’)

SHILLONG COLLEGE K
BOYCE ROAD, LAITUMKHRAH
SHILLONG-793003, MEGHALAYA

A PROJECT REPORT
SUBMITTED IN PARTTAL FULFILLMENT OF THE
REQUIREMENTS
OF THE DEGREE OF BACHELOR OF COMPUTER
APPLICATION

Submitted Dy,
Student name:Narola. D .Dhar
Roll number: P1500073
Registration Number:10471 of 2014-2015

Under the Guidance of
Mrs A Mitri

NORTH EASTERN HILL UNIVERSITY
CERTIFIED THAT THIS IS A BONAFIDE RECORD OF THE PROJECT

ENTITLED

A SIMPLE SPAM FILTER
USING NAIVE BAYES CLASSIFIER

% \m{\"\% & ,\N\H\\Y \4/\0%\\4

PROJECT GUIDE HEAD OF DEPARTMENT EXAMINER

Viva Voce held on: 17* of April, 2017

CERTIFICATE

This is to certify that the Project Report entitled “A simple spam filter using Naive Bayesy,,
Classifier” submitted by Narola. D. Dhar in partial fulfillment for the award of the Degrez\ﬁ
Computer Application for the year 2017 to the “North Eastern Hill University” is a record of
bonafide work carried out by her under our guidance and supervision.

LONG

The results embodied on this preject have not been submitted to any other University or
Institute for the award of any Degree or Diploma.

ACKNOWELEDGEMENT

I deeply express my gratitude to our Head of Department , Mrs A. Mitri who have allowed me to do
a project based on Machine Learning. I thank all the people whose ceaseless cooperation made it
possible, whose constant guidance and encouragement help me to not give up in the process of
working on the project..

I am grateful to my project guide Mrs. A. Mitri for the guidance, inspiration and constructive
suggestions that helped me in the preparation of this project. I am incredibly thankful to all my dear
teachers who has been a great inspiration to all of us.

I am also thankful to my dear classmates, friends and family who have helped me in the working of
the project.

TABLES OF CONTENT PAGES

1. Introduction and Objective Page 1

2. Synopsis Page 2-3
3. Analysis Page 4-8
4. Design and Implementation Page 9-14
5. Source code Page 15-19
6. Result/ Output Page 20-21
7.Future Goals Page 22
8.Conclusion Page 23

9.Bibliography Page 24

1. INTRODUCTION AND OBJECTIVE
1.1 Introduction

message on people who would not otherwise choose to receive it. Most spam is commercia
advertising, often for dubious products, get-rich-quick schemes, or quasi-legal services. Spam costs

the sender very little to send -- most of the costs are paid for by the recipient or the carriers rather
than by the sender.

Email spam is any email that meets the following three criteria:

@ Anonymity: The address and identity of the sender are concealed
@ Mass Mailing: The email is sent to large groups of people
® Unsolicited: The email is not requested by the recipients

Email spam targets individual users with direct mail messages. Email spam lists are often created by
scanning Usenet postings, stealing Internet mailing lists, or searching the Web for addresses. Email
spams typically cost users money out-of-pocket to receive. Many people - anyone with measured
phone service - read or receive their mail while the meter is running, so to speak. Spam costs them
additional money. On top of that, it costs money for ISPs and online services to transmit spam, and
these costs are transmitted directly to subscribers.

Anti-spam techniques are used to prevent email spam (unsolicited bulk email). There are many
anti-spam techniques available and one of them is using machine learning techniques. And, the
algorithm this project is based on is the Naive Bayes Theorem which is implemented in the
simplest way possible and these methods are part of Machine Learning techniques.

1.2 OBJECTIVES OF THE PROJECT

The web is growing day by day. People are aware of the internet and it's technology. The high
rise in spams in all web medias ha become a menace. Presently, there are many good spam
filters available that provides accurate ways to negate spam from ham. The objective of this
project is to understand Machine Learning and how we can do things through it.So, we start
first off with a simple spam filter using Naive Bayes Classifier. The main objective is to
understand and from this small project we will be able to progress more with time in order to
be able to create super smart applications using the methods of Machine Learning creating

simpler solutions for people.

2. SYNOPSIS
2.1 Synopsis

PROJECT TITLE
“A SIMPLE SPAM FILTER USING NAIVE BAYES CLASSIFIER”

We humans are all tired of spam, those unwanted mails that we get everytime we open up a
computer, our phones, our laptops. These spam are a menace leading to malicious activities
sometimes even loss of ones own identity. We need to solve this.

The project main objective is to classify ham and spam. In this project we use machine learning
techniques called the supervised learning to classify the mails. We use concepts like classification.
It includes dataset that are divided into the training set and the testing set. But in this project, we can
also test by inputing our own message to be classified. We use the Naive bayes classifier which is
an algorithm based on Bayes Theorem. It is a statistical based algorithm. What we actually did was
“multiply each feature give spam together and multiply that by the prior probability for spam and
repeat the same for ham(i.e multiply each feature give ham together and multiply that by the prior
probability for ham).

Now we have two numbers which can be normalized to probabilities by dividing both each by the
total of both. That will give the desired probabilities of both ham and spam which we can compare
and the higher probability is the result of the outcome of the mail.

The testing set is used to calculate the accuracy of the classified results.

The training dataset used is comprised of total of 2501 mails where 501 are ham and 2000 are spam
which are already labeled. The testing set are comprised of four test path where the first test path
comprised of hard spam mails, the second,third and fourth all comprised of hard spam mails.

2.2 Requirements
HARDWARE
e OS: minimum 64 bit Ubuntu 15.10
e Ram Memory: minimum 1.8 GB (the higher the better)
» Processor: Intel core i3
« CPU:220GHz X4
SOFTWARE
e Anaconda2 (Link to download- https://www.continuum.io/anaconda)

Anaconda is a free open source distribution of the Python and R programming languages
for large-scale data processing, predictive analytics, and scientific computing, that aims to
simplify package management and deployment. Its package management system is conda.

e Python2.7

Python is a programming language. It's used for many different applications. It's used in
some high schools and colleges as an introductory programming language because Python

is easy to learn, but it's also used by professional software developers at places such as
Google, NASA, and Lucasfilm Ltd.

¢ Spyder IDE

Spyder (formerly Pydee) is an open source cross-platform integrated development
environment (IDE) for scientific programming in the Python language. Spyder integrates
NumPy, SciPy, Matplotlib and IPython, as well as other open source software.

2.3 Conclusion

Using the above concepts and algorithms, we will create the SIMPLE SPAM FILTEB. This pro ject
will be able to provide insight on the interesting field of Machine Learning irrespective of the final
results.

)
)
)
)
)
)

]
i

3. ANALYSIS
3.1 Information Gathering

What is an email spam?

Email spam, also known as junk email, is unsolicited bulk messages sent through email. The use of
spam has been growing in popularity since the early 1990s and is a problem faced by most email
users. Recipients of spam often have had their email addresses obtained by spambots, which are
automated programs that craw] the internet looking for email addresses. Spammers use spambots to
create email distribution lists. A spammer typically sends an email to millions of email addresses,
with the expectation that only a small number will respond or interact with the message.

What is a spam filter?

A spam filter is a program that is used to detect unsolicited and unwanted email and prevent those
messages from getting to a user's inbox. Like other types of filtering programs, a spam filter looks
for certain criteria on which it bases judgments.

What is machine learning?

Machine learning is turning data into informatori.

Machine learning lies at the intersection of computer science, engineering, and

statistics and often appears in other disciplines. It can be applied to

many fields from politics to geosciences. It’s a tool that can be applied to many problems.

Any field that needs to interpret and act on data can benefit from machine

learning techniques.

Machine learning uses statistics. It is a subfield of artificial intelligence where the main objective is
to teach machines to learn like humans but instead of learning from experience like humans, they
will learn from data.

Machine Learning will be more popular in the future

In the last half of the twentieth century the majority of the workforce in the developed
world has moved from manual labor to what is known as knowledge work. The clear
definitions of “move this from here to there” and “put a hole in this” are gone. Things are
much more ambiguous now; job assignments such as “maximize profits,” “minimize
risk,” and “find the best marketing strategy” are all too common. The fire hose of
information available to us from the World Wide Web makes the jobs of knowledge
workers even harder. Making sense of all the data with our job in mind is becoming a
more essential skill. Machine learning will help us get through all the data and extract

some information from it.

Supervised Learning

Where a program is “trained” on a pre-defined dataset. Based off its training data the program can
make accurate decisions when given new data. Example: Using a training set of human tagged
positive, negative and neutral tweets to train a sentiment analysis classifier.

Classification

A sub-category of Supervised Learning, Classification is the process of taking some sort of input
and assigning a label to it. Classification systems are usually used when predictions are of a

discrete, or “‘yes or no” nature. Example: Mapping a picture of someone to a male or female
classification, classifying a mail to be ham or spam.

The main formula's used are:-

1. Bayes Theorem or Bayes Rule

Py PB4 PB4

P(A) P(BnA)+P(Bcn4)

2.Naive Bayes
Lkehhood Chfs Prias Probability
P(Cl .!’)1 P(\'] (‘,P(“)
l P(x)
Posterigr Probabdty Pre;fmorvmmrobabmtv
P(ciX) = P(x lc)= P(x,|c)=---~P(x {c}= Pc)
Naive Bayes Classifier

Naive Bayes is a collection of classification algorithms based on_Bayes Theorem. It is not a single
algorithm but a family of algorithms that all share a common principle, that every feature being
classified is independent of the value of any other feature. So for example, a fruit may be
considered to be an apple if it is red, round, and about 3" in diameter. A Naive Bayes classifier
considers each of these “features” (red, round, 3” in diameter) to contribute independently to the
probability that the fruit is an apple, regardless of any correlations between features. Features,
however, aren’t always independent which is often seen as a shortcoming of the Naive Bayes

algorithm and this is why it’s labeled “naive”.
Although it’s a relatively simple idea, Naive Bayes can often outperform other more sophisticated
algorithms and is extremely useful in common applications like spam detection and document

classification.

In a nutshell, the algorithm allows us to predict a class, given a set of features using probability. So

in another fruit example, we could predict whether a fruit is an apple, orange or banana (class)
based on its colour, shape etc (features).

To demonstrate the concept of Naive Bayes Classification, consider the example given below:

.. ® * »
e ® *_ a0,
e _* o e e *
oo ® oq0 0, *
.... e @ ® o
* .
e® o N
.‘..0 *0 4
o0 * S e

As indicated, the objects can be classified as either GREEN or RED. Our task is to classify new cases
as they arrive, i.e., decide to which class label they belong, based on the currently existing objects.

Since there are twice as many GREEN objects as RED, it is reasonable to believe that a new case
(which hasn't been observed yet) is twice as likely to have membership GREEN rather than RED. In
the Bayesian analysis, this belief is known as the prior probability. Prior probabilities are based on
previous experience, in this case the percentage of GREEN and RED objects, and often used to
predict outcomes before they actually happen.

Thus, we can write:

Prior Probability of GREEN: number of GREEN objects / total number of
objects

Prior Probability of RED: number of RED objects / total number of objects

Since there is a total of 60 objects, 40 of which are GREEN and 20 RED, our prior probabilities for
class membership are:

Prior Probability for GREEN: 40 / 60
Prior Probability for RED: 20 / 60

Having formulated our prior probability, we are now ready to classify a new object (WHITE circle
in the diagram below). Since the objects are well clustered, it is reasonable to assume that the more
GREEN (or RED) objects in the vicinity of X, the more likely that the new cases belong to that
particular color. To measure this likelihood, we draw a circle around X which encompasses a
number (to be chosen a priori) of points irrespective of their class labels. Then we calculate the
number of points in the circle belonging to each class label. From this we calculate the likelihood:

Number af GREEN in the vicinity of X
Total number of GREEN cases

Number of RED in the vicinity of X

Total number of RED cases

Likelihood of X given GREEN «

Likelihood of X given RED «

From the illustration above, it is clear that Likelihood of X given GREEN is smaller than Likelihood
of X given RED, since the circle encompasses 1 GREEN object and 3 RED ones. Thus:

Probability of X given GREEN « -41—0

Probability of X given RED = %

Although the prior probabilities indicate that X may belong to GREEN (given that there are twice as
many GREEN compared to RED) the likelihood indicates otherwise; that the class membership of X
is RED (given that there are more RED objects in the vicinity of X than GREEN). In the Bayesian
analysis, the final classification is produced by combining both sources of information, i.e., the
prior and the likelihood, to form a posterior probability using the so-called Bayes' rule (named after
Rev. Thomas Bayes 1702-1761).

Posterior probability of X being GREEN «
Prior probability of GREEN X Likelihood of X given GREEN
4 1 1

=_.X____.—....—
6 40 60

Posterior probability of X being RED =
Prior probability of RED X Likelihood of X given RED

2.3 1

Finally, we classify X as RED since its class membership achieves the largest posterior probability.

We will use this concept on classifying a mail into spam or ham.

a naive Bayes classifier assumes that the presence (or absence) of a particular

In simple terms, .
r absence) of any other feature, given the class

feature of a class is unrelated to the presence (0

variable. ... It's called naive because it makes the assumption that all attributes are independent of
each other.

Pros and cons of Naive Bayes:
Advantages

* It’s relatively simple to understand and build

* It’s easily trained, even with a small dataset
e It’s fast!

* It’s not sensitive to irrelevant features

Disadvantages

* It assumes every feature is independent, which isn’t always the case
3.2 ALREADY EXISTINING SOFTWARES
1. SPAM ASSASIN
2. SPAMBAYES
3. Spamihilator
4.POPFile

5.Spamfence and so on

4. DESIGN AND IMPLEMENTATION

4.1 DESIGN

Non-spam mail
to your inbox

holding area
(or to the trash)

A Block diagram to explain the implementation

We will be working with text data, we will be using the Python-based library Natural
Language Toolkit (NLTK), which has rich functionality in natural language
processing tasks.

* We import the toolkit _

*We import the corpus which contains the stopwords
*We import os so that we can import folders,files etc.
*We insert the spam and ham mails and shuffle them

How is the spam and ham Classified?
1.We entered message

“100% free Choco pills for you baby.

2. We tokenize it removing unnecessary punctuations like =" or \n' using the
wordpunct.tokenizer

{'100','free‘,'Choco','pills','for','you','baby‘,'yes"it','is','free','free'.'free'}
3. lemmatize the above set
{'100','free','Choco','piIls','for','you','baby','yes','it','is'}

4. We remove the stopwords (e.g if, you, yours, myself etc.)
{'100','free','Choco','pills','baby','yes'}

5. We convert it to lowercase

{'100','free','choco‘,'pills'.'baby','yes'}

6. We tabulate it with the training set.

7. These non-stopwords are compared with a dictionary of ham and Spam words to
check it's likeliness

8. Check frequency or word occurrence of each word in the spam mails and ham mails
9. Feed the values into the classifier

10. Classify ham or spam
This can be illustrated by looking at the table:-

Features

This can be illustrated by looking at the table:-

We now check how many times do these word occur as ham or spam

The dictionary is are already trained data set where two folders of spam and ham and their

DICTIONARY

probabiliti
es are
calculated
.Already
ained data
where prior
probability
of Spam is
0.2 and
prior
probability
of Ham is

dictionary
approach

is used to

create this spamfilters. There are many of such dictionaries available online that contains words and

phrases that trigger spam
(e.g. E-Commerce Spam Triggers List 18). Python enable developers to

easily create lexicons and dictionaries as it has its own dedicated data structure for building
and retrieving dictionaries using key:value pairs. The following example illustrates how a

dictionary can be created and retrieved in Python:
my_dict = {

'keyl": 'valuel’,

'key2'": 'value2',

'key3'": 'value3'

11

}

my_dict[key1]

Out: 'value

for item in my_dict:
print item

#key3

#key2

#keyl

Using Bayes Theorem
" AR e
P(100(S)=
P(100/S)=

o (T)

Mmmmohabilyfadlwomsdeamws)mmmmm

- z s s e

mmommo.ouma omm 0.5575221

239

12

"“'-Iw L

Feed the values into the classifier

Using Naive Theorem

The classifier tries to choose the most probable class, or label, among the two

classes, spam and ham, i.e. ce {mm’ ham} based on what it has learned
about the features (presence or frequency of words in the emails of each type).
More precisely, it's trying to choose the most probable class given the words in the

e-mail:

é = argmaz.e{spam,ham}P(clwords)

The classifier will assign the class (denoted as ¢ with a hat) it will choose among
the two classes by looking which of the two probabilities — “spam” given the words
in the email P(spam | words), or “ham” given the words in the email P(ham |
words) — is higher (thus the argmax). These probabilities cannot be directly
estimated, but Bayes rule allows us to swap the conditions and get:

P(clwords) = £ "’°:,,d:,.c e

Now the classifier will need to compare these fractions for the two classes. When
comparing two fractions, you can disregard the denominator because it stays the

13

~same for both classes, and directly compare the
product P(words|spam)P(spam) with P(words|ham)P(ham).

€& = argmaz .c{spam ham) P(words|c) P
{)Plwordslc)P(e) b papiiities P(spam) and P(ham) are called

the prior probabilities, and they show the distribution of “spam” and “ham” c i
the training set. The probabilities P(words|spam) and P(w‘c))rdslham) a?e B
called conditional probabilities of having a particular set of features if the email is

spam” or if itis “ham”. Naive Bayes classifier assumes that each feature (word)
occurs in a text independently of all other words, so we can multiply the conditional
prob_al_)llmes fou_' each of the words directly. In short, the algorithm will say that an
email is spam if P(S|W) > P(H|W) and ham otherwise.

The resuit of the posterior probability of spam and ham

The higher posterior probability is the result

In the training set, P(SPAM)= 0.2 and P(HAM)=0.8 because our training set consists of 2501
mails 501 spam and 2000 ham mails.

* On testing the data, our test path is made up of four mails folders and we run the classifier
on [5:-1] of the folders and we get the fractions of all folder which is calculated as:-

if spam_probability > ham_probability:
results[SPAM] += 1

else:

results[HAM] += 1

total_files = results|SPAM] + resultsflHAM]
spam_fraction = float(results[SPAM]) / total_files

ham_-t-'raction =] - spam_fraction
Which shows the fraction of spam existing on each folder

14

5. SOURCE CODE
-*- coding: utf-8 -*-

Created on Sat Nov 19 10:01:52 2016

@author: rhodel

reeey

-
Hrainine #EHHHHHHE
AN SR B B L L B L)L 0 Ll e 1

import nltk
from nltk.corpus import stopwords
from nltk.tokenize import wordpunct_tokenize

tor reading all the tiles
from os import listdir
from os.path import isfile, join

add path to NLTK tile

nltk.data.path = ['nltk_data']

load stopwords

stopwords = set(stopwords.words(‘english’))

path for all the training data sets
spam_path = 'data/spam/'
ham_path = 'data/easy_ham/'

def get_all_words(email):

#remove punctuations like =,\n, '’ etc.
all_words = set(wordpunct_tokenize(email.replace('=\\n, ").lower()))

remove the stopwords
eml_words = [word for word in all_words if word not in stopwords and len(word) > 2]

return eml_words

def get_mail_from_a_file(file_name):

"wevey

Returns the entire mail as a string from the given file.

Lidi]

email ="
with open(file_name, 'r') as mail_file:

for line in mail_file: . '
the contents of the actual mail start after the first newline
so find it, and then extract the words

if line == \n"

15

make a string out of the remaining lines
for line in mail_file:
email += line

return email

def make_training_set(path):

Returns a dictionary of <term>: <occurrence> of all

the terms in files contained in the directory specified by path.

path is mainly directories to the training data for spam and ham folders.
occurrence is the percentage of documents that have the 'term’ in it.

frequency is the total number of times the 'term' appears across all the
documents in the path

nan

initializations
training_set = {}

mails_in_dir = [mail_file for mail_file in listdir(path) if isfile(join(path, mail_file))]

count of cmds in the directory
cmds_count =0

total number of files in the directory
total_file_count = len(mails_in_dir)

print "’

print ‘The total file count is',total_file_count
print .’

print '

print "'

m

for mail_name in mails_in_dir:

if mail_name == '‘cmds”.
cmds_count += 1
continue

get the message in the mail
email = get_mail_from_a_file(path + mail_name)

we have the message now
get the words in the message
terms = get_all words(email)

what we're doing is tabulating the number of files

16

that have the word in them
add these entries to the training set
for term in terms:
if term in training_set:
training_set{term] = training_set[term] + 1
print 'noelse’
print training _set{term]
else:
training_set[term] = 1
#print ‘else’
#print training _set{term]
reducing the count of cmds files from file count
total_file_count -= cmds_count
print "The total file count is', total_file_count
calculating the occurrence for each term
for term in training_set.keys():
training_set[term] = floai(training_set[term]) / total_file count
print training _set{term]

return training_set

print "

print 'Loading training sets...",

spam_training_set = make_training_set(spam_path)
ham_training_set = make_training set(ham_path)
print 'done.’

print spam_training_set

print '

print ham_training_set

print "'

"

def classify(email, training_set, prior = 0.5, ¢ = 3.7e-4):

"eert

Retumns the probability that the given message is of the given type of
the training set.

"y

msg_terms = get_all_words(email)
#print msg_terms

msg_probability = 1

for term in msg_terms:
if term in training_set:

17

msg_probability *= training_set{term]
#print msg_probability
else:
msg_probability *= ¢
#print msg_probability
return msg_probability * prior

mail_msg = raw_input('Enter the message to be classified:")
print "

#

0.2 and 0.{! because the ratio of samples for spam and ham were the 0.2-0.8
spam_pmbabl}ity = classify(mail_msg, spam_training_set, 0.2)
ham_probability = classify(mail_msg, ham_training_set, 0.8)
if spam_probability > ham_probability:
print "Your mail has been classified as SPAM.’
else:
print "Your mail has been classified as HAM.'
print "
print The spam probability of this message is:’, spam_probability
print The ham probability of this message is:’, ham_probability

#testing
SPAM = ‘spam'
HAM = ham'

change it to the type of mails you want to classify
path to the hard ham mails

spam2_path = 'data/spam_2/

ham2_path = 'data/easy_ham_2/'

hard_ham2_path = 'data/hard_ham_2/
hard_ham_path = ‘data/hard_ham/'

test_paths = [spam2_path, ham2_path, hard_ham_path, hard_ham2_path]
for mail_path in test_paths:
mails_in_dir = [mail_file for mail_file in listdir(mail_path) if isfile(join(mail_path, mail_file))]

results = {}
results(SPAM] =0
resultstHAM] =0

print ‘Running classifier on files in’, mail _path[5:-1], ..

for mail_name in mails_in_dir:

18

if mail_name == 'cmds":
continue

mail_msg = get_mail_from_a_file(mail_path + mail_name)

0.2 and 0.8 because the ratio of samples for spam and ham were the same
spam_probability = classify(mail_msg, spam_training_set, 0.2)
ham_probability = classify(mail_msg, ham_training_set, 0.8)

if spam_probability > ham_probability:
results{SPAM] += 1

else:
resultsfHAM] +=1

total_files = results| SPAM] + resultsTHAM]
spam_fraction = float(results| SPAM]) / total_files
ham_fraction = 1 - spam_fraction

print 'The fraction of spam messages =', spam_fraction
print 'The fraction of ham messages =', ham_fraction

6. RESULT/OUTPUT
Loading training sets...

done.

Your mail has been classified as SPAM.

The spam probability of this message is: 4.4077952e-13
The ham probability of this message is: 9.29144549376e-15

If New mail is not feeded by oneself

We test using the test path which are already created to test
Running classifier on files in spam_2 ...

The fraction of spam messages = 0.739441660702

The fraction of ham mesisages = 0.260558339298

If New mail is not feeded by oneself

We test using the test path which are already created to test
Running classifier on files in easy_ham_2 ...

The fraction of spam messages = 0.0385714285714

The fraction of ham mesisages = 0.961428571429

If New mail is not feeded by oneself

We test using the test path which are already created to test
Running classifier on files in hard_ham ...

The fraction of spam messages = 0.0763052208835

The fraction of ham mesisages = 0.923694779116

If New mail is not feeded by oneself

We test using the test path which are already created to test
Running classifier on files in hard_ham_ 2 ...

The fraction of spam messages = 0.0927419354839

The fraction of ham messages = 0.907258064516

20

D

BAR DIAGRAM COMPARING PROBABILITIES OF EACH FEATURE
12

1

0.8
0.6
0.
: L
0
100 free

choco pills

£y

N

ml
m2

Where, 1 is Spam and 2 is Ham

There are many loopholes that need to be fixed in this project like:-
1. false positives.

2. false negatives.

3. comparing with the threshold.

4. good visualization using anaconda packages like matplotlib. it :
5. accuracy test compared with other types of classifiers. Overall, this project has increased more

understanding on this subject and created keen interests for future projects to be created based on
this field.

H Spam
® Ham

21

7. FUTURE GOALS

7.1 Improving on this project to create user friendly spam filter application feed it to a re
database and successfully classity it and also determine where the spam came from.

7.2 Use Machine Learning concepts to create a smart fashion application that helps people with no
fashion sense style better.

7.3 Use Machine Learning concepts to predict teer outcomes if possible.

7.4 Use Machine Learning concepts to create a more accurate partner selecting software which will
help people have better compatible marriages.

22

8. CONCLUSION

On doing thlS project, it has brought about more understanding on Machine Learning. It is a step
towards taking thls field as a major tool for creating fun softwares and application for various
platform. The project has been able to classify emails as ham or spam but it is not yet that efficient
to be used professionally as a spam classification software. If this project finds fruitful
devglopment. It can be used in major . We will move forward and make the above future goals a
reality. As we can see, in today's modern world, the rate of technological innovation is progressing
fast and within a few more years with the development of newer computer languages, softwares and
sophisticated computer hardware this “SPAM FILTER” will be more efficient and have less error
rate and maybe find flawless application in networking and communication sectors.

23

9. Bibliography

4, i er
5Mach§ne Learning in Action by Peter Harrington
6.Machine Learning for Dummies by John Paul Mueller

7.Machine Learning in Python by Michael Bowles
8. www.stackoverflow.com

14.www.udacity.com
15. Siraj Raval tutorials

24

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29

