICryptoTransform decryptor =
aesAlg.CreateDecryptor (aesAlg.Key, aesAlg.IV);

using (CryptoStream csDecrypt = new
CryptoStream (msDecrypt, decryptor, CryptoStreamMode.Read))

{

using (StreamReader srDecrypt = new

StreamReader (csDecrypt))

// Read the decrypted bytes from the decrypting
stream

// and place them in a string.
plaintext = srDecrypt.ReadToEnd() ;

}
}
finally

{
// Clear the RijndaelManaged object.
if (aesAlg != null)
aesAlg.Clear (),
}

return plaintext;

}

private static byte[] ReadByteArray(Stream s)

{
byte[] rawlength = new bytelsizeof (int)];
if (s.Read(rawlength, 0, rawLength.Length) != rawLength.Length)
{
throw new SystemException("Stream did not contain properly
formatted byte array");
}

byte[] buffer = new byte[BitConverter.ToInt32(rawLength, 0)];
if (s.Read(buffer, 0, buffer.Length) != buffer.Length)
{

throw new SystemException("Did not read byte array
properly") ;
}

return buffer;

Texttoimage Helper Code

using System;
using System.Drawing;

namespace MYproject

{

class TexttoirmageHelper

{

48

F
hd

public enum State
{
Hiding,
Filling With_ Zeros
};

Public static Bitmap embedText(string text, Bitmap bmp)

{
// initially, we'll be hiding characters in the image
State state = State.Hiding;

// holds the index of the character that is being hidden
int charIndex = 0;

// holds the value of the character converted to integer
int charValue = 0;

// holds the index of the color element (R or G or B) that is
currently being processed
long pixelElementIndex = 0;

// holds the number of trailing zeros that have been added when
finishing the process
int zeros = 0;

// hold pixel elements
intR=0, G=0, B =0;

// pass through the rows
for (int i = 0; i < bmp.Height; i++)
{
// pass through each row
for (int 3 = 0; j < bmp.Width; j++)
{
// holds the pixel that is currently being processed
Color pixel = bmp.GetPixel (j, i);

// now, clear the least significant bit (LSB) from each
pixel element

il

pixel.R - pixel.R % 2
pixel.G - pixel.G % 2;
pixel.B - pixel.B % 2

!

R
G
B

]

// for each pixel, pass through its elements (RGB)
for (int n = 0; n < 3; n++)
{
// check if new 8 bits has been processed
if (pixelElementIndex % 8 == 0)
{
// check if the whole process has finished
// we can say that it's finished when 8 zeros
are added
if (state == State.Filling With_Zeros && zeros

{
// apply the last pixel on the image

// even if only a part of its elements have

been affacted
if ((pixelElementIndex - 1) % 3 < 2)

{

[a0)
v

bmp.SetPixel (3, i, Color.FromArgb(R, G,
B));

}
// return the bitmap with the text hidden
in
return bmp;
}
// check if all characters has been hidden
if (charIndex >= text.Length)
{
// start adding zeros to mark the end of
the text
state = State.Filling With Zeros;
}
else
{
// move to the next character and process
again

charValue = text{charIndex++];

}

// check which pixel element has the turn to hide a
bit in its LSB
switch (pixelElementIndex % 3)
{
case 0:
{
if (state == State.Hiding)
{
// the rightmost bit in the
character will be (charValue % 2)
// to put this value instead of the
LSB of the pixel element
// Jjust add it to it
// recall that the LSB of the pixel
element had been cleared
// before this operation
R += charValue % 2;

// removes the added rightmost bit
of the character
// such that next time we can reach
the next one
charValue /= 2;
}
} break;
case 1:
{
if (state == State.Hiding)

{
G += charValue % 2;

charValue /= 2;
}
} break:
case 2:

{
if (state == State.Hiding)

B)):

}

r 50]
¢)

B += charValue % 2;

charValue /= 2;
}

bmp.SetPixel(j, i, Color.FromArgb(R, G,

} break;
}

pixelElementIndex++;
if (state == State.Filling With Zeros)

{

// increment the value of zeros until it is 8
zeros++;

}

return bmp;

public static string extractText(Bitmap bmp)

{

int colorUnitIndex = 0;
int charValue = 0;

// holds the text that will be extracted from the image
string extractedText = String.Empty;

// pass through the rows
for (int i = 0; i < bmp.Height; i++)
{
// pass through each row
for (int j = 0; j < bmp.Width; 3j++)
{
Color pixel = bmp.GetPixel(j, i);

// for each pixel, pass through its elements (RGB)
for (int n = 0; n < 3; n++)
{
switch (colorUnitIndex % 3)
{
case 0:

{
// get the LSB from the pixel element

(will be pixel.R % 2)

// then add one bit to the right of the

current character

// this can be done by (charValue =

charValue * 2)

is by default 0) with

by addition

2;

// replace the added bit (which value
// the LSB of the pixel element, simply
charValue = charValue * 2 + pixel.R %

} break;

51

—
bd

case 1:

charValue charValue * 2 + pixel.G %
} break;
case 2:

{
charValue * 2 + pixel.B %

[l

charValue

} break;
}

colorUnitIndex++;

// if 8 bits has been added, then add the current
character to the result text

if (colorUnitIndex $ 8 == 0)

{

// reverse? of course, since each time the
process happens on the right (for simplicity)
charValue = reverseBits (charValue) ;

// can only be 0O if it is the stop character
(the 8 =zeros)

if (charvValue == 0)

{

return extractedText;

}

// convert the character value from int to char
char ¢ = (char)charValue;

// add the current character toc the result text
extractedText += c.ToString();

}

return extractedText;

}

public static int reverseBits(int n)

{

It

int result 0;
for (int i = 0; i < 8; i++)

{

result * 2 + n % 2;

result

return result;

ISZ]
La

Encrypt Text into Image
ncryy e

User Manual

Encrypt Files info Image

This is the first screen which has two panel option — one is the Encrypt Text into
image for Message encryption and another is the Encryption Files into image for files
Encryption

Encrypt Text into image System

53) “
)

Encryption

1. Load the image by clicking on File item to open image. The file open dialog box
will displays as follows, select the Image file, which you want to use hide
information and click on Open button.

’.f‘ Bl Desktop »

Organize v New folder

[Favorites S Libraties
Bl Desktop tem Fe
Downloads

- . ;
4. Recent Places '% Homegroup
HP

- Libraries
* Documents ?J
o Music i
&= Pictures 3 L Computer
B videos R yRemt
Y

< Homegroup (L Network

% Computer - o

File name: v |image Files ("jpeg; “.png: ;.b!n v

Open Cancel

2. The image will open and display as follows. Next Enter the message that you
want to hide on the Text area as follows

Imoge Preview

54

| —

i | L1k
3. Next tick the password checkbox if you wish to enter the password ag):r?tect the
message for better security or you can untick and encrypt the mess l‘Wi'thout
the password. Then click Encrypt to encrypt the message into an imag\é;\aftér
clicking encrypt button then a message will appear that your text is succéS’sfully

hidden within the image as follows

Encrypt Texi info image

This is a sample Text

Encryphon

55

~—
R

4. To save the file, click on the save button, Again the file open dialog box will
appear, select the folder and give the name for the file to save and click on save
button.

» Libraries » Pictures » Sample Pictures

Enter Text Here Organize v New folder

This is a sample Text ¢ Favorites “. Pictures library
B Desitop smple Prcture
Downloads

o, RecentPlaces |&))

®-0
79 Uibraries

* Documents IMG_3084
J' Music

& Pictures
. Videos

File name: |

Save as type: | Png image

56

e
L

Decryption
1. Click on the “File” button, which open the Open file dialog box, here

you have to select the image which is Encrypted and has hidden
Message. Select the image file and click on Open button.

P ~ —_— TN

- ==/
|
m |

Organize v New folder &= v |

File
Enter Text Here
¢ Favorites Videos library
BB Desktop jes: 2 locations
& Downloads

Recent Places

|

|

|

\

|

| E

; 4 Libraries

Encryplion ————— ¢ Documents

W Fossword -l o Music 4K Video Sample Videos

B Pictures Downloader

B videos
4 Homegroup

1 Computer -

File name: img « |Image Files ("jpeg: “png: "bm ~

Open Cancel

File
Image Preview
Enter Tex! Here

phon

B Password

57)
(J

3. Enter the password which was used for the encrypted file and click
on decrypt button then the message will be display as follows

File

Enter Text Here

This is a sample Text

Encryption

i | - ¥ N |
< . . \

58

r~x
| S—

Encrypt Files into image System

Encryption

1. For load image click on button “Browse” that is next to the Load
Image Textbox. The file open dialog box will displays as follows,
select the Image file, which you want to use hide information and
click on Open button.

Encryr: T
Organize v New foider

J Favorites * Videos library

1 Mmoge -| Bl Desktop Includes: 2 locations

Arrange by: Folder ¥

Downloads
., Recent Places

4 Libraries .
* Documents

o Music
& Pictures
B videos

, Homegroup

File name: = 7v ;Etmap Files ('W], -

[Conca

R
N

2. The image file will opened and is displays as follows. Next, click
on “Browse” button that is next to the Load File textbox.

Image Preview

PRt C:\Users\Public\Pictures\S

Running

3. Again the file open dialog box will appear, select any type of file
whatever you want to hide with the image and click on ok button.

i Ope

L2 » Libraries » Pictures » Sample Pictures

Encrypti "J Organize v New foider
Encrypt imoge | Decrypt imag PRSEE - Pictores Iibrary
Bl Desktop Sample Pictures

i & Downloads
i -' ., Recent Places

Uibranes
o
Password
W Password -l 2 Docs - Hydrangeas IMG_3084

m o Music ~ : L S g0 | s
& Pictures - o7 ¥ A
mag . Videos = {

Lighthouse Penguins

«§ Homegroup

& Computer

File name: |

r60]
Leds)

Encrypt Imoge | Decrypt Image

-

¢ Favorites

= oo -

& Downloads

Lood Re: C\Users\HP\OJ ., RecentPlaces = l& He e
T |

* Documents
J\ Music

= Pictures . You
B Videos .

Y s
| = @ Network

) Homegroup v

File name: '|ﬁ

Save as type: | Bitmap Files (".bmp)

Rl C:\Users\Pubiic\Picturesns| |

C:\Users\HP\Desktop\New

Decryption .

1. Select the Decryption Image tab option.

2. Next click on the “Browse” button, which open the Open file dialog
box, here you have to select the image which is encrypted and has
hidden information file. Select the image file and click on Open button.

Organize v New folder

-

r Favorites S Gbraries
B Desktop g 5o Foide
8 Downlcads

., Recent Places i& HP

4 Libraries
* Documents
o Music

& Pictures o you
B videos o
& Homegroup

& Computer -

File name: you

- [semapriescome) <]

Coem J [conen]

62

e,
| —

3. The image file displayed as follows:

L

Encryption/Decryption

Encrvp? imoge | Cecrypt Imoge

SEEEN C:-\Users\HP\Desktop\t.on ll

5

image Detoils
Sie 1780.52 KB
Height
Width
Can Save

Encrypted image has been successfully saved,

4. Now click on “Browse” button which is next to “Save file to”
textbox. It will open a dialog box that is “Browse for folder” . It ask

yvou to select the path or folder, where you want to extract the hidden
file. Select the folder and click on Ok button.

L

Encryption/Decryption

Encrypt image Decrypt imoge

SEEN C-\Users\HP\Desktop\t.br _
—.____L___1I

— 8 Libranes

e |7 8 e
| B HP
‘ € Network
imoge Detoils i 8 Control Panel
‘ # RecycleBin
o+ Redist

1024 Poced
o 2045 99 KB

Encrypted image has been successfully saved. 5

63

N
| S—

9. Now click on Decrypt button, it will decrypt the image, the hidden file
and image file is saved into selected folder. The message for successful
decryption is displayed on the status bar which is places at bottom of
the screen.

v,/

Encryption/Decryption Image Preview

Encrypt Imoge | Decrypt Image -
ESRRl C-\Uses\HP\Deskioo\tom |
Save fie 1o C:\Users\Public\Pictures -

@
enemt

Image Deiaiis

(62)
v)

Acknowledgement

I have taken efforts in this project. However, it would not have been
possible without the kind support and help of many individuals and
organizations. I would like to extend my sincere thanks to all of them.

I am highly indebted to my Guide Mr Donald Thabah for his guidance and
constant supervision as well as for providing necessary information regarding
the project & also for their support in completing the project.

I would like to express my gratitude towards my parents & member of the
Department of Computer Science and Application for their kind co-operation and
encouragement which help me in completion of this project.

My thanks and appreciations also go to my colleague in developing the
project and people who have willingly helped me out with their abilities.

Lastly, I thank almighty, brother, sisters and friends for their constant
encouragement without which this assignment would not be possible.

Bibliography

Websites

Following websites are referring to create this project reports.

e http://www.youtube.com

e http:/ /www.wikihow.com

o http:/ /www.null-byte.wonderhowto.com

o http://www.aesencryption.net

e http://www.tutorialpoints.com

e http://www.google.com

e http://www.microsoft.com

o http://www.itworld.com

o http://www.lifehacker.com

e http://www.wikipedia.org

65

~—
Y —

Conclusion

Steganography is a really interesting subject and outside of the mainstream

cryptography and system administration that most of us deal with day after day/.

Steganography can be used for hidden communication. We have explored the
limits of steganography theory and practice. We printed out the enhancement of
the image steganography system using L.SB approach to provide a means of secure
communication. A stego-key has been applied to the system during embedment of

the message into the cover image.

This steganography application software provided for the purpose to how to use
any type of image formats to hiding any type of files inside their. The master work
of this application is in supporting any type of pictures without need to convert
to bitmap, and lower limitation on file size to hide, because of using maximum

memory space in pictures to hide the file.

Since ancient times, man has found a desire in the ability to communicate
covertly. The recent explosion of research in watermarking to protect intellectual
property is evidence that steganography is not just limited to military or
espionage applications. Steganography, like cryptography, will play an

increasing role in the future of secure communication in the “digital world” .

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66

